(54.236.58.220) 您好!臺灣時間:2021/03/01 17:53
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:陳仕佑
研究生(外文):Shih-yu Chen
論文名稱:介電泳力純化不同尺寸奈米銀線膜之電學及光學性質探討
論文名稱(外文):On the Electrical and Optical Properties of Different Size Silver Nanowires Film via Dielectrophoresis Purification
指導教授:魏哲弘
指導教授(外文):Che-hung Wei
口試委員:魏哲弘
口試委員(外文):Che-hung Wei
口試日期:2014-07-24
學位類別:碩士
校院名稱:大同大學
系所名稱:機械工程學系(所)
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2014
畢業學年度:102
語文別:中文
論文頁數:63
中文關鍵詞:介電泳力奈米線薄膜奈米銀線
外文關鍵詞:Silver nanowires filmsSilver nanowiresDEP force
相關次數:
  • 被引用被引用:2
  • 點閱點閱:129
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:8
  • 收藏至我的研究室書目清單書目收藏:0
銦錫氧化物(ITO)是一種應用很廣的材料,如顯示器的面板、太陽能電池以及智慧型手機等,但因ITO薄膜含有許多貴金屬銦,故現今有許多研究想利用其他材料來取代ITO薄膜。基於此因素,本研究利用介電泳晶片產生介電泳力來收集奈米銀線,並讓銀線堆疊成導電薄膜的方式,探討其導電性、透光性。並探討此特性受到堆疊狀態之影響,實驗透過改變電極的頻率、電壓及線徑等,觀察比較在何種參數設定的狀態下,銀線所純化的光學及電學性質較好。
實驗證實利用介電泳力來收集奈米銀線有很明顯的效果,介電泳晶片施加電壓給電極時,銀線會因為電極所產生的介電泳力而產生移動聚集的效果。在改變頻率影響收集時,片電阻值降低比率可以達到約30%,且發現到在收集銀線後,銀線薄膜在電性、光學或是表面形貌的網狀結構上都有一定的提升效果,透光率在收集過後最好可提升約15%,但技術上銀線薄膜還無法很均勻的分布,還需再進行改良。另一方面,實驗亦探討銀線薄膜置於可撓式基材上進行撓曲的測試,撓曲後在電性、光學或是表面形貌的網狀結構都有產生變化,透光率比未DEP收集後提升約4%。
Indium tin oxide (ITO) is an important material that has been used in a variety of applications like touch panel as display in cell phones and electrode in solar cell. Due to the limit supply of tin, there has been many alternatives to replace ITO, e.g. carbon nanotubes, graphene and metal nanowires. Among these candidates, silver nanowires have the advantages such as inexpensive, easy fabrication and compatible with role-to-role process which is essential in flexible display. However, the performance of the silver nanowires as a transparent electrode can be improved in many ways. In this thesis, dielectrophoresis is used to purify different size silver nanowires. The electrical and optical properties are used to demonstrate the efficiency before and after purification.
A dielectrophoresis chip made of a patterned electrode is used to carry out the purification. Two different size 40 nm and 200 nm silver nanowires are used to compare the electrical and optical properties in terms of different nanowire diameter on different substrates. Several factors were investigated to explore the role on purification. From experimental results, higher frequency which implies higher DEP force has better purification effect. As frequency reaches 3 MHz, the sheet resistance of DEP purified silver nanowires increases 30% than that without DEP purification. The transparency increases 15% compared to unpurified counterpart. The voltage effect is also important but the effect is not as significant as frequency. The surface treatment via oxygen plasma on glass substrate shows an increase in sheet resistance but increase optical transparency 14%. Also the deviation in sheet resistance decreases which implies the homogeneity of nanowires distribution is enhanced. As for different nanowire diameter, smaller diameter (40 nm) has better sheet resistance and optical transparency increase than those in larger diameter (200 nm). The increase is 30% in sheet resistance and 15% optical transparency which is significant.
In summary, DEP is a simple method to purify nanowires that can increase the electrical and optical properties of silver nanowires as transparent electrode. In all the factors, frequency and sample diameter are the important ones that achieve better purification results.
目錄

致謝 iii
摘要 iv
Abstract v
目錄 vi
圖目錄 viii
表目錄 xii
第一章 序論 1
1.1 前言 1
1.2 研究動機與目的 2
1.3 文獻回顧 3
第二章 介電泳理論與數值模擬 8
2.1 介電泳原理 8
2.2 介電泳力 11
2.3 孔隙率 13
第三章 銀線收集晶片製作 14
3.1 晶片設計理念及流程 14
3.2 實驗設備 16
3.3 介電泳晶片製作 19
3.4 樣本配置 24
3.5 實驗方法 24
第四章 不同條件收集對銀線薄膜影響結果分析 28
4.1頻率改變對銀線薄膜之影響 28
4.1.1頻率改變對銀線薄膜表面形態之影響 28
4.1.2頻率改變對銀線薄膜電性之影響 30
4.1.3頻率改變對銀線薄膜光學性質之影響 31
4.2電壓改變對銀線薄膜之影響 32
4.2.1電壓改變對銀線薄膜表面形態之影響 32
4.2.2電壓改變對銀線薄膜電性之影響 33
4.2.3電壓改變對銀線薄膜光學性質之影響 34
4.3奈米銀線線徑改變對銀線薄膜之影響 36
4.3.1奈米銀線線徑改變對銀線薄膜表面形態之影響 36
4.3.2奈米銀線線徑改變對銀線薄膜電性之影響 40
4.3.3奈米銀線線徑改變對銀線薄膜光學性質之影響 42
4.4基材表面改質對銀線收集之影響 45
4.4.1基材表面改質對銀線薄膜表面形態之影響 45
4.4.2基材表面改質對銀線薄膜電性之影響 48
4.4.3基材表面改質對銀線薄膜光學性質之影響 49
4.5可撓式基材彎折對銀線收集之影響 51
4.5.1基材彎折對銀線薄膜表面形態之影響 51
4.5.2基材彎折對銀線薄膜電性之影響 54
4.5.3基材彎折對銀線薄膜光學性質之影響 55
第五章 結論與未來展望 57
5.1 結論 57
5.2 未來展望 58
參考文獻 59

圖目錄

圖1.1微電極型態示意圖[8] 4
圖1.2實驗方法配置圖[9] 4
圖1.3 DEP介電泳晶片及分離流道結合圖[10] 5
圖1.4銅線薄膜撓曲示意圖[11] 6
圖1.5三明治結構狀態圖[12] 6
圖1.6靜電紡絲技術製造金屬薄膜流程圖[14] 7
圖2.1 粒子極化能力大於溶液 9
圖2.2粒子隨著電場相反方向移動 9
圖2.3溶液極化能力大於粒子 10
圖2.4粒子隨著電場方向移動 10
圖3.1介電泳晶片設計圖 14
圖3.2 研究方法流程圖 15
圖3.3實驗所使用的膠片光罩 20
圖3.4 介電泳晶片製作流程圖 23
圖3.5 介電泳晶片完成圖 23
圖3.6自製撓曲機構(A)撓曲前、(B)撓曲後 25
圖3.7 實驗配置圖 26
圖3.8 DEP銀線分離現象(A)未施加DEP、(B)施加DEP 26
圖3.9 顯微鏡下放大200倍銀線分布的狀態(a)未DEP, (b)DEP. 27
圖3.10 顯微鏡下放大500倍銀線分布的狀態(a)未DEP, (b)DEP. 27
圖4.1 不同頻率介電泳純化線徑40nm奈米銀線之SEM圖(a)NO DEP, (b)500 KHz, (c)1 MHz, (d)1.5 MHz, (e)2 MHz, (f)3 MHz, (g)4 MHz. 29
圖4.2 不同頻率介電泳純化線徑40nm奈米銀線之片電阻值 30
圖4.3 不同頻率介電泳純化線徑40nm奈米銀線之透光度 32
圖4.4 不同電壓介電泳純化線徑40nm奈米銀線之SEM圖(a)4V, (b)6V, (c)8V, (d)10V, (e)12V. 33
圖4.5 不同電壓介電泳純化線徑40nm奈米銀線之片電阻值 34
圖4.6 不同電壓介電泳純化線徑40nm奈米銀線之透光度 35
圖4.7 不同頻率介電泳純化線徑40nm奈米銀線之SEM圖(a)NO DEP, (b)500 KHz, (c)1 MHz, (d)1.5 MHz, (e)2 MHz, (f)3 MHz, (g)4 MHz. 37
圖4.8 不同頻率介電泳純化線徑200nm奈米銀線之SEM圖(a)NO DEP, (b)500 KHz, (c)1 MHz, (d)1.5 MHz, (e)2 MHz, (f)3 MHz, (g)4 MHz. 38
圖4.9 不同頻率介電泳純化混合線徑40nm及200nm奈米銀線之SEM圖(a)NO DEP, (b)500 KHz, (c)1 MHz, (d)1.5 MHz, (e)2 MHz, (f)3 MHz, (g)4 MHz. 39
圖4.10 不同線徑尺寸在不同頻率介電泳純化之片電阻值(a)線徑40nm, (b) 線徑200nm, (c)混合線徑40nm及200nm. 41
圖4.11 不同線徑尺寸在不同頻率介電泳純化之透光度(a)線徑40nm,(b)線徑200nm, (c)混合40nm及200nm. 44
圖4.12不同頻率介電泳純化線徑40nm銀線在未改質玻璃基材上之SEM圖(a)NO DEP, (b)500 KHz, (c)1 MHz, (d)1.5 MHz, (e)2 MHz, (f)3 MHz, (g)4 MHz. 46
圖4.13不同頻率介電泳純化線徑40nm銀線在改質玻璃基材上之SEM圖(a)NO DEP, (b)500 KHz, (c)1 MHz, (d)1.5 MHz, (e)2 MHz, (f)3 MHz, (g)4 MHz. 47
圖4.14 不同頻率介電泳純化線徑40nm銀線在未改質玻璃基材上之片電阻值 48
圖4.15 不同頻率介電泳純化線徑40nm銀線在改質玻璃基材上之電阻值 49
圖4.16 不同頻率介電泳純化線徑40nm銀線在未改質玻璃基材上之透光性 50
圖4.17 不同頻率介電泳純化線徑40nm銀線在改質玻璃基材上之透光性 50
圖4.18不同頻率介電泳純化線徑40nm銀線在PET基材未撓曲之SEM圖(a)NO DEP, (b)500 KHz, (c)1 MHz, (d)1.5 MHz, (e)2 MHz, (f)3 MHz, (g)4 MHz. 52
圖4.19不同頻率介電泳純化線徑40nm銀線在PET基材經撓曲1000次之SEM圖(a) NO DEP, (b)500 KHz, (c)1 MHz, (d)1.5 MHz, (e)2 MHz, (f)3 MHz, (g)4 MHz. 53
圖4.20 不同頻率介電泳純化線徑40nm銀線在PET基材未撓曲之片電阻值 54
圖4.21不同頻率介電泳純化線徑40nm銀線在PET基材撓曲1000次之片電阻值 55
圖4.22不同頻率介電泳純化線徑40nm銀線在PET基材未撓曲之透光性 56
圖4.23不同頻率介電泳純化線徑40nm銀線在PET基材經撓曲1000次之透光性 56 

表目錄

表4.1 線徑40nm不同頻率狀態下收集後之片電阻降低比例比較表 31
表4.2 線徑40nm不同電壓狀態下收集後之片電阻降低比例比較表 34
表4.3 不同線徑尺寸下收集後之片電阻降低比例比較表 40
[1] D. Raoufi, A. Kiasatpour, H. Reza, Fallah and A. S. H. Rozatian, “Surface characterization and microstructure of ITO thin films at different annealing temperatures,” Applied Surface Science, 253, 9085–9090, 2007.
[2] D. H. Lee, S. H. Shim, J. S. Choi and K. B. Yoon, “The effect of electro-annealing on the electrical properties of ITO film on colorless polyimide substrate,” Applied Surface Science, 254, 4650–4654, 2008.
[3] P. C. Pandey, S. Upadhyay and H. C. Pathak, “A new glucose sensor based on encapsulated glucose oxidase within organically modified sol–gel glass, ” Sensors and Actuators B: Chemical, Vol. 60, 83–89, 1999.
[4] J. E. A. M. Van Den Meerakker, P.C. Baarslag, W. Walrave, T. J. Vink and J. L. C. Daams, “On the homogeneity of sputter-deposited ITO films Part II. Etching behaviour,” Thin Solid Films, Vol. 266, 152–156, 1995.
[5] J. Xiong, Z. Zheng, X. Qin, M. Li, H. Li and X. Wang, “The thermal and mechanical properties of a polyurethane/multi-walled carbon nanotube composite,” Carbon, Vol. 44, 2701–2707, 2006.
[6] Y. S. Yun, D. H. Kim, B. Kim, H. H. Park and H. J. Jin, “Transparent conducting films based on graphene oxide/silver nanowire hybrids with high flexibility,” Synthetic Metals, Volume 162, 1364–1368, 2012.
[7] J.W. Lim, D. Y. Cho, J. Kim, S. I. Na and K. Kim “Simple brush-painting of flexible and transparent Ag nanowire network electrodes as an alternative ITO anode for cost-efficient flexible organic solar cells,” Solar Energy Materials & Solar Cells, Volume 107, 348–354, 2012.
[8] N. G. Green, A. Ramos, A. Gonza’lez, H. Morgan, and A. Castellanos “Fluid flow induced by nonuniform ac electric fields in electrolytes on microelectrodes. I. Experimental measurements,” The American Physical Society, Vol.61, No.4, 4011-4018, 2000.
[9] J. J. Boote and S. D. Evans “Dielectrophoretic manipulation and electrical characterization of gold nanowires,” Nanotechnology 16, 1500–1505, 2005.
[10] Youlan Li, Colin Dalton, H. John Crabtree, Gregory Nilsson and Karan V. I. S. Kaler “Continuous dielectrophoretic cell separation microfluidic device,” Lab Chip, vol. 7, 239-248, 2006.
[11] Aaron R. Rathmell and Benjamin J. Wiley “The Synthesis and Coating of Long, Thin Copper Nanowires to Make Flexible, Transparent Conducting Films on Plastic Substrates,” Advanced Materials, 4798-4803, 2011.
[12]Bo-Tau Liu, Han-Lin Kuo “Graphene silver nanowire sandwich structures for transparent conductive films,” Carbon, 390-396, 2013.
[13] Philip E Lyons, Sukanta De, Jamil Elias, Matthias Schamel, Laetitia Philippe, Allen T Bellew,John J Boland, and Jonathan N Coleman “High-Performance Transparent Conductors from Networks of Gold Nanowires,” The Journal of Physical Chemistry Letters, 3058-3062, 2011.
[14]Keisuke Azuma, Koichi Sakajiri, Hidetoshi Matsumoto, Sungmin Kang, Junji Watanabe, Masatoshi Tokita “Facile fabrication of transparent and conductive nanowire networks by wet chemical etching with an electrospun nanofiber mask template,” Materials Letters115, 187-189, 2014.
[15] Sungyoung Choi and Je-Kyun Park “Microfluidic system for dielectrophoretic separation based on a trapezoidal electrode array,” Lab Chip, vol.5, 1161-1167, 2005.
[16] Ronald Pethig, Ying Huang, Xiao-Bo Wang and Julian P. H. Burt “Positive and negative dielectrophoretic collection of colloidal particles using interdigitated castellated microelectrodes, ” Physical Review 24, 881-888, 1991.
[17] Chehung Wei, Ting-You Wei, Cheng-Hao Liang and Fong-Cheng Tai “The separation of different conducting multi-walled carbon nanotubes by AC dielectrophoresis,” Diamond & Related Materials 18, 332-336, 2009.
[18] Aaron R. Rathmell , Stephen M. Bergin , Yi-Lei Hua , Zhi-Yuan Li and Benjamin J. Wiley “The Growth Mechanism of Copper Nanowires and Their Properties in Flexible, Transparent Conducting Films,” Advanced Materials, 3558-3563, 2010.
[19] Anuj R. Madaria, Akshay Kumar, Fumiaki N. Ishikawa and Chongwu Zhou “Uniform, Highly Conductive, and Patterned Transparent Films of a Percolating Silver Nanowire Network on Rigid and Flexible Substrates Using a Dry Transfer Technique,” Nano Research, 564-573, 2010.
[20] Ju-Hyun Lee, Hyun-SuShin, Yong-JinNoh, Seok-InNa, Han-KiKim “Brush painting of transparent PEDOT/Ag nanowire /PEDOT multilayer electrodes for flexible organic solarcells,” Solar Energy Materials & Solar Cells 114, 15-23, 2013.
[21] David Holmes,Nicolas G. Green and Hywel Morgan “Microdevices for Dielectrophoretic Flow-Through Cell Separation,” IEEE Engineering in medicine and biology magazine, 85-90, 2003.
[22] Ka Lok Chan, Nicolas G. Green, Michael P. Hughes and Hywel Morgan “Cellular Characterisation and separation: Dielectrophretically activated cell sorting,” IEEE Engineering in Medicine and Biology Society, Vol. 20, No 6, 2953-3956, 1998.
[23] Il Doh and Young-Ho Cho “A continuous cell separation chip using hydrodynamic dielectrophoresis (DEP) process,” Sensors and Actuators A 121,59-65, 2005.
[24] I1 Doh, Kyoung-Sun Se0 and Young-Ho Cho “A continuocues cells separation chip using hydrodynamic dielectrophoresis process,” IEEEE International Conference , 29-32, 2004.
[25] Baoyu Song, Deli Liu, Lining Sun, Liguo Chen “Numerical Study of a Dielectrophoresis Separation Device at Multiple Frequencies,” Procedia Engineering 15, 341-345, 2011.
[26] J. R. Nimmo “Porosity and Pore Size Distribution,” Encyclopedia of Soils in the Environment, Vol 3, 295-303, 2004.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊
 
系統版面圖檔 系統版面圖檔