跳到主要內容

臺灣博碩士論文加值系統

(44.213.63.130) 您好!臺灣時間:2023/02/03 15:15
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:鄭啟廷
研究生(外文):Ci-Ting Jheng
論文名稱:廢生物可分解性聚羥基烷酸酯 (PHAs) 塑料之回收與資源化研究
論文名稱(外文):A study on the recycling and recovery of waste biodegradable Polyhydroxyalkanoates (PHAs) plastics
指導教授:柴浣蘭
指導教授(外文):Wan-Lan Chai
口試委員:張添晉周錦東何鴻哲
口試委員(外文):Tien-Chin ChangJing-Dong ChowHong-Che Ho
口試日期:2014-07-11
學位類別:碩士
校院名稱:萬能科技大學
系所名稱:環境工程研究所
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2014
畢業學年度:103
語文別:中文
論文頁數:64
中文關鍵詞:聚羥基烷酸酯生物可分解塑膠資源化再利用
外文關鍵詞:PolyhydroxyalkanoatesBiodegradable plasticsRecoveryReutilization
相關次數:
  • 被引用被引用:1
  • 點閱點閱:225
  • 評分評分:
  • 下載下載:22
  • 收藏至我的研究室書目清單書目收藏:1
在人們對環境議題的逐漸重視下,生物高分子聚合物的開發研究開始蓬勃發展。目前以PLA為最早也最大量用於取代現有石化材料之生物可分解高分子聚合物,其次則為PHA。PHA因組成結構多樣帶來性能的多樣化,耐熱程度、單位熱值及抗水性等都較PLA優異,且全球PHA生產量日益增多,未來具有取代PLA的趨勢。本研究為了解PHA原料之性質,首先檢測其熱性質與抗張性質,同時亦檢測回收料及再回收料,並與原料作比對,以評估回收再利用之可行性。後將PHA製成與市售PLA產品厚度一致之樣品,測試其抗張性質後與PLA產品做比較,以瞭解本研究所選用之PHA與PLA間性能之差異。續嘗試將回收料運用於紙類及常見的纖維產品上,並檢測其機械性質,探討紙類或纖維產品之功能是否能因而提升且具防水功能。最後進行資源化成本之概算,以評估回收之廢PHA未來產品資源化應用之可行性。
針對加工次數、有機溶劑與酸鹼溶液對PHA熱性質之影響,由熱性質分析之數據得到,PHA原料之 Td為261.9 ℃,Tm為153.1 ℃。而經重複加工或浸泡有機溶劑與酸鹼溶液後,Td與Tm並未產生明顯變化,且熱值皆達固態衍生燃料 (RDF-5) 的標準值,MI值則隨著加工次數增加而上升。由機械性質之數據得到,PHA之斷裂伸長率與斷裂應力分別為11.17 % / 11.47 MPa,整體抗張性質的表現接近HDPE,PHA延伸性高於PLA,斷裂應力則略低於PLA。而PHA資源化應用於紙類產品,斷裂伸長率與抗張強度皆提升,於纖維產品不織布之抗拉強力及棉麻布之伸長率也因而提升。且從抗水度試驗測試結果證實,PHA資源化產品皆呈不透水狀態。本研究初步推估以PHA製得之單層防水紙杯成本,約為LDPE紙杯成本的1.16~1.33倍。

The development of biodegradable materials is vigorous devoted owing to the public concern over the harmful effects of petrochemical-derived plastic materials in the environment. As well know, Poly lactic acid (PLA) is the first biological polymers to be used, in addition, largest amount of application in PLA and PHAs is followed. The results from the calorimeter, heat-resistant and hydrophobic test illustrate that PHAs has higher heating value and relatively better heat-resistant, hydrophobic properties then PLA. Moreover, the performance of PHAs are diversity, with a broad range of compositions available based on the incorporation of different monomers into the PHA polymer structure. Along with the large-scale production of PHAs, the cost of PHAs products will be reduced and the PHAs has potential to replace the PLA.
In this study, the feasibility of the recycling of PHAs has been assessed by comparison of the thermal property and mechanical property of raw PHA and recycled PHA. Furthermore, recycled PHA is applied on paper and common fiber products in order to improve the waterproof and mechanical properties of those products. The cost of those recycled PHA products is also estimated to assess the feasibility of application.
As evidenced by the differential scanning calorimetry (DSC) and thermo gravimetric (TG) analysis, the decomposition temperature (Td) at around 261.9℃, the melting temperature (Tm) at around 153.1℃ are found on the thermogram of PHA specimens. The Td and Tm values of PHA specimens vary obviously after accumulative processing, solvent and acid-base resistant test. However, the values of melting index (MI) of PHA specimens increase as processing times increase. Besides, the heating values of PHA specimens achieve the standards of the refuse derived fuel-5 (RDF-5).As the results of tensile properties analysis of raw PHA demonstrates that elongation at break and break stress are 11.17% and 11.47 MPa, respectively. Those tensile properties are comparable to those of high-density polyethylene (HDPE) and exhibit relatively higher elongation at break but slightly lower break stress than PLA. On the other hand, the tensile strength of nonwoven fabric specimens and the elongation of cotton/linen fabric specimens which were coated on recycling PHA are improved, while the tensile properties of paper specimens coating on recycling PHA are both improved. Furthermore, the Stoeckigt sizing test properties of those PHA recovery specimens suggest that those recovery specimens can waterproof by steeping the specimens in water. Further, the production cost of the paper cups coating on recycling PHA is about 1.16 to 1.33 times of paper cups coating on LDPE in this study.

摘要 ii
Abstract ii
誌謝 iv
目錄 v
表目錄 vii
圖目錄 viii
第一章 前言 1
1.1研究緣起 1
1.2研究目的 2
第二章 文獻回顧 3
2.1廢塑膠資源化技術 3
2.1.1應回收廢塑膠資源化現況 3
2.1.2廢塑膠處理方式 5
2.1.3廢塑膠資源化利用 6
2.2生物可分解塑膠 9
2.2.1生物可分解塑膠之定義 9
2.2.2生物可分解塑膠之分類 11
2.2.3生物可分解塑膠之分解機制 12
2.3聚羥基烷酸酯 (PHA) 13
2.3.1 PHA組成 13
2.3.2 PHA性質及應用 15
第三章 研究方法 18
3.1研究流程 19
3.1.1 PHA原料前處理 20
3.1.2回收料製備 20
3.1.3材料性質檢測 21
3.1.4耐酸鹼及有機溶劑測試 24
3.1.5製備廢PHA資源化應用之樣品 24
3.1.6回收處理測試 24
3.1.7抗水度試驗 25
3.2實驗材料與藥品 26
3.3實驗儀器 27
第四章 結果與討論 28
4.1材料基本性質 28
4.1.1熱裂解溫度 (Td) 分析結果 28
4.1.2熔融溫度 (Tm) 分析結果 31
4.1.3熱值分析結果 36
4.1.4官能基分析結果 37
4.1.5熔融指數 (Melting Index, MI) 分析結果 40
4.1.6 PHA機械性質分析結果 41
4.2資源化應用 45
4.2.1 PHA經浸泡水溶液後之官能基分析結果 45
4.2.2運用於紙類產品之抗張試驗分析結果 48
4.2.3運用於常見纖維產品之抗張試驗分析結果 50
4.2.4抗水度試驗分析結果 52
4.2.5浸泡酸鹼測試 54
4.3成本概算 55
第五章 結論與建議 57
5.1結論 57
5.2建議 58
參考文獻 59

1.戈進傑 (2002) 生物降解高分子材料及其應用,化學工業出版社。
2.日本生物可分解塑膠研究會, (2006) "圖解生物可分解塑膠", 世茂出版有限公司。
3.中華民國環保生物可分解材料協會 (http://www.ebpa.org.tw/main.php),2014/6/24。
4.行政院環境保護署,資源回收網 (http://recycle.epa.gov.tw/Recycle/index2.aspx),2013/10/12。
5.行政院環境保護署,事業廢棄物管制資訊網 (http://waste.epa.gov.tw/prog/IndexFrame.asp),2013/10/12。
6.汕頭大學生物醫藥與先進材料研究中心 (http://mrc.stu.edu.cn/),2014/6/24。
7.郭子青 (2004) 由微生物生產功能性 PHA 及其結構分析,臺灣大學高分子科學與工程學研究所學位論文: 1-88。
8.陳志成 (2006) PHA 之工業化量產的先導技術開發與經濟評估(III)。
9.陳國強 (2008) 聚羥基脂肪酸酯生態產業鏈:生產與應用技術指南,化學工業出版社。
10.楊青,賀青 (1999) 聚羥基烷酸 (PHA) 的回收方法,工業微生物 29(2): 43-47。
11.經濟部工業局,工業廢棄物清理與資源化資訊網 (http://proj.tgpf.org.tw/riw/page6-1.asp) ,2014/6/30。
12.羅順鴻 (2010) 生物可分解高分子 PHB 耐熱改質之研究,崑山科技大學綠色材料研究所學位論文: 1-76。
13.Canetti, M., Urso, M., Sadocco, P. (1999). "Influence of the morphology and of the supermolecular structure on the enzymatic degradation of bacterial poly(3-hydroxybutyrate)." Polymer 40(10): 2587-2594.
14.Castilho, L. R., Mitchell, D. A., Freire, D. M. G. (2009). "Production of polyhydroxyalkanoates (PHAs) from waste materials and by-products by submerged and solid-state fermentation." Bioresource Technology 100(23): 5996-6009.
15.Chanprateep, S. (2010) "Current trends in biodegradable polyhydroxyalkanoates." Journal of Bioscience and Bioengineering 110(6): 621-632.
16.Chen, G. Q., and Wu, Q. (2005) "The application of polyhydroxyalkanoates as tissue engineering materials." Biomaterials 26(33): 6565-6578.
17.Gunaratne, L.M.W.K., Shanks, R.A., Amarasinghe, G. (2004). "Thermal history effects on crystallisation and melting of poly (3-hydroxybutyrate)." Thermochimica Acta 423(1-2): 127-135.
18.Höfer, P., Vermette, P., Groleau, D. (2011) "Production and characterization of polyhydroxyalkanoates by recombinant Methylobacterium extorquens: Combining desirable thermal properties with functionality." Biochemical Engineering Journal 54(1): 26-33.
19.Hocking, P. and Marchessault, R. (1994) "Biopolyesters." Chemistry and technology of biodegradable polymers: 48-96.
20.Hong, K., Sun, S., Tian, W., Chen G. Q., and Huang, W. (1999) "A rapid method for detecting bacterial polyhydroxyalkanoates in intact cells by Fourier transform infrared spectroscopy." Applied Microbiology and Biotechnology 51(4): 523-526.
21.Hu, Y., Zhang, J.,Sato, H., Noda, I., Ozaki, Y. (2007) "Multiple melting behavior of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) investigated by differential scanning calorimetry and infrared spectroscopy." Polymer 48(16): 4777-4785.
22.Huisman, G., Wonink, E., Koning, G, D., Preusting, H., Witholt, B. (1992). "Synthesis of poly(3-hydroxyalkanoates) by mutant and recombinant Pseudomonas strains." Applied Microbiology and Biotechnology 38(1): 1-5
23.James, B. W., Mauchline, W. S., Dennis, P. J., Keenil, C. W., and Wait, R. (1999) "Poly-3-hydroxybutyrate in Legionella pneumophila, an energy source for survival in low-nutrient environments." Applied and environmental microbiology 65(2): 822-827.
24.Keshavarz, T. and Roy, I. (2010) "Polyhydroxyalkanoates: bioplastics with a green agenda." Current Opinion in Microbiology 13(3): 321-326.
25.Kim, H. W., Chung, M. G.,Kim, Y. B., and Rhee, Y. H. (2008) "Graft copolymerization of glycerol 1,3-diglycerolate diacrylate onto poly(3-hydroxyoctanoate) to improve physical properties and biocompatibility." International Journal of Biological Macromolecules 43(3): 307-313.
26.Kim, K. J., Doi, Y., and Abe, H. (2008) "Effect of metal compounds on thermal degradation behavior of aliphatic poly(hydroxyalkanoic acid)s." Polymer Degradation and Stability 93(4): 776-785.
27.Khanna, S. and Srivastava, A. K. (2005) "Recent advances in microbial polyhydroxyalkanoates." Process Biochemistry 40(2): 607-619.
28.Laycock, B., Halley, P., Pratt, S., Werker, A., Lant, P. (2013). "The chemomechanical properties of microbial polyhydroxyalkanoates." Progress in Polymer Science 38(3–4): 536-583.
29.Lee, S. Y. (1996) "Bacterial polyhydroxyalkanoates." Biotechnology and bioengineering 49(1): 1-14.
30.Lee, S. Y., Choi, J. i., and Lee, S. H. (2000) "Production of polyhydroxyalkanoates by fermentation of bacteria." Macromolecular Symposia, Wiley Online Library.
31.Lee, S. Y., Lee, Y., and Wang, F. (1999) "Chiral compounds from bacterial polyesters: sugars to plastics to fine chemicals." Biotechnology and bioengineering 65(3): 363-368.
32.Montano-Herrera, L., Pratt, S., Arcos-Hernandez, M. V., Halley, P. J., Lant, P. A., Werker A., and Laycock, B. (2014) "In-line monitoring of thermal degradation of PHA during melt-processing by Near-Infrared spectroscopy." New Biotechnology 31(4): 357-363.
33.Rai, R., Keshavarz, T., Roether, J.A., Boccaccini, A.R., and Roya, I. (2011) "Medium chain length polyhydroxyalkanoates, promising new biomedical materials for the future." Materials Science and Engineering: R: Reports 72(3): 29-47.
34.Rehm, B. (2003) "Polyester synthases: natural catalysts for plastics." Biochem. J 376: 15-33.
35.Sudesh, K., Abe, H., Doi, Y. (2000). "Synthesis, structure and properties of polyhydroxyalkanoates: biological polyesters." Progress in Polymer Science 25(10): 1503-1555.
36.Salehizadeh, H. and Van Loosdrecht, M. C. M. (2004) "Production of polyhydroxyalkanoates by mixed culture: recent trends and biotechnological importance." Biotechnology Advances 22(3): 261-279.
37.Shah, K. (2012) "FTIR analysis of polyhydroxyalkanoates by novel Bacillus sp. AS 3-2 from soil of Kadi region, North Gujarat, India." Journal of Biochemical Technology 3(4).
38.Su, L., Lenz, R. W., Takagi, Y., Zhang, S., Goodwin, S., Zhong, L., and Martin, D. P. (2000) "Enzymatic polymerization of (R)-3-hydroxyalkanoates by a bacterial polymerase." Macromolecules 33(2): 229-231.
39.Weiner, R. M. (1997) "Biopolymers from marine prokaryotes." Trends in Biotechnology 15(10): 390-394.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top