(34.236.244.39) 您好!臺灣時間:2021/03/09 19:07
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:余俊賢
研究生(外文):Chun-Hsien Yu
論文名稱:奈米粒子與應力狀態對材料硬度影響
論文名稱(外文):The Effects of Nanoparticles and Stress States on the Hardness of Materials
指導教授:魏哲弘
指導教授(外文):Chehung Wei
口試委員:魏哲弘
口試委員(外文):Chehung Wei
口試日期:2014-07-24
學位類別:碩士
校院名稱:大同大學
系所名稱:機械工程學系(所)
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2014
畢業學年度:102
語文別:中文
論文頁數:95
中文關鍵詞:奈米粒子嵌入物應力狀態彈性性質硬度塑性性質
外文關鍵詞:nanoparticle inclusionstress stateelasticityhardnessplasticity
相關次數:
  • 被引用被引用:0
  • 點閱點閱:108
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:5
  • 收藏至我的研究室書目清單書目收藏:0
摘要
  崁入物和殘留應力是影響薄膜的機械性質兩大因素。本論文使用有限元素分析(FEM),來探討薄膜及塊材與硬度的關係。
  摻雜橢圓形米粒子於類鑽碳薄膜(DLC)在矽底材上,對此問題進行不同因素探討:粒子大小、排列方向與濃度。結果顯示,在一定濃度下,類鑽碳薄膜摻雜橢圓奈米粒子,在相同濃度下,尺寸較大但粒子數較少,比起尺寸較小但粒子數較多時其硬度較高。奈米粒子數量增加,較高濃度橢圓奈米粒子有較高的硬度。此外,橢圓奈米粒子方向也會影響硬度,因此奈米粒子方向性也是影響硬度另一個因素。整體而言,硬度增強機制為粒子濃度,粒子大小和排列方向。其機制為粒子有效投影區域增強硬度,此機制可以延伸至其他類型崁入物。
   另一改變機械性質因素為殘留應力。本研究模擬塊材在不同應力狀態下,應力如何影響硬度。並探討在不同彈性性質(等向性、橫向等向性及正交性)及不同塑性性質(完美塑性和動態硬化)下的影響。此研究透過奈米壓痕試驗在不同壓痕深度研究這些效應。結果顯示在壓痕深度較淺時,材料彈性性質效應較明顯,其硬度變化顯著(從6.21%至10.8%,視彈性性質及不同雙軸應力狀態)。當壓痕較深時,塑性性質較為明顯,硬度變化也較小(從2.64%至3.2%視彈性性質及不同雙軸應力狀態)。在材料受雙軸向應力狀態,且於完美塑性時,影響硬度變化的主要機制為彈性性質而不是塑性性質,類似趨勢也出現在塑性動態硬化。當彈性性質改變時,等向性材料的硬度接近於正交性材料,其原因可能是彈性非等向性。
本研究發現奈米粒子崁入物會影響硬度,其因素為濃度,粒子大小和排列方向。而等雙軸應力狀態下的硬度,彈性性質影響較塑性性質顯著。因此,硬度不變量在塑性變形區較彈性變形區域明顯。

  關鍵字: 硬度、奈米粒子嵌入物、應力狀態、彈性性質、塑性性質
Abstract
The inclusions and residual stress are two factors that might influence the mechanical properties of thin films. In this thesis, finite element analyses are carried out to investigate these effects on the hardness of thin film or bulk material. For inclusions effect, different aspects of nano-size particles are considered: size, orientation and concentration to model nanoparticles doped in diamond-like carbon (DLC) film on a silicon substrate. The results show that for a given concentration, DLC doped with larger but less in quantites spherical nanoparticles has higher hardness than that in smaller but more dense counterpart. Meanwhile, large concentration of nanoparticle leads to higher hardness due to more population of nanoparticles. The orientation of elliptical nanoparticle also affects the hardness which means for nonspherical nanoparticle, the orientation is another factor that influences the hardness. The hardness enhancement mechanism for concentration, size and orientation is interpreted by the residual stress as well as projection area for particle inclusion which can be extended to other kind of inclusion.
The other factor that might change the mechanical property of the material is the residual stress. A bulk material with different stress states are used to study the hardness affected by the stress state. Different elastic properties (isotropic, transverse isotropic and orthotropic) and plastic properties (perfect plastic and kinematic hardening) are combined to investigate whether elastic or plastic effect is more essential, Hardness is investigated via nanoindentation where different indentation depth is applied. For small indentation depth, the elasticity is prominent and the variation in hardness is significant (from 6.21% to 10.8% depends on the elasticity law) in different biaxial stress state. While for plasticity dominant region with large indentation depth, the variation in hardness is smaller (from 2.64% to 3.2% depends on the elasticity law) in different biaxial stress state. Therefore, for perfect plasticity, elasticity is the primary mechanism for hardness variation rather than plasticity in biaxial stress state. The trend is similar in kinematic hardening. As for the effect of elasticity constitutive law, the hardness of isotropic material is close to that of orthotropic material. The effect of elastic anisotropy might be the reason. In summary, the nanoparticle inclusions affects the hardness depends on the concentration, size and orientation. The elasticity rather than plasticity affects the hardness during the biaxial stress state. Therefore, the hardness invariant is valid only when the stress state is in plastic region rather than elastic region.

  Keyword: hardness, nanoparticle inclusion, stress state, elasticity, plasticity
目錄
誌謝 i
摘要 v
Abstract iii
目錄v
圖目錄vii
表目錄 x
第一章 序論 1
1.1前言 1
1.2文獻回顧 3
1.2.1奈米壓痕試驗 3
1.3 研究動機 5
第二章 有限元素分析 7
2.1有限元素法 7
2.2幾何設定 10
2.3 FEM模擬奈米壓痕試驗 11
第三章 奈米粒子崁入物之機械性質 15
3.1模型建立與參數設定 15
3.1.1 模型建立 16
3.2 奈米橢圓粒子 19
3.2.1 奈米橢圓粒子的尺寸效應    19
3.2.3 奈米橢圓粒子的濃度效應 27
3.3奈米粒子結果討論 32
第四章 不同彈性性質與完美塑性在不同受力狀態下之硬度探討 37
4.1 非等向彈性性質 39
4.1.1 正交性材料(orthotropic material) 39
4.1.2 等向材料(transversely isotropic material) 39
4.2 三維模型之數值模擬 41
4.2.1 模型建立與參數設定 41
4.2.2軸向力 44
4.2.3 流程 45
4.3下壓深度與彈性 46
4.4等向雙軸力於彈性不等向彈性性質之硬度分佈 48
4.5非等向雙軸力於彈性不等向彈性性質之硬度分佈 57
第五章 不同彈性性質與動態硬化下在不同受力狀態下之硬度探討 64
5.1 塑性性質 64
5.1.1 Perfect plasticity(完美塑性,無硬化) 65
5.1.2 Kinematic hardening (動態硬化) 65
5.2塑性材料參數設定 66
5.3等向雙軸力於彈性非等向塑性硬化之硬度分佈 66
5.4非等向雙軸力於彈性非等向塑性硬化之硬度分佈 74
5.5等雙軸力下改變塑性性質之探討 81
第六章 結論 89
參考文獻 91
1.S. Aisenberg, S. Ronald, “Ion-beam deposition of thin films of diamond-like carbon,” Journal of Applied Physics, 42(7), 2953-2958, 1971.
2.F. Piazza, D. Gramboleb, D. Schneiderc, C. Casiraghia, C. Ferraria, J. Robertson, “ Protective diamond-like carbon coatings for future optical storage disks,” Diamond Relate Mater,14:994–999,2005.
3.J. Robertson, “Ultrathin carbon coatings for magnetic storage technology,” Thin Solid Films, 383 81-88, 2001.
4.V. Bursikova, P. Sladek, P. St’ahel, L. Zajickova, “Improvement of the efficiency of the silicon solar cells by silicon incorporated diamond-like carbon antiflective coatings, ” J Non-Cryst. Solids 299/302:1147-1151, 2002.
5.T.I.T. Okpalugo, A.A. Ogwu, P.D. Maguire, J.A.D. McLaughlin, “Platelet adhesion on silicon modified hydrogenated amorphous carbon films,” Biomaterials, 25:239-245, 2004.
6.Z.F. Fan, P. Smith, F. Rauch, G. FHarris, “Nanoindentation as a means for distinguishing clinical type of osteogenesis imperfecta,” Composites Part B-Engineering, 38:411-415, 2007.
7.D. Tabor, “Indentation hardness: fifty years on a personal view,” Philosophical Magazine A 74(5):1207-1212, 1996.
8.A.C. Fischer-Cripps, “Nanoindentation” Springer-Verlag, 2002.
9.I.N. Sneddon, “The relation between load and penetration in the axisymmetric boussinesq problem for a Punch of arbitrary profile,” International Journal of Engineering Science, 3:47–57, 1965.
10.R.B. King, “Elastic analysis of some punch problems for a layered,” International Journal of Solids and Structures, 23:1657-1664, 1987.
11.J.D. Bressan, A. Tramontin, C. Rosa, “Modeling of nanoindentation of bulk and thin film by finite element method,” Wear, 258(1-4) 115-122, 2005.
12.G. Yazhou, L. Yulong, “Quasi-static/dynamic response of SiO2-epoxy nanocomposites,” Materials Science and Engineering A, 458:330-335, 2007.
13.J. Haider, M. Rahman, B. Corcoran and M.S.J. Hashmi, “Simulation of thermal stress in magnetron sputtered thin coating by finite element analysis,” Journal of Materials Processing Technology, 168:36-41, 2005.
14.M. Lichinchi, C. Lenardi, J. Haupt, R. Vitali, “Simulation of Berkovich nanoindentation experiments on thin films using finite element method,” Thin Solid Films, 312(1-2):240-248,1998.
15.Wen-Ke Yu, “The Effects of Intermediate Layer and Substrate on the Mechanical Properties of Thin Film by Elastic Hertz Contact Solution and Finite Element Method,” Master Thesis, Tatung University. Taipei Taiwan, 2005.
16.Y.L. Shen, J.J. Williams, G. Piotrowski, N. Chawla, Y.L. Guo, “Correlation between tensile and indentation behavior of partical-reinforceedmetal matrix composite: an experiment and numerical study,” Acta Materialia, 49:3219-3229, 2001.
17.H. Pelletier, J. Krier, A. Cornet, P. Mille, “ Limits of using bilinear stress-strain curve for finite element modeling of nanoindentation response on bulk materials, ” Thin Solid Films, 379 (1-2):147-155, 2000.
18.Jui-Feng Yang,“ The Effects of Inclusions And Resisual Strsess on The Mechanical And Tribological Properties of Diamond-Like Carbons Films,” Master Thesis, Tatung University, Taipei Taiwan, 2010.
19.S. Suresh, A.E. Giannakopoulos, “A New method for estimating residual stress by instrumented sharp indentation,” Acta Materialia, 46, 5755-5767, 1998.
20.S. Suresh, A.E. Giannakopoulos, “Determination of elastoplastic properties by instrumented sharp indentation,” Scripta Materialia, 40, 1191-1198, 1999.
21.Y.H. Lee, D. Kwon, “Residual stresses in DLC/Si and Au/Si system: Application of a stress-relaxation model to the nanoindentation technique,” Journal of Materials Research, 17,901-906, 2002.
22.Y.H. Lee, D. Kwon, “Measurement of residual-stress effect by nanoindentation on elastically stained (100) W,” Scripta Materialia, 49, 459-465, 2003.
23.Tai-Ching Wu, “A Finite Element Study on the Effects of Different Stress States on the Mechanical Properties of Thin Films,” Master Thesis, Tatung University, Taipei Taiwan 2013.
24.K. L Johnson, “The correlation of indentation experiments,” Journal of the Mechanics and Physics of Solids, 18, 115-126,1970
25.P. L. Larsson, P. Blanchard, “On the invariance of hardness at sharp indention of materials with general biaxial residual stress fields,” Materials and Design, 52, 602–608, 2013.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔