跳到主要內容

臺灣博碩士論文加值系統

(34.204.169.230) 您好!臺灣時間:2024/02/26 12:48
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:黃維玲
研究生(外文):Wei-Lin Huang
論文名稱:探討甲狀腺刺激素受體所傳遞之訊息在卵巢癌細胞增生及凋亡的效應
論文名稱(外文):Investigation of the thyrostimulin-TSHR effects on ovarian cancer cell proliferation and anti-apoptosis
指導教授:羅清維
指導教授(外文):Ching-Wei Luo
學位類別:碩士
校院名稱:國立陽明大學
系所名稱:生命科學系暨基因體科學研究所
學門:生命科學學門
學類:生物訊息學類
論文種類:學術論文
論文出版年:2014
畢業學年度:102
語文別:中文
論文頁數:91
外文關鍵詞:GPCRThyrostimulin
相關次數:
  • 被引用被引用:0
  • 點閱點閱:308
  • 評分評分:
  • 下載下載:9
  • 收藏至我的研究室書目清單書目收藏:0
卵巢癌是婦科相關癌症當中致死率最高的癌症,目前已知其癌化的過程與促性腺激素 (gonadotropins) 的訊息路徑息息相關。近些年的研究中發現: thyrostimulin 是一種在演化上比促性腺激素更古老的同源性分子。我們的先前研究也証實: thyrostimulin和它的受體-甲狀腺激素受體 (thyroid stimulating hormone receptor, TSHR) 可以同時表現在卵巢、甚至是NIH: OVCAR-3卵巢癌細胞株中。基於促性腺激素在卵巢癌發生過程的重要性,我們假設thyrostimulin-TSHR的訊息可以經由開啟G蛋白偶合受體 (G-protein couple receptor, GPCR) 或是酪胺酸激酶受體 (receptor tyrosine kinase, RTK)的下游的訊息來促進卵巢癌的發展。經由比較三株被廣泛使用的卵巢癌細胞株,我們發現NIH: OVCAR-3 表現具有活性的TSHR。且在thyrostimulin 的刺激後,會活化GPCR 的下游訊息傳遞路徑,如:CREB、ERK1/2及AKT等路徑。除此之外,在thyrostimulin的刺激下,許多和卵巢癌相關的RTK 的mRNA表現量也會有所改變,例如:EGFR、ERBB2、IGF1R、EPHB4及MET的表現量會上升; 而KIT 的表現量則會下降。除了表現量的改變外,thyrostimulin 的刺激也會在短時間下使EGFR 的磷酸化增加,並進而藉由EGFR 來活化下游的AKT 路徑。有趣的是,我們也發現TSHR 的表現量會受到thyrostimulin 自身或是EGF的刺激而改變。此外,藉由BrdU incorporation assay及Rb西方點墨法分析,我們發現細胞的增生速度因thyrostimulin 的刺激而上升,並伴隨著Rb 的磷酸化增加。進一步的,我們也發現: thyrostimulin 藉著活化EGFR來促使卵巢癌細胞增生速度增加。另外,我們也觀察到,thyrostimulin 會增加細胞對於抗癌藥物-順鉑 (cisplatin) 的抗性,使細胞存活率在藥物的處理下增加。有些與細胞抗藥性相關的基因,也都在thyrostimulin 的刺激下有所增加,而DNA損傷所誘導的促凋亡基因表現則有所下降;顯示出thyrostimulin 可能藉由調控這類基因的表現來增加癌細胞對藥物的抗藥性。除此之外,藉由流式細胞儀及caspase 3西方點墨法的分析,我們發現在缺乏血清的培養條件下,thyrostimulin 可以增加細胞的存活。然而,和細胞存活相關的BCL-2 家族及BIRC5 (survivin) 基因表現並沒有因為thyrostimulin的刺激而有所改變,相關的分子機制目前也正在探討之中。
綜合以上結果,我証明了thyrostimulin-TSHR訊息的活化除了可以促使NIH: OVCAR-3卵巢癌細胞的增生之外,也有助於該細胞在抗癌藥物處理及營養貧乏時的存活。
Ovarian cancer is the most lethal gynecologic malignancy and its progression is highly related to the gonadotropin signaling. Recently, we demonstrated that thyrostimulin, the most ancient glycoprotein hormone evolving much earlier than gonadotropins, and its cognate receptor, thyroid stimulating hormone receptor (TSHR), are co-expressed in the ovary as well as ovarian carcinoma cells such as NIH: OVCAR-3. Based on the gonadotropin model for ovarian tumorigenesis, we therefore hypothesized that the thyrostimulin-TSHR signaling can promote ovarian cancer cell progression through either the downstreams of GPCR or the transactivation with RTK signaling. First, comparing three widely used ovarian epithelial carcinoma cell lines, we found that NIH: OVCAR-3 expressed functional TSHR. Thyrostimulin activated the downstreams of GPCR by showing increase of the phosphorylation levels of CREB, ERK1/2, and AKT. Moreover, thyrostimulin also increased the expression of some RTKs, including EGFR, ERBB2, IGF1R, EPHB4 and MET, whereas it reduced the expression of KIT. In addition, thyrostimulin can also transactivate EGFR and further activate the AKT pathway through EGFR. Interestingly, we found that the expression of TSHR was regulated by thyrostimulin or EGF treatment. In BrdU incorporation assay and the cell cycle molecular detection, we demonstrated that thyrostimulin promoted the proliferation of NIH: OVCAR-3 through EGFR. In addition, we found thyrostimulin increased the resistance to cisplatin in NIH: OVCAR-3. Furthermore, thyrostimulin up-regulated some cisplatin resistant-related genes and down-regulated DNA damage-induced pro-apoptosis genes; these may further cause the increasing resistance to cisplatin. In addition to suppressing cisplatin-induced apoptosis, thyrostimulin also supported the NIH: OVCAR-3 survival against serum deprivation-induced apoptosis by flow cytometry assay and immunoblotting against caspase 3. However, thyrostimulin did not change the expression of several BCL-2 family and BIRC5 (survivin), which are related to cell survival and apoptosis. Therefore, the molecular mechanism is still under investigation.
Taken together, I clearly demonstrated that the thyrostimulin-TSHR signaling not only can increase proliferation but also supports survival of NIH: OVCAR-3 ovarian cancer cells.
致謝 I
Contents III
Abbreviation List VII
中文摘要 X
Abstract XII
1. Introduction 1
1.1. Ovarian cancer 1
1.2. Gonadotropin hypothesis 2
1.2.1 . Epidemiology 2
1.2.2 . Expression of gonadotropin receptors in OSE and EOC cells 3
1.2.3 . Signaling pathways activated by gonadotropins 3
1.2.4 . GPCR downstream signaling 4
1.2.5 . RTK downstream signaling (indirect) 7
1.3. Glycoprotein hormone family 12
1.3.1 . Gonadotropins and its receptors 13
1.3.2 . TSH, thyrostimulin and TSHR 14
1.3.3 . Effect of thyrostimulin on the ovary and ovarian cancer 16
1.4. Objectives 16
2. Materials & methods 18
2.1. Cell culture 18
2.2. Reagents 19
2.3. Plasmids 19
2.4. Buffer preparation 21
2.5. Thyrostimulin purification 25
2.6. cAMP level evaluation 25
2.7. Lentivirus infection 26
2.8. Western blotting 27
2.8.1. Sample preparation 27
2.8.2. Sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) 27
2.8.3. Protein transfer 28
2.8.4. Immunoblotting 29
2.9. RNA extraction 29
2.10. Reverse transcription 30
2.11. Quantitative real-time PCR 31
2.12. Immunoprecipitation 32
2.13. Analysis of signaling pathway 32
2.14. Cell growth assay 33
2.14.1. Cell proliferation assay 33
2.14.2. DNA synthesis analysis 33
2.14.3. Cell cycle molecular detection 33
2.15. Cell apoptosis assay 34
2.16. Statistical analysis 35
3. Results 36
3.1. NIH: OVCAR-3 serves as an appropriate ovarian cancer cell model. 36
3.2. Thyrostimulin-TSHR- signaling is capable of activating PKA, ERK1/2 and AKT pathways. 36
3.3. Thyrostimulin-TSHR signaling regulated the expression of receptor tyrosine kinases and transactivated EGFR. 37
3.4. Thyrostimulin activated the AKT signaling through EGFR. 37
3.5. The expression of TSHR is regulated by EGF, but not IGF1. 38
3.6. The relationship between TSHR expression and cell density. 38
3.7. Thyrostimulin-TSHR signaling promoted the proliferation of ovarian cancer cells. 39
3.8. Thyrostimulin promoted cell proliferation through the EGFR pathway. 39
3.9. Thyrostimulin-TSHR signaling supported the ovarian cancer cell survival under cisplatin treatment. 40
3.10. Thyrostimulin-TSHR signaling supported the ovarian cancer cell survival under serum deprivation 40
4. Discussion 42
4.1. TSHR expression is related to cancer progression. 42
4.2. Characterization of ovarian cancer cell lines. 42
4.3. Effect of thyrostimulin on receptor tyrosine kinases expression. 43
4.4. Effect of thyrostimulin on EGFR transactivation. 45
4.5. The regulatory loop between thyrostimulin-TSHR and receptor tyrosine kinases. 46
4.6. Effect of thyrostimulin on proliferation 48
4.7. Effect of thyrostimulin on anti-apoptosis under cisplatin treatment. 49
4.8. Effect of thyrostimulin on anti-apoptosis under serum deprivation. 51
4.9. Conclusion and future work 52
5. Tables 54
Table. 1 The primer pairs for real-time PCR 54
Table. 2 Antibodies 57
Table. 3 Inhibitors 58
6. Figures 59
Fig. 1 NIH: OVCAR-3 cells expressed functional TSHR and could serve as an appropriate ovarian cancer cell model. 59
Fig. 2 Treatment with thyrostimulin induces CREB, ERK1/2, and AKT activation in NIH: OVCAR-3 cells. 60
Fig. 3 Effect of thyrostimulin on receptor tyrosine kinases expression in NIH: OVCAR-3 cells. 62
Fig. 4 Treatment with thyrostimulin induced EGFR phosphorylation in NIH: OVCAR-3 cells. 63
Fig. 5 Thyrostimulin mediated the AKT activation and partial ERK1/2 activation through EGFR. 64
Fig. 6 The expression of TSHR is regulated by EGF, but not IGF1. 65
Fig. 7 The expression of TSHR is down-regulated by thyrostimulin. 66
Fig. 8 The expression of TSHR is increased along with the seeded cell numbers. 67
Fig. 9 Effect of thyrostimulin on cell proliferation in NIH: OVCAR-3 cells. 68
Fig. 10 Thyrostimulin increased the phosphorylation of Rb through the AKT and ERK1/2 pathways. 69
Fig. 11 Thyrostimulin increased the phosphorylation of Rb through EGFR signaling. 70
Fig. 12 Effect of thyrostimulin on cisplatin resistance in NIH: OVCAR-3 cells. 71
Fig. 13 Thyrostimulin increased the cell survival in NIH: OVCAR-3 cells under serum deprivation. 72
Fig. 14 None of inhibitors abolished the effect of thyrostimulin on survival of NIH: OVCAR-3 cells under cisplatin treatment. 73
Fig. 15 Thyrostimulin increased the expression of cisplatin resistant-related genes and reduced the expression of stress-induced gene. 74
Fig. 16 Thyrostimulin did not change the expression of BCL-2 genes and BIRC5 (survivin). 76
7. References 77

Aghajanova, L., Lindeberg, M., Carlsson, I.B., Stavreus-Evers, A., Zhang, P., Scott, J.E., Hovatta, O., and Skjoldebrand-Sparre, L. (2009). Receptors for thyroid-stimulating hormone and thyroid hormones in human ovarian tissue. Reproductive biomedicine online 18, 337-347.
Alam, S.M., Fujimoto, J., Jahan, I., Sato, E., and Tamaya, T. (2008). Coexpression of EphB4 and ephrinB2 in tumour advancement of ovarian cancers. British journal of cancer 98, 845-851.
Alevizaki, M., and Huhtaniemi, I. (2002). Structure-function relationships of glycoprotein hormones; lessons from mutations and polymorphisms of the thyrotrophin and gonadotrophin subunit genes. Hormones (Athens, Greece) 1, 224-232.
Alfthan, H., and Stenman, U.H. (1996). Pathophysiological importance of various molecular forms of human choriogonadotropin. Mol Cell Endocrinol 125, 107-120.
Anderson, N.S., Turner, L., Livingston, S., Chen, R., Nicosia, S.V., and Kruk, P.A. (2009). Bcl-2 expression is altered with ovarian tumor progression: an immunohistochemical evaluation. Journal of ovarian research 2, 16.
Araki, S., Shimada, Y., Kaji, K., and Hayashi, H. (1990). Apoptosis of vascular endothelial cells by fibroblast growth factor deprivation. Biochemical and biophysical research communications 168, 1194-1200.
Armstrong, D.T., and Papkoff, H. (1976). Stimulation of aromatization of exogenous and endogenous androgens in ovaries of hypophysectomized rats in vivo by follicle-stimulating hormone. Endocrinology 99, 1144-1151.
Balzan, S., Del Carratore, R., Nicolini, G., Forini, F., Lubrano, V., Simili, M., Benedetti, P.A., and Iervasi, G. (2009). TSH induces co-localization of TSH receptor and Na/K-ATPase in human erythrocytes. Cell biochemistry and function 27, 259-263.
Bast, R.C., Jr., Hennessy, B., and Mills, G.B. (2009). The biology of ovarian cancer: new opportunities for translation. Nature reviews Cancer 9, 415-428.
Basu, A., and Krishnamurthy, S. (2010). Cellular responses to Cisplatin-induced DNA damage. Journal of nucleic acids 2010.
Beauchamp, M.C., Yasmeen, A., Knafo, A., and Gotlieb, W.H. (2010). Targeting insulin and insulin-like growth factor pathways in epithelial ovarian cancer. Journal of oncology 2010, 257058.
Behrens, B.C., Hamilton, T.C., Masuda, H., Grotzinger, K.R., Whang-Peng, J., Louie, K.G., Knutsen, T., McKoy, W.M., Young, R.C., and Ozols, R.F. (1987). Characterization of a cis-Diamminedichloroplatinum(II)-resistant Human Ovarian Cancer Cell Line and Its Use in Evaluation of Platinum Analogues. Cancer research 47, 414-418.
Blobel, C.P. (2005). ADAMs: key components in EGFR signalling and development. Nature reviews Molecular cell biology 6, 32-43.
Bolitho, C., Hahn, M.A., Baxter, R.C., and Marsh, D.J. (2010). The chemokine CXCL1 induces proliferation in epithelial ovarian cancer cells by transactivation of the epidermal growth factor receptor. Endocrine-related cancer 17, 929-940.
Buensuceso, A.V., and Deroo, B.J. (2013). The ephrin signaling pathway regulates morphology and adhesion of mouse granulosa cells in vitro. Biology of reproduction 88, 25.
Burlacu, A. (2003). Regulation of apoptosis by Bcl-2 family proteins. Journal of cellular and molecular medicine 7, 249-257.
Chakravarti, S., Collins, W.P., Forecast, J.D., Newton, J.R., Oram, D.H., and Studd, J.W. (1976). Hormonal profiles after the menopause. British medical journal 2, 784-787.
Chau, W.K., Ip, C.K., Mak, A.S., Lai, H.C., and Wong, A.S. (2013). c-Kit mediates chemoresistance and tumor-initiating capacity of ovarian cancer cells through activation of Wnt/beta-catenin-ATP-binding cassette G2 signaling. Oncogene 32, 2767-2781.
Chen, X., Aravindakshan, J., Yang, Y., Tiwari-Pandey, R., and Sairam, M.R. (2006). Aberrant expression of PDGF ligands and receptors in the tumor prone ovary of follitropin receptor knockout (FORKO) mouse. Carcinogenesis 27, 903-915.
Choi, J.-H., Wong, A.S.T., Huang, H.-F., and Leung, P.C.K. (2007). Gonadotropins and Ovarian Cancer. Endocrine reviews 28, 440-461.
Choi, J.H., Chen, C.L., Poon, S.L., Wang, H.S., and Leung, P.C. (2009). Gonadotropin-stimulated epidermal growth factor receptor expression in human ovarian surface epithelial cells: involvement of cyclic AMP-dependent exchange protein activated by cAMP pathway. Endocrine-related cancer 16, 179-188.
Choi, J.H., Choi, K.C., Auersperg, N., and Leung, P.C. (2005). Gonadotropins upregulate the epidermal growth factor receptor through activation of mitogen-activated protein kinases and phosphatidyl-inositol-3-kinase in human ovarian surface epithelial cells. Endocrine-related cancer 12, 407-421.
Choi, J.H., Choi, K.C., Auersperg, N., and Leung, P.C. (2006). Gonadotropins activate proteolysis and increase invasion through protein kinase A and phosphatidylinositol 3-kinase pathways in human epithelial ovarian cancer cells. Cancer research 66, 3912-3920.
Choi, K.C., Kang, S.K., Tai, C.J., Auersperg, N., and Leung, P.C. (2002). Follicle-stimulating hormone activates mitogen-activated protein kinase in preneoplastic and neoplastic ovarian surface epithelial cells. The Journal of clinical endocrinology and metabolism 87, 2245-2253.
Chun, S.Y., Billig, H., Tilly, J.L., Furuta, I., Tsafriri, A., and Hsueh, A.J. (1994). Gonadotropin suppression of apoptosis in cultured preovulatory follicles: mediatory role of endogenous insulin-like growth factor I. Endocrinology 135, 1845-1853.
Danilkovitch-Miagkova, A., and Zbar, B. (2002). Dysregulation of Met receptor tyrosine kinase activity in invasive tumors. The Journal of clinical investigation 109, 863-867.
Daub, H., Wallasch, C., Lankenau, A., Herrlich, A., and Ullrich, A. (1997). Signal characteristics of G protein-transactivated EGF receptor. The EMBO journal 16, 7032-7044.
Daub, H., Weiss, F.U., Wallasch, C., and Ullrich, A. (1996). Role of transactivation of the EGF receptor in signalling by G-protein-coupled receptors. Nature 379, 557-560.
Dhillon, A.S., Hagan, S., Rath, O., and Kolch, W. (2007). MAP kinase signalling pathways in cancer. Oncogene 26, 3279-3290.
Dopeso, H., Mateo-Lozano, S., Mazzolini, R., Rodrigues, P., Lagares-Tena, L., Ceron, J., Romero, J., Esteves, M., Landolfi, S., Hernandez-Losa, J., et al. (2009). The receptor tyrosine kinase EPHB4 has tumor suppressor activities in intestinal tumorigenesis. Cancer research 69, 7430-7438.
Dorrington, J.H., Moon, Y.S., and Armstrong, D.T. (1975). Estradiol-17beta biosynthesis in cultured granulosa cells from hypophysectomized immature rats; stimulation by follicle-stimulating hormone. Endocrinology 97, 1328-1331.
Duffy, D.M. (2011). Prostaglandin dehydrogenase (PGDH) in granulosa cells of primate periovulatory follicles is regulated by the ovulatory gonadotropin surge via multiple G proteins. Molecular and Cellular Endocrinology 333, 119-126.
Eguchi, S., Numaguchi, K., Iwasaki, H., Matsumoto, T., Yamakawa, T., Utsunomiya, H., Motley, E.D., Kawakatsu, H., Owada, K.M., Hirata, Y., et al. (1998). Calcium-dependent epidermal growth factor receptor transactivation mediates the angiotensin II-induced mitogen-activated protein kinase activation in vascular smooth muscle cells. The Journal of biological chemistry 273, 8890-8896.
Endo, T., and Kobayashi, T. (2008). Thyroid-stimulating hormone receptor in brown adipose tissue is involved in the regulation of thermogenesis. American journal of physiology Endocrinology and metabolism 295, E514-518.
Espey, L.L., and Richards, J.S. (2002). Temporal and spatial patterns of ovarian gene transcription following an ovulatory dose of gonadotropin in the rat. Biology of reproduction 67, 1662-1670.
Esther, Z., Henrik, D., Naohito, A., Yumiko, Y.-A., Inge, T., Karl, M., and Axel, U. (1997). Critical Role of Calcium- dependent Epidermal Growth Factor Receptor Transactivation in PC12 Cell Membrane Depolarization and Bradykinin Signaling. Journal of Biological Chemistry 272, 24767-24770.
Fogh, J., and Trempe, G. (1975). New Human Tumor Cell Lines. In Human Tumor Cells in Vitro, J. Fogh, ed. (Springer US), pp. 115-159.
Foley, O.W., Rauh-Hain, J.A., and del Carmen, M.G. (2013). Recurrent epithelial ovarian cancer: an update on treatment. Oncology (Williston Park, NY) 27, 288-294, 298.
Follenzi, A., Bakovic, S., Gual, P., Stella, M.C., Longati, P., and Comoglio, P.M. (2000). Cross-talk between the proto-oncogenes Met and Ron. Oncogene 19, 3041-3049.
Francis, T., Burch, H.B., Cai, W.Y., Lukes, Y., Peele, M., Carr, F.E., Wartofsky, L., and Burman, K.D. (1991). Lymphocytes express thyrotropin receptor-specific mRNA as detected by the PCR technique. Thyroid : official journal of the American Thyroid Association 1, 223-228.
GOFF, A.K., LEUNG, P.C.K., and ARMSTRONG, D.T. (1979). Stimulatory Action of Follicle-Stimulating Hormone and Androgens on the Responsiveness of Rat Granulosa Cells to Gonadotropins in Vitro*. Endocrinology 104, 1124-1129.
Goldenberg, R.L., Vaitukaitis, J.L., and Ross, G.T. (1972). Estrogen and follicle stimulation hormone interactions on follicle growth in rats. Endocrinology 90, 1492-1498.
Goto-Kazeto, R., Kazeto, Y., and Trant, J.M. (2009). Molecular cloning, characterization and expression of thyroid-stimulating hormone receptor in channel catfish. General and comparative endocrinology 161, 313-319.
Grant, S., Qiao, L., and Dent, P. (2002). Roles of ERBB family receptor tyrosine kinases, and downstream signaling pathways, in the control of cell growth and survival. Frontiers in bioscience : a journal and virtual library 7, d376-389.
Grosse, R., Roelle, S., Herrlich, A., Hohn, J., and Gudermann, T. (2000). Epidermal growth factor receptor tyrosine kinase mediates Ras activation by gonadotropin-releasing hormone. The Journal of biological chemistry 275, 12251-12260.
Gschwind, A., Hart, S., Fischer, O.M., and Ullrich, A. (2003). TACE cleavage of proamphiregulin regulates GPCR-induced proliferation and motility of cancer cells. The EMBO journal 22, 2411-2421.
Gschwind, A., Zwick, E., Prenzel, N., Leserer, M., and Ullrich, A. (2001). Cell communication networks: epidermal growth factor receptor transactivation as the paradigm for interreceptor signal transmission. Oncogene 20, 1594-1600.
Gu, J., Isaji, T., Xu, Q., Kariya, Y., Gu, W., Fukuda, T., and Du, Y. (2012). Potential roles of N-glycosylation in cell adhesion. Glycoconjugate journal 29, 599-607.
Gudermann, T., Birnbaumer, M., and Birnbaumer, L. (1992). Evidence for dual coupling of the murine luteinizing hormone receptor to adenylyl cyclase and phosphoinositide breakdown and Ca2+ mobilization. Studies with the cloned murine luteinizing hormone receptor expressed in L cells. The Journal of biological chemistry 267, 4479-4488.
Hamilton, T.C., Young, R.C., McKoy, W.M., Grotzinger, K.R., Green, J.A., Chu, E.W., Whang-Peng, J., Rogan, A.M., Green, W.R., and Ozols, R.F. (1983). Characterization of a human ovarian carcinoma cell line (NIH:OVCAR-3) with androgen and estrogen receptors. Cancer research 43, 5379-5389.
Hercbergs, A.H., Ashur-Fabian, O., and Garfield, D. (2010). Thyroid hormones and cancer: clinical studies of hypothyroidism in oncology. Current opinion in endocrinology, diabetes, and obesity 17, 432-436.
Herrlich, A., Daub, H., Knebel, A., Herrlich, P., Ullrich, A., Schultz, G., and Gudermann, T. (1998). Ligand-independent activation of platelet-derived growth factor receptor is a necessary intermediate in lysophosphatidic, acid-stimulated mitogenic activity in L cells. Proceedings of the National Academy of Sciences of the United States of America 95, 8985-8990.
Hong, N.A., Flannery, M., Hsieh, S.N., Cado, D., Pedersen, R., and Winoto, A. (2000). Mice lacking Dad1, the defender against apoptotic death-1, express abnormal N-linked glycoproteins and undergo increased embryonic apoptosis. Developmental biology 220, 76-84.
Hsieh, M., Lee, D., Panigone, S., Horner, K., Chen, R., Theologis, A., Lee, D.C., Threadgill, D.W., and Conti, M. (2007). Luteinizing hormone-dependent activation of the epidermal growth factor network is essential for ovulation. Molecular and cellular biology 27, 1914-1924.
Huang, J., Zhang, L., Greshock, J., Colligon, T.A., Wang, Y., Ward, R., Katsaros, D., Lassus, H., Butzow, R., Godwin, A.K., et al. (2011a). Frequent genetic abnormalities of the PI3K/AKT pathway in primary ovarian cancer predict patient outcome. Genes, chromosomes & cancer 50, 606-618.
Huang, Y., Hua, K., Zhou, X., Jin, H., Chen, X., Lu, X., Yu, Y., Zha, X., and Feng, Y. (2008). Activation of the PI3K/AKT pathway mediates FSH-stimulated VEGF expression in ovarian serous cystadenocarcinoma. Cell research 18, 780-791.
Huang, Y., Jin, H., Liu, Y., Zhou, J., Ding, J., Cheng, K.W., Yu, Y., and Feng, Y. (2011b). FSH inhibits ovarian cancer cell apoptosis by up-regulating survivin and down-regulating PDCD6 and DR5. Endocrine-related cancer 18, 13-26.
Jackman, J., Alamo, I., Jr., and Fornace, A.J., Jr. (1994). Genotoxic stress confers preferential and coordinate messenger RNA stability on the five gadd genes. Cancer research 54, 5656-5662.
Ji, Q., Liu, P.I., Chen, P.K., and Aoyama, C. (2004). Follicle stimulating hormone-induced growth promotion and gene expression profiles on ovarian surface epithelial cells. International journal of cancer Journal international du cancer 112, 803-814.
Kamrava, M., Simpkins, F., Alejandro, E., Michener, C., Meltzer, E., and Kohn, E.C. (2005). Lysophosphatidic acid and endothelin-induced proliferation of ovarian cancer cell lines is mitigated by neutralization of granulin-epithelin precursor (GEP), a prosurvival factor for ovarian cancer. Oncogene 24, 7084-7093.
Kasahara, Y., Kitahara, Y., Nakamura, K., and Minegishi, T. (2012). Downregulation of LH receptor mRNA in the rat uterus. Molecular medicine reports 5, 1146-1150.
Keely, S.J., Calandrella, S.O., and Barrett, K.E. (2000). Carbachol-stimulated transactivation of epidermal growth factor receptor and mitogen-activated protein kinase in T(84) cells is mediated by intracellular ca(2+), PYK-2, and p60(src). The Journal of biological chemistry 275, 12619-12625.
Kelleher, D.J., and Gilmore, R. (1997). DAD1, the defender against apoptotic cell death, is a subunit of the mammalian oligosaccharyltransferase. Proceedings of the National Academy of Sciences of the United States of America 94, 4994-4999.
Kim, A., Ueda, Y., Naka, T., and Enomoto, T. (2012a). Therapeutic strategies in epithelial ovarian cancer. Journal of experimental & clinical cancer research : CR 31, 14.
Kim, J.W., Lee, S., Lui, N., Choi, H., Mulvihill, M., Fang, L.T., Kang, H.C., Kwon, Y.W., Jablons, D., and Kim, I.J. (2012b). A somatic TSHR mutation in a patient with lung adenocarcinoma with bronchioloalveolar carcinoma, coronary artery disease and severe chronic obstructive pulmonary disease. Oncology reports 28, 1225-1230.
Kumar, R.S., Ijiri, S., Kight, K., Swanson, P., Dittman, A., Alok, D., Zohar, Y., and Trant, J.M. (2000). Cloning and functional expression of a thyrotropin receptor from the gonads of a vertebrate (bony fish): potential thyroid-independent role for thyrotropin in reproduction. Molecular and Cellular Endocrinology 167, 1-9.
Kumar, S.R., Masood, R., Spannuth, W.A., Singh, J., Scehnet, J., Kleiber, G., Jennings, N., Deavers, M., Krasnoperov, V., Dubeau, L., et al. (2007). The receptor tyrosine kinase EphB4 is overexpressed in ovarian cancer, provides survival signals and predicts poor outcome. British journal of cancer 96, 1083-1091.
Kurman, R.J., and Shih Ie, M. (2010). The origin and pathogenesis of epithelial ovarian cancer: a proposed unifying theory. The American journal of surgical pathology 34, 433-443.
Kuroda, H., Mandai, M., Konishi, I., Yura, Y., Tsuruta, Y., Hamid, A.A., Nanbu, K., Matsushita, K., and Mori, T. (1998). Human chorionic gonadotropin (hCG) inhibits cisplatin-induced apoptosis in ovarian cancer cells: possible role of up-regulation of insulin-like growth factor-1 by hCG. International journal of cancer Journal international du cancer 76, 571-578.
Larsen, A.B., Pedersen, M.W., Stockhausen, M.T., Grandal, M.V., van Deurs, B., and Poulsen, H.S. (2007). Activation of the EGFR gene target EphA2 inhibits epidermal growth factor-induced cancer cell motility. Molecular cancer research : MCR 5, 283-293.
Lei, Y., Henderson, B.R., Emmanuel, C., Harnett, P.R., and Defazio, A. (2014). Inhibition of ANKRD1 sensitizes human ovarian cancer cells to endoplasmic reticulum stress-induced apoptosis. Oncogene.
Lenhard, M., Lennerova, T., Ditsch, N., Kahlert, S., Friese, K., Mayr, D., and Jeschke, U. (2011). Opposed roles of follicle-stimulating hormone and luteinizing hormone receptors in ovarian cancer survival. Histopathology 58, 990-994.
Leonis, M.A., Thobe, M.N., and Waltz, S.E. (2007). Ron-receptor tyrosine kinase in tumorigenesis and metastasis. Future oncology (London, England) 3, 441-448.
Li, Z.Y., and Luo, C.W. (2013). Charactriztion of the effects of TSHR signaling on ovarian cancer progression.
Liao, H., Zhou, Q., Gu, Y., Duan, T., and Feng, Y. (2012). Luteinizing hormone facilitates angiogenesis in ovarian epithelial tumor cells and metformin inhibits the effect through the mTOR signaling pathway. Oncology reports 27, 1873-1878.
Liu, H.-y., Zeng, W.-d., Cao, A.-l., and Zhang, C.-q. (2010). Follicle-stimulating hormone promotes proliferation of cultured chicken ovarian germ cells through protein kinases A and C activation. J Zhejiang Univ Sci B 11, 952-957.
Liu, J., Aronow, B.J., Witte, D.P., Pope, W.F., and La Barbera, A.R. (1998a). Cyclic and maturation-dependent regulation of follicle-stimulating hormone receptor and luteinizing hormone receptor messenger ribonucleic acid expression in the porcine ovary. Biology of reproduction 58, 648-658.
Liu, J.R., Fletcher, B., Page, C., Hu, C., Nunez, G., and Baker, V. (1998b). Bcl-xL is expressed in ovarian carcinoma and modulates chemotherapy-induced apoptosis. Gynecologic oncology 70, 398-403.
Liu, K.C., and Ge, W. (2013). Differential regulation of gonadotropin receptors (fshr and lhcgr) by epidermal growth factor (EGF) in the zebrafish ovary. General and comparative endocrinology 181, 288-294.
Lu, J.J., Zheng, Y., Kang, X., Yuan, J.M., Lauchlan, S.C., Pike, M.C., and Zheng, W. (2000). Decreased luteinizing hormone receptor mRNA expression in human ovarian epithelial cancer. Gynecologic oncology 79, 158-168.
Mandai, M., Konishi, I., Kuroda, H., Fukumoto, M., Komatsu, T., Yamamoto, S., Nanbu, K., Rao, C.V., and Mori, T. (1997). Messenger ribonucleic acid expression of LH/hCG receptor gene in human ovarian carcinomas. European journal of cancer (Oxford, England : 1990) 33, 1501-1507.
Mandic, A., Hansson, J., Linder, S., and Shoshan, M.C. (2003). Cisplatin Induces Endoplasmic Reticulum Stress and Nucleus-independent Apoptotic Signaling. Journal of Biological Chemistry 278, 9100-9106.
Mertens-Walker, I., Baxter, R.C., and Marsh, D.J. (2012). Gonadotropin signalling in epithelial ovarian cancer. Cancer letters 324, 152-159.
Mertens-Walker, I., Bolitho, C., Baxter, R.C., and Marsh, D.J. (2010). Gonadotropin-induced ovarian cancer cell migration and proliferation require extracellular signal-regulated kinase 1/2 activation regulated by calcium and protein kinase C{delta}. Endocrine-related cancer 17, 335-349.
Mhawech-Fauceglia, P., Afkhami, M., and Pejovic, T. (2012). MET/HGF Signaling Pathway in Ovarian Carcinoma: Clinical Implications and Future Direction. Pathology research international 2012, 960327.
Miao, H., Li, D.Q., Mukherjee, A., Guo, H., Petty, A., Cutter, J., Basilion, J.P., Sedor, J., Wu, J., Danielpour, D., et al. (2009). EphA2 mediates ligand-dependent inhibition and ligand-independent promotion of cell migration and invasion via a reciprocal regulatory loop with Akt. Cancer cell 16, 9-20.
Milas, M., Shin, J., Gupta, M., Novosel, T., Nasr, C., Brainard, J., Mitchell, J., Berber, E., and Siperstein, A. (2010). Circulating Thyrotropin Receptor mRNA as a Novel Marker of Thyroid Cancer: Clinical Applications Learned From 1758 Samples. Annals of Surgery 252, 643-651 610.1097/SLA.1090b1013e3181f1095ba1051.
Mitra, A.K., Sawada, K., Tiwari, P., Mui, K., Gwin, K., and Lengyel, E. (2011). Ligand-independent activation of c-Met by fibronectin and alpha(5)beta(1)-integrin regulates ovarian cancer invasion and metastasis. Oncogene 30, 1566-1576.
Nagasaki, H., Wang, Z., Jackson, V.R., Lin, S., Nothacker, H.P., and Civelli, O. (2006). Differential expression of the thyrostimulin subunits, glycoprotein alpha2 and beta5 in the rat pituitary. Journal of molecular endocrinology 37, 39-50.
Nagayama, Y., Tanaka, K., Namba, H., Yamashita, S., and Niwa, M. (1996). Expression and regulation of G protein-coupled receptor kinase 5 and beta-arrestin-1 in rat thyroid FRTL5 cells. Thyroid : official journal of the American Thyroid Association 6, 627-631.
Nakabayashi, K., Matsumi, H., Bhalla, A., Bae, J., Mosselman, S., Hsu, S.Y., and Hsueh, A.J.W. (2002). Thyrostimulin, a heterodimer of two new human glycoprotein hormone subunits, activates the thyroid-stimulating hormone receptor. Journal of Clinical Investigation 109, 1445-1452.
Nakamura, K., Minegishi, T., Takakura, Y., Miyamoto, K., Hasegawa, Y., Ibuki, Y., and Igarashi, M. (1991). Hormonal regulation of gonadotropin receptor mRNA in rat ovary during follicular growth and luteinization. Molecular and Cellular Endocrinology 82, 259-263.
Natali, P.G., Berlingieri, M.T., Nicotra, M.R., Fusco, A., Santoro, E., Bigotti, A., and Vecchio, G. (1995). Transformation of thyroid epithelium is associated with loss of c-kit receptor. Cancer research 55, 1787-1791.
Natali, P.G., Nicotra, M.R., Sures, I., Mottolese, M., Botti, C., and Ullrich, A. (1992). Breast cancer is associated with loss of the c-kit oncogene product. International journal of cancer Journal international du cancer 52, 713-717.
Ness, R.B., Grisso, J.A., Cottreau, C., Klapper, J., Vergona, R., Wheeler, J.E., Morgan, M., and Schlesselman, J.J. (2000). Factors Related to Inflammation of the Ovarian Epithelium and Risk of Ovarian Cancer. Epidemiology 11, 111-117.
Nevins, J.R. (2001). The Rb/E2F pathway and cancer. Human Molecular Genetics 10, 699-703.
Normanno, N., Bianco, C., De Luca, A., Maiello, M.R., and Salomon, D.S. (2003). Target-based agents against ErbB receptors and their ligands: a novel approach to cancer treatment. Endocrine-related cancer 10, 1-21.
OHTA, T., ISOBE, M., TAKAHASHI, T., SAITOH-SEKIGUCHI, M., MOTOYAMA, T., and KURACHI, H. (2009). The Akt and ERK Activation by Platinum-based Chemotherapy in Ovarian Cancer is Associated with Favorable Patient Outcome. Anticancer Research 29, 4639-4647.
Ohtani, K., Sakamoto, H., Kikuchi, A., Nakayama, Y., Idei, T., Igarashi, N., Matukawa, T., and Satoh, K. (2001). Follicle-stimulating hormone promotes the growth of human epithelial ovarian cancer cells through the protein kinase C-mediated system. Cancer letters 166, 207-213.
Ohtsu, H., Dempsey, P.J., and Eguchi, S. (2006). ADAMs as mediators of EGF receptor transactivation by G protein-coupled receptors. American journal of physiology Cell physiology 291, C1-10.
Okada, S.L., Ellsworth, J.L., Durnam, D.M., Haugen, H.S., Holloway, J.L., Kelley, M.L., Lewis, K.E., Ren, H., Sheppard, P.O., Storey, H.M., et al. (2006). A glycoprotein hormone expressed in corticotrophs exhibits unique binding properties on thyroid-stimulating hormone receptor. Molecular endocrinology 20, 414-425.
Parker, P.J., and Murray-Rust, J. (2004). PKC at a glance. Journal of Cell Science 117, 131-132.
Parrott, J.A., Doraiswamy, V., Kim, G., Mosher, R., and Skinner, M.K. (2001). Expression and actions of both the follicle stimulating hormone receptor and the luteinizing hormone receptor in normal ovarian surface epithelium and ovarian cancer. Molecular and Cellular Endocrinology 172, 213-222.
Pasquale, E.B. (2010). Eph receptors and ephrins in cancer: bidirectional signalling and beyond. Nature reviews Cancer 10, 165-180.
Peng, D.J., Wang, J., Zhou, J.Y., and Wu, G.S. (2010). Role of the Akt/mTOR survival pathway in cisplatin resistance in ovarian cancer cells. Biochemical and biophysical research communications 394, 600-605.
Pigny, P., Berault, A., Dewailly, D., and Boersma, A. (1992). [Glycoprotein hormones, glycosylation and biological activity]. Annales de biologie clinique 50, 557-564.
Pinto, M., Soares, P., and Ribatti, D. (2011). Thyroid hormone as a regulator of tumor induced angiogenesis. Cancer letters 301, 119-126.
Poppe, K., and Velkeniers, B. (2004). Female infertility and the thyroid. Best practice & research Clinical endocrinology & metabolism 18, 153-165.
Porcile, C., Bajetto, A., Barbero, S., Pirani, P., and Schettini, G. (2004). CXCR4 activation induces epidermal growth factor receptor transactivation in an ovarian cancer cell line. Annals of the New York Academy of Sciences 1030, 162-169.
Prenzel, N., Zwick, E., Daub, H., Leserer, M., Abraham, R., Wallasch, C., and Ullrich, A. (1999). EGF receptor transactivation by G-protein-coupled receptors requires metalloproteinase cleavage of proHB-EGF. Nature 402, 884-888.
Prenzel, N., Zwick, E., Leserer, M., and Ullrich, A. (2000). Tyrosine kinase signalling in breast cancer. Epidermal growth factor receptor: convergence point for signal integration and diversification. Breast cancer research : BCR 2, 184-190.
Prislei, S., Mariani, M., Raspaglio, G., Mozzetti, S., Filippetti, F., Ferrandina, G., Scambia, G., and Ferlini, C. (2010). RON and Cisplatin Resistance in Ovarian Cancer Cell Lines. Oncology Research Featuring Preclinical and Clinical Cancer Therapeutics 19, 13-22.
Rao, G.N., Delafontaine, P., and Runge, M.S. (1995). Thrombin stimulates phosphorylation of insulin-like growth factor-1 receptor, insulin receptor substrate-1, and phospholipase C-gamma 1 in rat aortic smooth muscle cells. The Journal of biological chemistry 270, 27871-27875.
Raspollini, M.R., Amunni, G., Villanucci, A., Baroni, G., Taddei, A., and Taddei, G.L. (2004). c-KIT expression and correlation with chemotherapy resistance in ovarian carcinoma: an immunocytochemical study. Annals of oncology : official journal of the European Society for Medical Oncology / ESMO 15, 594-597.
Redmond, G.P. (2004). Thyroid dysfunction and women's reproductive health. Thyroid : official journal of the American Thyroid Association 14 Suppl 1, S5-15.
Riman, T., Persson, I., and Nilsson, S. (1998). Hormonal aspects of epithelial ovarian cancer: review of epidemiological evidence. Clinical endocrinology 49, 695-707.
Rimon, E., Sasson, R., Dantes, A., Land-Bracha, A., and Amsterdam, A. (2004). Gonadotropin-induced gene regulation in human granulosa cells obtained from IVF patients: modulation of genes coding for growth factors and their receptors and genes involved in cancer and other diseases. International journal of oncology 24, 1325-1338.
Rocha, A., Gómez, A., Galay-Burgos, M., Zanuy, S., Sweeney, G.E., and Carrillo, M. (2007). Molecular characterization and seasonal changes in gonadal expression of a thyrotropin receptor in the European sea bass. General and comparative endocrinology 152, 89-101.
Roselli-Rehfuss, L., Robbins, L.S., and Cone, R.D. (1992). Thyrotropin receptor messenger ribonucleic acid is expressed in most brown and white adipose tissues in the guinea pig. Endocrinology 130, 1857-1861.
Rosenberg, B. (1973). Platinum coordination complexes in cancer chemotherapy. Die Naturwissenschaften 60, 399-406.
Rosse, C., Linch, M., Kermorgant, S., Cameron, A.J., Boeckeler, K., and Parker, P.J. (2010). PKC and the control of localized signal dynamics. Nature reviews Molecular cell biology 11, 103-112.
Ryan, B.M., O’Donovan, N., and Duffy, M.J. (2009). Survivin: A new target for anti-cancer therapy. Cancer treatment reviews 35, 553-562.
Rzepka-Gorska, I., Chudecka-Glaz, A., and Kosmowska, B. (2004). FSH and LH serum/tumor fluid ratios and malignant tumors of the ovary. Endocrine-related cancer 11, 315-321.
Salomon, D.S., Brandt, R., Ciardiello, F., and Normanno, N. (1995). Epidermal growth factor-related peptides and their receptors in human malignancies. Critical reviews in oncology/hematology 19, 183-232.
Sanner, K., Conner, P., Bergfeldt, K., Dickman, P., Sundfeldt, K., Bergh, T., Hagenfeldt, K., Janson, P.O., Nilsson, S., and Persson, I. (2009). Ovarian epithelial neoplasia after hormonal infertility treatment: long-term follow-up of a historical cohort in Sweden. Fertility and sterility 91, 1152-1158.
Sawada, K., Radjabi, A.R., Shinomiya, N., Kistner, E., Kenny, H., Becker, A.R., Turkyilmaz, M.A., Salgia, R., Yamada, S.D., Vande Woude, G.F., et al. (2007). c-Met overexpression is a prognostic factor in ovarian cancer and an effective target for inhibition of peritoneal dissemination and invasion. Cancer research 67, 1670-1679.
Schafer, B., Gschwind, A., and Ullrich, A. (2004). Multiple G-protein-coupled receptor signals converge on the epidermal growth factor receptor to promote migration and invasion. Oncogene 23, 991-999.
Schmandt, R.E., Broaddus, R., Lu, K.H., Shvartsman, H., Thornton, A., Malpica, A., Sun, C., Bodurka, D.C., and Gershenson, D.M. (2003). Expression of c-ABL, c-KIT, and platelet-derived growth factor receptor-beta in ovarian serous carcinoma and normal ovarian surface epithelium. Cancer 98, 758-764.
Schmitt, J., and Matei, D. (2008). Platelet-Derived Growth Factor Pathway Inhibitors in Ovarian Cancer. Clinical Ovarian Cancer 1, 120-126.
Shen, D.-W., Pouliot, L.M., Hall, M.D., and Gottesman, M.M. (2012). Cisplatin Resistance: A Cellular Self-Defense Mechanism Resulting from Multiple Epigenetic and Genetic Changes. Pharmacological Reviews 64, 706-721.
Shida, D., Kitayama, J., Yamaguchi, H., Yamashita, H., Mori, K., Watanabe, T., and Nagawa, H. (2005). Lysophosphatidic acid transactivates both c-Met and epidermal growth factor receptor, and induces cyclooxygenase-2 expression in human colon cancer LoVo cells. World journal of gastroenterology : WJG 11, 5638-5643.
Shih Ie, M., and Kurman, R.J. (2004). Ovarian tumorigenesis: a proposed model based on morphological and molecular genetic analysis. The American journal of pathology 164, 1511-1518.
Siegel, R., Naishadham, D., and Jemal, A. (2012). Cancer statistics, 2012. CA: a cancer journal for clinicians 62, 10-29.
Siwak, D.R., Carey, M., Hennessy, B.T., Nguyen, C.T., McGahren Murray, M.J., Nolden, L., and Mills, G.B. (2010). Targeting the epidermal growth factor receptor in epithelial ovarian cancer: current knowledge and future challenges. Journal of oncology 2010, 568938.
Sleer, L.S., and Taylor, C.C. (2007). Platelet-derived growth factors and receptors in the rat corpus luteum: localization and identification of an effect on luteogenesis. Biology of reproduction 76, 391-400.
Slot, K.A., de Boer-Brouwer, M., Houweling, M., Vaandrager, A.B., Dorrington, J.H., and Teerds, K.J. (2006). Luteinizing hormone inhibits Fas-induced apoptosis in ovarian surface epithelial cell lines. The Journal of endocrinology 188, 227-239.
Smith, J.A., Ngo, H., Martin, M.C., and Wolf, J.K. (2005). An evaluation of cytotoxicity of the taxane and platinum agents combination treatment in a panel of human ovarian carcinoma cell lines. Gynecologic oncology 98, 141-145.
Smith, V., Hobbs, S., Court, W., Eccles, S., Workman, P., and Kelland, L.R. (2002). ErbB2 overexpression in an ovarian cancer cell line confers sensitivity to the HSP90 inhibitor geldanamycin. Anticancer Res 22, 1993-1999.
Soltoff, S.P. (1998). Related adhesion focal tyrosine kinase and the epidermal growth factor receptor mediate the stimulation of mitogen-activated protein kinase by the G-protein-coupled P2Y2 receptor. Phorbol ester or [Ca2+]i elevation can substitute for receptor activation. The Journal of biological chemistry 273, 23110-23117.
Spannuth, W.A., Nick, A.M., Jennings, N.B., Armaiz-Pena, G.N., Mangala, L.S., Danes, C.G., Lin, Y.G., Merritt, W.M., Thaker, P.H., Kamat, A.A., et al. (2009). Functional significance of VEGFR-2 on ovarian cancer cells. International journal of cancer Journal international du cancer 124, 1045-1053.
Spannuth, W.A., Sood, A.K., and Coleman, R.L. (2008). Angiogenesis as a strategic target for ovarian cancer therapy. Nature clinical practice Oncology 5, 194-204.
Stocco, D.M., Wang, X., Jo, Y., and Manna, P.R. (2005). Multiple signaling pathways regulating steroidogenesis and steroidogenic acute regulatory protein expression: more complicated than we thought. Molecular endocrinology 19, 2647-2659.
Sudo, S., Kuwabara, Y., Park, J.I., Hsu, S.Y., and Hsueh, A.J. (2005). Heterodimeric fly glycoprotein hormone-alpha2 (GPA2) and glycoprotein hormone-beta5 (GPB5) activate fly leucine-rich repeat-containing G protein-coupled receptor-1 (DLGR1) and stimulation of human thyrotropin receptors by chimeric fly GPA2 and human GPB5. Endocrinology 146, 3596-3604.
Syed, V., Ulinski, G., Mok, S.C., Yiu, G.K., and Ho, S.-M. (2001). Expression of Gonadotropin Receptor and Growth Responses to Key Reproductive Hormones in Normal and Malignant Human Ovarian Surface Epithelial Cells. Cancer research 61, 6768-6776.
Szkudlinski, M.W., Fremont, V., Ronin, C., and Weintraub, B.D. (2002). Thyroid-stimulating hormone and thyroid-stimulating hormone receptor structure-function relationships. Physiol Rev 82, 473-502.
Tilly, J.L., LaPolt, P.S., and Hsueh, A.J. (1992). Hormonal regulation of follicle-stimulating hormone receptor messenger ribonucleic acid levels in cultured rat granulosa cells. Endocrinology 130, 1296-1302.
Tonary, A.M., Macdonald, E.A., Faught, W., Senterman, M.K., and Vanderhyden, B.C. (2000). Lack of expression of c-KIT in ovarian cancers is associated with poor prognosis. International journal of cancer Journal international du cancer 89, 242-250.
Tsai, W., Morielli, A.D., and Peralta, E.G. (1997). The m1 muscarinic acetylcholine receptor transactivates the EGF receptor to modulate ion channel activity. The EMBO journal 16, 4597-4605.
Ukegawa, J.I., Takeuchi, Y., Kusayanagi, S., and Mitamura, K. (2003). Growth-promoting effect of muscarinic acetylcholine receptors in colon cancer cells. Journal of cancer research and clinical oncology 129, 272-278.
Ullrich, A., and Schlessinger, J. (1990). Signal transduction by receptors with tyrosine kinase activity. Cell 61, 203-212.
van BIESEN, T., LUTTRELL, L.M., HAWES, B.E., and LEFKOWITZ, R.J. (1996). Mitogenic Signaling via G Protein-Coupled Receptors. Endocrine reviews 17, 698-714.
van der Geer, P., Hunter, T., and Lindberg, R.A. (1994). Receptor protein-tyrosine kinases and their signal transduction pathways. Annual review of cell biology 10, 251-337.
Vang, R., Shih Ie, M., and Kurman, R.J. (2009). Ovarian low-grade and high-grade serous carcinoma: pathogenesis, clinicopathologic and molecular biologic features, and diagnostic problems. Advances in anatomic pathology 16, 267-282.
Venkatakrishnan, G., Salgia, R., and Groopman, J.E. (2000). Chemokine receptors CXCR-1/2 activate mitogen-activated protein kinase via the epidermal growth factor receptor in ovarian cancer cells. The Journal of biological chemistry 275, 6868-6875.
Vischer, H.F., and Bogerd, J. (2003). Cloning and functional characterization of a testicular TSH receptor cDNA from the African catfish (Clarias gariepinus). Journal of molecular endocrinology 30, 227-238.
Vivanco, I., and Sawyers, C.L. (2002). The phosphatidylinositol 3-Kinase AKT pathway in human cancer. Nature reviews Cancer 2, 489-501.
Wagh, P.K., Peace, B.E., and Waltz, S.E. (2008). Met‐Related Receptor Tyrosine Kinase Ron in Tumor Growth and Metastasis. 100, 1-33.
Wang, J., Luo, F., Lu, J.J., Chen, P.K., Liu, P., and Zheng, W. (2002). VEGF expression and enhanced production by gonadotropins in ovarian epithelial tumors. International journal of cancer Journal international du cancer 97, 163-167.
Wettschureck, N., and Offermanns, S. (2005). Mammalian G Proteins and Their Cell Type Specific Functions. Physiological Reviews 85, 1159-1204.
Whittemore, A.S., Harris, R., and Itnyre, J. (1992). Characteristics relating to ovarian cancer risk: collaborative analysis of 12 US case-control studies. II. Invasive epithelial ovarian cancers in white women. Collaborative Ovarian Cancer Group. American journal of epidemiology 136, 1184-1203.
Yao, H.H., and Bahr, J.M. (2001). Chicken granulosa cells show differential expression of epidermal growth factor (EGF) and luteinizing hormone (LH) receptor messenger RNA and differential responsiveness to EGF and LH dependent upon location of granulosa cells to the germinal disc. Biology of reproduction 64, 1790-1796.
Yoon, J., Kim, E.S., Lee, S.J., Park, C.W., Cha, H.J., Hong, B.H., and Choi, K.Y. (2010). Apoptosis-related mRNA expression profiles of ovarian cancer cell lines following cisplatin treatment. Journal of gynecologic oncology 21, 255-261.
Yoon, S., and Seger, R. (2006). The extracellular signal-regulated kinase: multiple substrates regulate diverse cellular functions. Growth factors (Chur, Switzerland) 24, 21-44.
Yoshiki, N., and Aso, T. (1997). [The regulation mechanism of the female menstrual cycle]. Nihon rinsho Japanese journal of clinical medicine 55, 2840-2848.
Yue, P., Zhang, X., Paladino, D., Sengupta, B., Ahmad, S., Holloway, R.W., Ingersoll, S.B., and Turkson, J. (2012). Hyperactive EGF receptor, Jaks and Stat3 signaling promote enhanced colony-forming ability, motility and migration of cisplatin-resistant ovarian cancer cells. Oncogene 31, 2309-2322.
Zhang, Y.M., and Roy, S.K. (2004). Downregulation of follicle-stimulating hormone (FSH)-receptor messenger RNA levels in the hamster ovary: effect of the endogenous and exogenous FSH. Biology of reproduction 70, 1580-1588.
Zhang, Z., Liao, H., Chen, X., Zheng, Y., Liu, Y., Tao, X., Gu, C., Dong, L., Duan, T., Yang, Y., et al. (2011). Luteinizing hormone upregulates survivin and inhibits apoptosis in ovarian epithelial tumors. European Journal of Obstetrics & Gynecology and Reproductive Biology 155, 69-74.
Zhao, L.J., Xu, H., Qu, J.W., Zhao, W.Z., Zhao, Y.B., and Wang, J.H. (2012). Modulation of drug resistance in ovarian cancer cells by inhibition of protein kinase C-alpha (PKC-alpha) with small interference RNA (siRNA) agents. Asian Pacific journal of cancer prevention : APJCP 13, 3631-3636.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top