|
1. Stock, A. M., Robinson, V. L., and Goudreau, P. N. (2000) Two-Component Signal Transduction. Annu. Rev. Biochem. 69, 183–215 2. Galperin, M. Y. (2010) Diversity of structure and function of response regulator output domains. Curr. Opin. Microbiol. 13, 150–159 3. Kato, A., Latifi, T., and Groisman, E. A. (2003) Closing the loop: The PmrA/PmrB two-component system negatively controls expression of its posttranscriptional activator PmrD. Proc. Natl. Acad. Sci. 100, 4706–4711 4. Kato, A., and Groisman, E. A. (2004) Connecting two-component regulatory systems by a protein that protects a response regulator from dephosphorylation by its cognate sensor. Genes Dev. 18, 2302–2313 5. Velkov, T., Thompson, P. E., Nation, R. L., and Li, J. (2010) Structure--Activity Relationships of Polymyxin Antibiotics. J. Med. Chem. 53, 1898–1916 6. Marchal, K., De Keersmaecker, S., Monsieurs, P., van Boxel, N., Lemmens, K., Thijs, G., Vanderleyden, J., and De Moor, B. (2004) In silico identification and experimental validation of PmrAB targets in Salmonella typhimurium by regulatory motif detection. Genome Biol. 5, R9 7. Chen, H. D., and Groisman, E. A. (2013) The Biology of the PmrA/PmrB Two-Component System: The Major Regulator of Lipopolysaccharide Modifications. Annu. Rev. Microbiol. 67, null 8. Luo, S.-C., Lou, Y.-C., Rajasekaran, M., Chang, Y.-W., Hsiao, C.-D., and Chen, C. (2013) Structural Basis of a Physical Blockage Mechanism for the Interaction of Response Regulator PmrA with Connector Protein PmrD from Klebsiella pneumoniae. J. Biol. Chem. 288, 25551–25561 9. Merighi, M., Ellermeier, C. D., Slauch, J. M., and Gunn, J. S. (2005) Resolvase-In Vivo Expression Technology Analysis of the Salmonella enterica Serovar Typhimurium PhoP and PmrA Regulons in BALB/c Mice. J. Bacteriol. 187, 7407–7416 10. Gibbons, H. S., Kalb, S. R., Cotter, R. J., and Raetz, C. R. H. (2005) Role of Mg2+ and pH in the modification of Salmonella lipid A after endocytosis by macrophage tumour cells. Mol. Microbiol. 55, 425–440 11. Choi, J., and Groisman, E. A. (2013) The lipopolysaccharide modification regulator PmrA limits Salmonella virulence by repressing the type three-secretion system Spi/Ssa. Proc. Natl. Acad. Sci. 110, 9499–9504 12. Podschun, R., and Ullmann, U. (1998) Klebsiella spp. as Nosocomial Pathogens: Epidemiology, Taxonomy, Typing Methods, and Pathogenicity Factors. Clin. Microbiol. Rev. 11, 589–603 13. Falagas, M. E., and Kasiakou, S. K. (2006) Toxicity of polymyxins: a systematic review of the evidence from old and recent studies. Crit. Care 10, R27 14. Falagas, M. E., and Kopterides, P. (2007) Old antibiotics for infections in critically ill patients. Curr. Opin. Crit. Care 13, 592–597 15. Elemam, A., Rahimian, J., and Doymaz, M. (2010) In Vitro Evaluation of Antibiotic Synergy for Polymyxin B-Resistant Carbapenemase-Producing Klebsiella pneumoniae. J. Clin. Microbiol. 48, 3558–3562 16. Bachhawat, P., Swapna, G. V. T., Montelione, G. T., and Stock, A. M. (2005) Mechanism of Activation for Transcription Factor PhoB Suggested by Different Modes of Dimerization in the Inactive and Active States. Structure 13, 1353–1363 17. Toro-Roman, A., Wu, T., and Stock, A. M. (2005) A common dimerization interface in bacterial response regulators KdpE and TorR. Protein Sci. 14, 3077–3088 18. Bachhawat, P., and Stock, A. M. (2007) Crystal Structures of the Receiver Domain of the Response Regulator PhoP from Escherichia coli in the Absence and Presence of the Phosphoryl Analog Beryllofluoride. J. Bacteriol. 189, 5987–5995 19. Blanco, A. G., Sola, M., Gomis-Rüth, F. X., and Coll, M. (2002) Tandem DNA Recognition by PhoB, a Two-Component Signal Transduction Transcriptional Activator. Structure 10, 701–713 20. Lou, Y.-C., Wang, I., Rajasekaran, M., Kao, Y.-F., Ho, M.-R., Hsu, S.-T. D., Chou, S.-H., Wu, S.-H., and Chen, C. (2014) Solution structure and tandem DNA recognition of the C-terminal effector domain of PmrA from Klebsiella pneumoniae. Nucleic Acids Res. 42, 4080–4093 21. Buckler, D. R., Zhou, Y., and Stock, A. M. (2002) Evidence of Intradomain and Interdomain Flexibility in an OmpR/PhoB Homolog from Thermotoga maritima. Structure 10, 153–164 22. Robinson, V. L., Wu, T., and Stock, A. M. (2003) Structural Analysis of the Domain Interface in DrrB, a Response Regulator of the OmpR/PhoB Subfamily. J. Bacteriol. 185, 4186–4194 23. Nowak, E., Panjikar, S., Konarev, P., Svergun, D. I., and Tucker, P. A. (2006) The Structural Basis of Signal Transduction for the Response Regulator PrrA from Mycobacterium tuberculosis. J. Biol. Chem. 281, 9659–9666 24. Gao, R., Mack, T. R., and Stock, A. M. (2007) Bacterial Response Regulators: Versatile Regulatory Strategies from Common Domains. Trends Biochem. Sci. 32, 225–234 25. Yan, D., Cho, H. S., Hastings, C. A., Igo, M. M., Lee, S.-Y., Pelton, J. G., Stewart, V., Wemmer, D. E., and Kustu, S. (1999) Beryllofluoride mimics phosphorylation of NtrC and other bacterial response regulators. Proc. Natl. Acad. Sci. 96, 14789–14794 26. Blanco, A. G., Canals, A., Bernués, J., Solà, M., and Coll, M. (2011) The structure of a transcription activation subcomplex reveals how σ70 is recruited to PhoB promoters. EMBO J. 30, 3776 27. Makino, K., Amemura, M., Kawamoto, T., Kimura, S., Shinagawa, H., Nakata, A., and Suzuki, M. (1996) DNA Binding of PhoB and its Interaction with RNA Polymerase. J. Mol. Biol. 259, 15–26 23. Otwinowski, Z., and Minor, W. (1997) Processing of X-ray Diffraction Data Collected in Oscillation Mode in Methods in Enzymology 276, pp. 307–326, Academic Press 29. Adams, P. D., Afonine, P. V., Bunkóczi, G., Chen, V. B., Davis, I. W., Echols, N., Headd, J. J., Hung, L.-W., Kapral, G. J., Grosse-Kunstleve, R. W., McCoy, A. J., Moriarty, N. W., Oeffner, R., Read, R. J., Richardson, D. C., Richardson, J. S., Terwilliger, T. C., and Zwart, P. H. (2010) PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr. D Biol. Crystallogr. 66, 213–221 30. Emsley, P., Lohkamp, B., Scott, W. G., and Cowtan, K. (2010) Features and development of Coot. Acta Crystallogr. D Biol. Crystallogr. 66, 486–501 32. Schrödinger, LLC. (2010) The PyMOL Molecular Graphics System, Version 1.3r1. 32. Krissinel, E., and Henrick, K. (2007) Inference of Macromolecular Assemblies from Crystalline State. J. Mol. Biol. 372, 774–797 33. Pérez-Martín, J., and de Lorenzo, V. (1997) Clues and Consequences of Dna Bending in Transcription. Annu. Rev. Microbiol. 51, 593–628 34. Rees, W. A., Keller, R. W., Vesenka, J. P., Yang, G., and Bustamante, C. (1993) Evidence of DNA bending in transcription complexes imaged by scanning force microscopy. Science 260, 1646–1649 35. Carmona, M., Claverie-Martin, F., and Magasanik, B. (1997) DNA bending and the initiation of transcription at σ54-dependent bacterial promoters. Proc. Natl. Acad. Sci. 94, 9568–9572 36. Schultz, S. C., Shields, G. C., and Steitz, T. A. (1991) Crystal structure of a CAP-DNA complex: the DNA is bent by 90 degrees. Science 253, 1001–1007 37. Rhee, S., Martin, R. G., Rosner, J. L., and Davies, D. R. (1998) A novel DNA-binding motif in MarA: The first structure for an AraC family transcriptional activator. Proc. Natl. Acad. Sci. 95, 10413–10418 38. Narayanan, A., Kumar, S., Evrard, A. N., Paul, L. N., and Yernool, D. A. (2014) An asymmetric heterodomain interface stabilizes a response regulator–DNA complex. Nat. Commun. 5, 3282 39. Blanco, A. G., Canals, A., and Coll, M. (2012) PhoB transcriptional activator binds hierarchically to pho box promoters. Biol. Chem. 393, 1165–1171 40. Makino, K., Amemura, M., Kim, S. K., Nakata, A., and Shinagawa, H. (1993) Role of the sigma 70 subunit of RNA polymerase in transcriptional activation by activator protein PhoB in Escherichia coli. Genes Dev. 7, 149–160 41. Kumar, A., Grimes, B., Fujita, N., Makino, K., Malloch, R. A., Hayward, R. S., and Ishihama, A. (1994) Role of the Sigma70 Subunit of Escherichia coli RNA Polymerase in Transcription Activation. J. Mol. Biol. 235, 405–413 42. Vassylyev, D. G., Sekine, S., Laptenko, O., Lee, J., Vassylyeva, M. N., Borukhov, S., and Yokoyama, S. (2002) Crystal structure of a bacterial RNA polymerase holoenzyme at 2.6 Å resolution. Nature 417, 712–719
|