(3.235.108.188) 您好!臺灣時間:2021/03/07 20:05
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:林景泰
研究生(外文):Jing-tai Lin
論文名稱:利用流速及溫度分佈進行圓柱狀散熱鰭片之最佳擺設
論文名稱(外文):Using velocity and temperature distributions to design optimal arrangements of cylindrical fins
指導教授:王冠閔王冠閔引用關係
指導教授(外文):Kung-min Wang
口試委員:王冠閔
口試委員(外文):Kung-min Wang
口試日期:2014-07-21
學位類別:碩士
校院名稱:大同大學
系所名稱:機械工程學系(所)
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2014
畢業學年度:102
語文別:英文
論文頁數:101
中文關鍵詞:水冷頭散熱鰭片速度分佈溫度分佈
外文關鍵詞:velocity distributionheat finswater blocktemperature distribution
相關次數:
  • 被引用被引用:1
  • 點閱點閱:141
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
隨著科技進步,電腦自發明以來,不斷地在效能以及尺寸上進行改良,使得高效能、體積小的平板電腦與智慧型手機,越來越融入我們的社會與生活。而體積較大的桌上型電腦,因其處理速度、文件處理能力與軟體應用支援,依舊佔有非常重要的地位。不管是哪一種類型的電腦,散熱一直都是一個相當重要的問題。隨著環保意識抬頭,節約能源與減少有限材料的使用,亦相當受到重視。因此,兼顧散熱優化與環保觀念,便成為重要的研究方向。
本文主要目的在於探討水冷散熱系統中,能否依靠液冷流向以及溫度分佈,找到散熱鰭片的最佳擺放位置。我們測試了五種擺放策略,在三個不同進出口壓差下之散熱效率。我們發現延著最高平均流速之位置擺放散熱鰭片,除可以達到接近最佳擺放之散熱效果外,亦可以在遠少於最佳擺放之模擬次數下,找出應擺放之位置。最佳擺放需進行276次模擬,而最高平均流速策略則只需進行23次模擬,且兩方法之效能差距小於10%。
Due to the great improvement in technology, the performance and the size of computers are enhanced continuously. Making high performance and small volume tablets and smart-phones become more and more involved into our society and daily life. However, the desktops of large volumes are still playing an important role for their high computer speeds, document processing abilities, and application software compatibilities. For all computers and electronics, cooling is always an important issue to be solved. Currently, the environmental protection has been receiving more and more attentions. Consumptions in energy and materials should be minimized. Therefore, it is an important research direction to support the environmental protection with optimized cooling performances.
In this thesis, we studied locations of heat fins in the water cooling system based on the distributions of the velocity and the temperature. Five placing strategies are discussed, and three total pressure drops are used. The results showed that placing heat fins along the highest averaged velocity can provide the cooling performance close to the optimal design. It also requires less simulations than the optimal design. The optimal design needs 276 simulations, while placing heat fins along the highest averaged velocity depends only on 23 simulations. The difference in the cooling performance between these two strategies is less than 10%.
中文證明書 I
英文證明書 II
誌謝 III
摘要IV
Abstract V
Contents VI
Figures VIII
Table XI
Chapter 1 Introduction 1
1.1 Motivation and objective 1
1.2 Literature Review 3
1.3 Summary 7
Chapter 2 Numerical model 8
2.1 Water block geometry 8
2.2 Governing equations, boundary conditions, and averaging settings 11
2.2.1 Governing equations 11
2.2.2 Boundary conditions 12
2.2.3 Averaging settings 13
2.3 Grid size independent test 14
Chapter 3 Simulation Result and Investigation 18
3.1 Strategies I-IV at 10 [Pa] pressure difference 20
3.1.1 Strategy I 20
3.1.2 Strategy II 26
3.1.3 Strategy III 32
3.1.4 Strategy IV 36
3.2 Strategies I-IV at 5 [Pa] pressure difference 43
3.2.1 Strategy I 43
3.2.2 Strategy II 47
3.2.3 Strategy III 53
3.2.4 Strategy IV 56
3.3 Strategies I-IV at 2.5 [Pa] pressure difference 62
3.3.1 Strategy I 62
3.3.2 Strategy II 66
3.3.3 Strategy III 71
3.3.4 Strategy IV 75
3.4 Strategy V at 10 [Pa] pressure difference 81
Chapter 4 Conclusions and future prospects 86
References 89
[1] C.C Sung, The study of cooling effectiveness in a water cooled heat sink, Thesis for Master of Science Department of Mechanical Engineering Tatung University, June 2010.

[2] T.F Syu, Effect of length on heat transfer performance of liquid cooling heat sink with micro-channels, A Thesis Institute of Northern Taiwan in partial Fulfillment of Requirements for the Degree of Master in Institute of Mechatronic Engeering, July 2011.

[3] 趙谷峰,液冷散熱模組散熱效益之研究,國立成功大學工程科學系碩士班碩士論文,2004年

[4] T.M. Jeng and S.C. Tzeng, Pressure drop and heat transfer of square pin-fin arrays in inline and staggered arrangements, International Journal of Heat and Mass Transfer, Volume 50, Issues 11–12, June 2007, Pages 2364–2375

[5] 買亞涵,微流道水冷散熱器之最佳化性能分析,國立台灣科技大學機械工程系碩士學位論文,2009年

[6] 李偉平,微流道散熱座之熱傳分析與流道設計,國立台南大學綠色能源科技學系碩士論文,2012年

[7] F. Wang, J. Zhang, and S. Wang, Investigation on flow and heat transfer characteristics in rectangular channel with drop-shaped pin fins, Propulsion and Power Research, Volume 1, Issue 1, December 2012, Pages 64–70

[8] 曹詠植,方柱鰭片散熱座於矩形槽道流中之強制熱對流特性,建國科技大學自動化工程系暨機電光系統研究所碩士學位論文,2007年

[9] C.W Chen, Optimum thermal analysis of a heat sink with various fin cross-sections and a micro-channel heat sink, for Ph.D. Dissertation Degree Department of Mechanical Engineering Tatung University, May 2008.

[10] 陳文棟,平板式微流道熱管散熱效能之研究,國立中央大學光電科學研究所碩士論文,2006年

[11] L.W Zhang, Performance analysis of a heat sink with gas diffusion region, Thesis for Master of Science Department of Mechanical Engineering Tatung University, July 2011.

[12] C.A Chen, Analysis on performance of a heat sink in non-uniform flow field, Thesis for Master of Science Department of Mechanical Engineering Tatung University, July 2010.

[13] S.A. Lawson , A.A. Thrift, K.A. Thole, and A. Kohli, Heat transfer from multiple row arrays of low aspect ratio pin fins, International Journal of Heat and Mass Transfer, Volume 54, Issues 17–18, August 2011, Pages 4099–4109

[14] www.comsol.com
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔