(3.238.7.202) 您好!臺灣時間:2021/02/26 16:06
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:周敬人
研究生(外文):Jing-Ren Jhou
論文名稱:由流道中心軸向之壓力分佈曲線討論流道系統最佳化
論文名稱(外文):An Optimization Study on the Flow System Through the Pressure Distribution along Flow Channel Centerlines.
指導教授:王冠閔王冠閔引用關係
指導教授(外文):Kuan-Min Wang
口試委員:王冠閔
口試委員(外文):Kuan-Min Wang
口試日期:2014-07-21
學位類別:碩士
校院名稱:大同大學
系所名稱:機械工程學系(所)
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2014
畢業學年度:102
語文別:英文
論文頁數:97
中文關鍵詞:流道系統壓力分佈最佳化流阻
外文關鍵詞:Flow systemPressure distributionOptimizationFlow resistance
相關次數:
  • 被引用被引用:0
  • 點閱點閱:201
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
流道系統應用十分廣泛,因此流道設計一環亦受到很大的重視,在設計優化上,研究者經常需要花費漫長時間來進行散熱分析模擬與實驗,藉由設計後溫度產生的變化,才能確認流道系統是否優化。本次研究目的就是為縮減優化流道所花費的時間,採用檢測優化後流道的壓力曲線之方法,運用數值模擬軟體進行模擬分析,進而探討此方法的可行性。數種不同的流道系統,在固定其體積下改變管徑比(D2/D1)、管壓之間的比例關係,了解不同流管形狀與壓力曲線之間的規律性,研究不同種類流管優化後的壓力曲線之間的關聯性,進而得知壓力曲線的變化能否觀察到流管是否優化之目的。我們發現,當壓力分佈曲線越接近一條連結進出口壓力位置之直線時,所得到之體積流率越大,亦即其流道效率越好。
In the heat flow analysis, optimizing the flow systems often requires researchers to take a long time to simulate and test. The purpose of this study is to propose a new way to reduce the time in optimizing flow systems. We use the numerical simulation software to obtain optimized flow systems' pressure distributions to discuss the feasibility of this method. Several different flow systems with variable channel diameter ratio (D2/D1), fixed flow volumes and the total pressure difference are studied to find out the regularity between the optimized flow systems and pressure distributions. Also, to understand whether we can use pressure distributions to determine a flow channel is optimized or not. The results showed that the best pressure distribution will close to the ideal line. This ideal line is defined by connecting the inlet pressure and the outlet pressure in the pressure-distance plot. The best configuration will provide the highest volumetric flow rate, that is, the best flow performance.
誌謝 I
ABSTRACT II
摘要 III
Contents IV
Figures VI
Tables XI
Symbols XIII
Chapter 1 Introduction 1
1.1 Motivation and objective 1
1.2 Literature review 2
1.3 Structure of thesis 6
Chapter 2 Numerical model 7
2.1 Flow configurations 7
2.2 Flow configuration optimization 12
2.3 Governing equations, subdomain and boundary settings 18
2.4 Mesh size independent test 20
2.5 Analytical solutions 22
Chapter 3 Results and discussion 26
3.1 Group I flow systems 26
3.1.1 Vertical-parallel flow systems 26
3.1.2 Horizontal-parallel flow systems 28
3.1.3 Original-grids flow systems 29
3.1.4 Modified-grids flow systems 31
3.1.5 Diagonal flow systems 32
3.2 Group II flow systems 75
3.3 Group III flow systems 82
3.3.1 One-bifurcation systems 82
3.3.2 Two- and three-bifurcation flow systems 83
3.4 Summary 84
Chapter 4 Conclusions and prospects 94
References 96
[1]A. Bejan, L.A.O. Rocha, and S. Lorente, Thermodynamic optimization of geometry: T- and Y-shaped constructs of fluid streams, International Journal of Thermal Sciences, Volume 39, Issues 9–11, pp. 949–960 (2000).
[2]Kobayashi, S. Lorente, R. Anderson, and A. Bejan, Freely morphing tree structures in a conducting body, International Journal of Heat and Mass Transfer, Volume 55, Issues 17-18, pp. 4744–4753 (2012).
[3]Limin Wang, Yilin Fan, and Lingai Luo, Lattice Boltzmann method for shape optimization of fluid distributor, Computers & Fluids, Volume 94, pp. 49–57 (2014).
[4]Y. Azoumah, P. Bieupoude, and P. Neveu, Optimal design of tree-shaped water distribution network using constructal approach: T-shaped and Y-shaped architectures optimization and comparison, International Communications in Heat and Mass Transfer, Volume 39, Issue 2, pp.182–189 (2012).
[5]J. Fan, and L. Wang, Constructal design of nanofluids, International Journal of Heat and Mass Transfer, Volume 53, pp. 4238–4247 (2010).
[6]O.T. Olakoyejo, T. Bello-Ochende, and J.P. Meyer, Constructal conjugate cooling channels with internal heat generation, International Journal of Heat and Mass Transfer, Volume 55, pp. 4385–4396 (2012).
[7]C. Zhang, Y. Chen, R. Wu, and M. Shi, Flow boiling in constructal tree-shaped minichannel network, International Journal of Heat and Mass Transfer, Volume 54, pp. 202–209 (2011).
[8]G. Lorenzini, C. Biserni, and L.A.O. Rocha, Geometric optimization of isothermal cavities according to Bejan’s theory, International Journal of Heat and Mass Transfer, Volume 54, pp. 3868–3873 (2011).
[9]S.M Senn, D Poulikakos, and Laminar mixing, heat transfer and pressure drop in tree-like microchannel nets and their application for thermal management in polymer electrolyte fuel cells, Journal of Power Sources, Volume 130, Issues 1–2, 3, pp. 178–191 (2004)
[10]Y. Chen, and P. Cheng, Heat transfer and pressure drop in fractal tree-like microchannel nets, International Journal of Heat and Mass Transfer, Volume 45, pp. 2643–2648 (2002).
[11]H. Liu, P. Li, and K. Wang, Optimization of PEM fuel cell flow channel dimensions-Mathematic modeling analysis and experimental verification, International Journal of Hydrogen Energy, Volume 38, Issue 23, 6, pp. 9835–9846 (2013).
[12]H. Liu, and P. Li, CFD study on flow distribution uniformity in fuel distributors having multiple structural bifurcations of flow channels, International Journal of Hydrogen Energy,Volume 35, Issue 17, pp. 9186–9198 (2010).
[13]G. Lorenzini, C. Biserni, and F.L. Garcia and L.A.O. Rocha, Geometric optimization of a convective T-shaped cavity on the basis of constructal theory, International Journal of Heat and Mass Transfer, Volume 55, pp. 6951–6958 (2012).
[14]S. Kima, S. Lorente, and A. Bejan, Dendritic vascularization for countering intense heating from the side, International Journal of Heat and Mass Transfer, Volume 51, pp. 5877–5886 (2008).
[15]H. Kobayashi, S. Lorentec, R. Andersond, and A. Bejan, Trees and serpentines in a conducting body, International Journal of Heat and Mass Transfer, Volume 56, pp. 488–494 (2013).
[16]www.comsol.com
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔