跳到主要內容

臺灣博碩士論文加值系統

(44.211.239.1) 您好!臺灣時間:2023/02/05 23:11
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:郭瀅安
研究生(外文):Ying-An Kuo
論文名稱:探究菩提奇異球菌中RecA酵素的反應活性特色
論文名稱(外文):The Functional Role of Deinococcus ficus RecA
指導教授:范秀芳
指導教授(外文):Hsiu-Fang Fan
學位類別:碩士
校院名稱:國立陽明大學
系所名稱:生命科學系暨基因體科學研究所
學門:生命科學學門
學類:生物訊息學類
論文種類:學術論文
論文出版年:2014
畢業學年度:102
語文別:中文
論文頁數:61
中文關鍵詞:單分子系統核酸修復蛋白菩提奇異球菌同源重組單分子栓球實驗
外文關鍵詞:RecAsingle moleculeDeincoccus ficusD.ficusHomologous RecombinationTethered Particle Motion
相關次數:
  • 被引用被引用:0
  • 點閱點閱:392
  • 評分評分:
  • 下載下載:8
  • 收藏至我的研究室書目清單書目收藏:0
2006年發現的新物種Deincoccus ficus (D.ficus),隸屬於Deinococcus 奇異球菌屬,此屬菌株具有高劑量UV的耐受度,而其中Deinococcus radiodurain (Dr)抗輻射奇異球菌屬已被廣泛研究,且得知其能承受大量的雙股DNA雙股斷裂。Dr與D.ficus間基因序列的相似度相當高,然而D.ficus被發現能生長於較鹼性的環境中,具備有Dr不會發生的UV-誘導突變,因此認為D.ficus 具有特殊的DNA修補系統。而作為DNA修補反應中的主要蛋白,RecA被選為研究的主要對象。我們首先觀察D.ficus RecA進行股交換反應的偏好性,發現於偏鹼環境中具有較高的活性,然而此特性與核酸-蛋白纖維的穩定度並不同步,且此活性偏好與一般大腸桿菌的RecA不同,因此進一步使用單分子系統-栓球實驗-觀察反應的細部活性。再觀測過核酸-蛋白纖維和三股中間形階段產物的穩定度、計算同源搜尋以及DNA置換的發生頻率後,發現導致D.ficus的RecA異於大腸桿菌的主要原因為中間產物的穩定度差異以及速率決定步驟的不同。
Deinococcus genuses are strongly resistant to UV irradiant due to their high tolerance of double strand breaks DNA. It has been reported that Deinococcus radiodurain has robust DNA-damage repair system to resist the UV irradiation-caused DNA damage. A new species, Deincoccus ficus (D.ficus), was found in 2006. Both species have high similarities in genome sequence. However D. ficus has been found to survive under basic condition and mutation was found upon UV irradiation. Based on these findings, the hypothesis that DNA-damage repair system in D.ficus is different from that in Deinococcus radiodurain. Here, RecA, playing an important role in DNA-damage repair system, was chosen to be studies in this project. We first measure the strand exchange activity to investigate the properties of D.ficus RecA under different pH conditions, and the result shows that the highest strand exchange efficiency was found under pH 8. This optimal condition is different from E-coli RecA, and not correlated with the nuclear-protein filament stability as well. To further understand the mechanism of pH-dependent D.ficus RecA-mediated strand exchange reaction, a single molecule approach—Tethered Particle Motion (TPM) was used to elucidate the mechanism. D.ficus RecA possessing higher DNA binding affinity than E coli RecA does indicates the lower activation energy in the formation of nucleoprotein filament. However, the presence of more stable three-strand intermediates during D.ficus RecA-mediated homologous searching process impedes the completion of strand exchange. Therefore, higher strand exchange efficiency under basic condition results from the compromise between the stabilities of nucleoprotein filament and three-strand intermediate. Together, the higher average pI and the loss of partial C-terminal acidic residues evolutionally make D. ficus RecA retain activity under basic condition.
目錄
致謝 i
圖表目錄 iv
中英對照縮寫表 v
中文摘要 vii
英文摘要 viii
Chapter I Introduction 1
1-1 Deinococcus ficus (D. ficus) 1
1-2 Repair system 5
1-2-1 Base damage 6
1-2-2 Strand break 6
1-2-3 Homologous recombination 8
1-2-4 Bypass repair 8
1-3 RecA in DNA repair 9
1-4 Single molecule analysis 14
1-5 Specific aim 15
Chapter II Materials and Methods 16
2-1 D.ficus RecA ligation plasmid 的製備 16
2-2 蛋白質純化 16
2-3 Strand exchange 18
2-4 ATP hydrolysis 19
2-5 TPM DNA 製備 21
2-6 TPM 乳膠小球製備 22
2-7 TPM 反應腔室製備 23
2-8 TPM反應過程 24
2-9 分析方法 25
2-10 菌株生長測試 26
2-11 圓二色光譜 26
Chapter III Result 27
3-1 Purification of D.ficus RecA 27
3-2 活性測試 29
3-2-1 反應物偏好性 29
3-2-2 酸鹼偏好性 32
3-2-3 圓二色光譜 37
3-3 分子機制 38
3-3-1 Filament Formation Experiment 41
3-3-2 Invading Experiment 44
3-3-3 Displacement Experiment 46
3-4 生長速率測試 47
Chapter IV Discussion 49
4-1 D.ficus RecA的純化特性 49
4-2 C-terminal 缺失所影響的反應活性 49
4-3 反應活性的分子機制 50
附錄 54
Chapter V References 57


圖表目錄

Figure 1-1 系統演化族譜 2
Figure 1-2 奇異球菌屬相較於大腸桿菌的存活率 4
Figure 1-3 D.ficus 在UV照射下的反應 5
Figure 1-4 大腸桿菌之重組反應過程 7
Figure 1-5 RecA結構圖 10
Figure 1-6 RecA進行股互換反應的主要步驟 11
Figure 1-7 RecA活性於大腸桿菌及Dr的比較 13
Figure 2-1 股交換活性反應示意圖 20
Figure 2-2 ATP水解速率測量反應示意圖 21
Figure 2-3 反應腔室的製備 23
Figure 2-4 TPM 實驗設計圖 24
Figure 3-1 RecA鹽析純化 27
Figure 3-2 RecA管柱純化 28
Figure 3-3 反應物偏好性測試 30
Figure 3-4 利用螢光標定偵測股交換反應偏好 31
Figure 3-5 反應物偏好水解活性 32
Figure 3-6 酸鹼偏好股交換活性測試 33
Figure 3-7 股交換活性測試 34
Figure 3-8 水解速度測試 35
Figure 3-9 Sequence aliment 36
Figure 3-10 圓二色光譜 37
Figure 3-11 中間型產物觀察 39
Figure 3-12 股交換的主要步驟及相對應的實驗設計 40
Figure 3-13 DNA延長測試 42
Figure 3-14 酸鹼值影響纖維形成差異 43
Figure 3-15 三股中間型階段產物存在時間計算 45
Figure 3-16 股置換速率測試 46
Figure 3-17 菌株生長測試 48
表一 Buffer condition 54
表二 Primer list 55
表三 PCR condition 55
表四 exo-nuclease 反應濃度 56
表五 Km 、Vmax及Kcat 56
表六 同源搜尋中間產物穩定性 56


1. Lai, W. A., Kampfer, P., Arun, A. B., Shen, F. T., Huber, B., Rekha, P. D., and Young, C. C. (2006) Deinococcus ficus sp. nov., isolated from the rhizosphere of Ficus religiosa L. International journal of systematic and evolutionary microbiology 56, 787-791
2. 曾宥綋. (2012) 探討 Deinococcus ficus 基因群組 imuB-dnaE2 參與細胞突變之 DNA 修復機制及羽毛降解菌株之改良. 中興大學土壤環境科學系所學位論文, 1-182
3. Howard-Flanders, P., West, S. C., and Stasiak, A. (1984) Role of RecA protein spiral filaments in genetic recombination. Nature 309, 215-219
4. Slade, D., and Radman, M. (2011) Oxidative stress resistance in Deinococcus radiodurans. Microbiology and molecular biology reviews : MMBR 75, 133-191
5. Chen, Z., Yang, H., and Pavletich, N. P. (2008) Mechanism of homologous recombination from the RecA-ssDNA/dsDNA structures. Nature 453, 489-484
6. Kim, J. I., Cox, M. M., and Inman, R. B. (1992) On the role of ATP hydrolysis in RecA protein-mediated DNA strand exchange. II. Four-strand exchanges. The Journal of biological chemistry 267, 16444-16449
7. Malkov, V. A., and Camerini-Otero, R. D. (1995) Photocross-links between single-stranded DNA and Escherichia coli RecA protein map to loops L1 (amino acid residues 157-164) and L2 (amino acid residues 195-209). The Journal of biological chemistry 270, 30230-30233
8. Kim, J. I., and Cox, M. M. (2002) The RecA proteins of Deinococcus radiodurans and Escherichia coli promote DNA strand exchange via inverse pathways. Proceedings of the National Academy of Sciences of the United States of America 99, 7917-7921
9. Neuendorf, S. K., and Cox, M. M. (1986) Exchange of recA protein between adjacent recA protein-single-stranded DNA complexes. The Journal of biological chemistry 261, 8276-8282
10. Konola, J. T., Logan, K. M., and Knight, K. L. (1994) Functional characterization of residues in the P-loop motif of the RecA protein ATP binding site. Journal of molecular biology 237, 20-34
11. Britt, R. L., Chitteni-Pattu, S., Page, A. N., and Cox, M. M. (2011) RecA K72R filament formation defects reveal an oligomeric RecA species involved in filament extension. The Journal of biological chemistry 286, 7830-7840
12. Story, R. M., Weber, I. T., and Steitz, T. A. (1992) The structure of the E. coli recA protein monomer and polymer. Nature 355, 318-325
13. 曾宥. (2007) Deinococcus ficus CC-FR2-10T 抗 UV 輻射特性研究.
14. Britt, R. L., Haruta, N., Lusetti, S. L., Chitteni-Pattu, S., Inman, R. B., and Cox, M. M. (2010) Disassembly of Escherichia coli RecA E38K/DeltaC17 nucleoprotein filaments is required to complete DNA strand exchange. The Journal of biological chemistry 285, 3211-3226
15. 楊秋忠. (2008) 高效率生物資源再利用的生物技術開發-高效分解菌菩提奇異球菌之功能分析及有機廢棄物處理.
16. Cox, M. M., and Battista, J. R. (2005) Deinococcus radiodurans - the consummate survivor. Nat Rev Microbiol 3, 882-892
17. Evans, D. M., and Moseley, B. E. (1983) Roles of the uvsC, uvsD, uvsE, and mtcA genes in the two pyrimidine dimer excision repair pathways of Deinococcus radiodurans. Journal of bacteriology 156, 576-583
18. Daly, M. J. (2009) A new perspective on radiation resistance based on Deinococcus radiodurans. Nat Rev Microbiol 7, 237-245
19. Daly, M. J., Gaidamakova, E. K., Matrosova, V. Y., Kiang, J. G., Fukumoto, R., Lee, D. Y., Wehr, N. B., Viteri, G. A., Berlett, B. S., and Levine, R. L. (2010) Small-molecule antioxidant proteome-shields in Deinococcus radiodurans. PloS one 5, e12570
20. Park, E. M., Shigenaga, M. K., Degan, P., Korn, T. S., Kitzler, J. W., Wehr, C. M., Kolachana, P., and Ames, B. N. (1992) Assay of excised oxidative DNA lesions: isolation of 8-oxoguanine and its nucleoside derivatives from biological fluids with a monoclonal antibody column. Proceedings of the National Academy of Sciences of the United States of America 89, 3375-3379
21. Hoeijmakers, J. H. (2009) DNA damage, aging, and cancer. New England Journal of Medicine 361, 1475-1485
22. Smith, K. C. (1978) Multiple pathways of DNA repair in bacteria and their roles in mutagenesis. Photochemistry and photobiology 28, 121-129
23. Braun, A., and Grossman, L. (1974) An endonuclease from Escherichia coli that acts preferentially on UV-irradiated DNA and is absent from the uvrA and uvrB mutants. Proceedings of the National Academy of Sciences 71, 1838-1842
24. Seeberg, E., and Rupp, W. D. (1975) Effect of mutations in lig and polA on UV-induced strand cutting in a uvrC strain of Escherichia coli. Basic life sciences 5B, 439-441
25. Bacchetti, S. (1975) Studies on DNA repair in mammalian cells: an endonuclease which recognizes lesions in DNA. Basic life sciences 5B, 651-654
26. Lindahl, T., and Barnes, D. E. (2000) Repair of endogenous DNA damage. Cold Spring Harbor symposia on quantitative biology 65, 127-133
27. Hartlerode, A. J., and Scully, R. (2009) Mechanisms of double-strand break repair in somatic mammalian cells. Biochem J 423, 157-168
28. Craig, N. L., and Nash, H. A. (1984) E. coli integration host factor binds to specific sites in DNA. Cell 39, 707-716
29. Youngs, D. A., Van der Schueren, E., and Smith, K. C. (1974) Separate branches of the uvr gene-dependent excision repair process in ultraviolet-irradiated Escherichia coli K-12 cells; their dependence upon growth medium and the polA, recA, recB, and exrA genes. Journal of bacteriology 117, 717-725
30. van Dongen, J. A., Voogd, A. C., Fentiman, I. S., Legrand, C., Sylvester, R. J., Tong, D., van der Schueren, E., Helle, P. A., van Zijl, K., and Bartelink, H. (2000) Long-term results of a randomized trial comparing breast-conserving therapy with mastectomy: European Organization for Research and Treatment of Cancer 10801 trial. J Natl Cancer Inst 92, 1143-1150
31. Prakash, S., Johnson, R. E., and Prakash, L. (2005) Eukaryotic translesion synthesis DNA polymerases: specificity of structure and function. Annu Rev Biochem 74, 317-353
32. Dai, Y., Kysela, B., Hanakahi, L. A., Manolis, K., Riballo, E., Stumm, M., Harville, T. O., West, S. C., Oettinger, M. A., and Jeggo, P. A. (2003) Nonhomologous end joining and V(D)J recombination require an additional factor. Proceedings of the National Academy of Sciences of the United States of America 100, 2462-2467
33. Mahaney, B. L., Meek, K., and Lees-Miller, S. P. (2009) Repair of ionizing radiation-induced DNA double-strand breaks by non-homologous end-joining. Biochem J 417, 639-650
34. Daly, M. J., Ling, O., and Minton, K. W. (1994) Interplasmidic recombination following irradiation of the radioresistant bacterium Deinococcus radiodurans. Journal of bacteriology 176, 7506-7515
35. Sweet, D. M., and Moseley, B. E. (1974) Accurate repair of ultraviolet-induced damage in Micrococcus radiodurans. Mutation research 23, 311-318
36. Horii, T., Ogawa, T., and Ogawa, H. (1980) Organization of the recA gene of Escherichia coli. Proceedings of the National Academy of Sciences of the United States of America 77, 313-317
37. Sancar, A., Stachelek, C., Konigsberg, W., and Rupp, W. D. (1980) Sequences of the recA gene and protein. Proceedings of the National Academy of Sciences of the United States of America 77, 2611-2615
38. Clark, A. J., and Margulies, A. D. (1965) Isolation and Characterization of Recombination-Deficient Mutants of Escherichia Coli K12. Proceedings of the National Academy of Sciences of the United States of America 53, 451-459
39. Stasiak, A., DiCapua, E., and Koller, T. (1983) Unwinding of duplex DNA in complexes with recA protein. Cold Spring Harbor symposia on quantitative biology 47 Pt 2, 811-820
40. Brenner, S. L., Zlotnick, A., and Griffith, J. D. (1988) RecA protein self-assembly. Multiple discrete aggregation states. Journal of molecular biology 204, 959-972
41. Xing, X., and Bell, C. E. (2004) Crystal structures of Escherichia coli RecA in a compressed helical filament. Journal of molecular biology 342, 1471-1485
42. Cox, J. M., Tsodikov, O. V., and Cox, M. M. (2005) Organized unidirectional waves of ATP hydrolysis within a RecA filament. PLoS biology 3, e52
43. Moerner, W. E., and Kador, L. (1989) Optical detection and spectroscopy of single molecules in a solid. Physical review letters 62, 2535-2538
44. Doksani, Y., Wu, J. Y., de Lange, T., and Zhuang, X. (2013) Super-resolution fluorescence imaging of telomeres reveals TRF2-dependent T-loop formation. Cell 155, 345-356
45. Hamdan, S. M., Loparo, J. J., Takahashi, M., Richardson, C. C., and van Oijen, A. M. (2009) Dynamics of DNA replication loops reveal temporal control of lagging-strand synthesis. Nature 457, 336-339
46. Galburt, E. A., Grill, S. W., and Bustamante, C. (2009) Single molecule transcription elongation. Methods 48, 323-332
47. Roy, R., Hohng, S., and Ha, T. (2008) A practical guide to single-molecule FRET. Nature methods 5, 507-516
48. Yin, H., Landick, R., and Gelles, J. (1994) Tethered particle motion method for studying transcript elongation by a single RNA polymerase molecule. Biophysical journal 67, 2468
49. Morrical, S. W., Lee, J., and Cox, M. M. (1986) Continuous association of Escherichia coli single-stranded DNA binding protein with stable complexes of recA protein and single-stranded DNA. Biochemistry 25, 1482-1494
50. Kim, J. I., Sharma, A. K., Abbott, S. N., Wood, E. A., Dwyer, D. W., Jambura, A., Minton, K. W., Inman, R. B., Daly, M. J., and Cox, M. M. (2002) RecA Protein from the extremely radioresistant bacterium Deinococcus radiodurans: expression, purification, and characterization. Journal of bacteriology 184, 1649-1660
51. Grove, D. E., Anne, G., Hedayati, M. A., and Bryant, F. R. (2012) Stimulation of the Streptococcus pneumoniae RecA protein-promoted three-strand exchange reaction by the competence-specific SsbB protein. Biochemical and biophysical research communications 424, 40-44
52. Hsu, H. F., Ngo, K. V., Chitteni-Pattu, S., Cox, M. M., and Li, H. W. (2011) Investigating Deinococcus radiodurans RecA protein filament formation on double-stranded DNA by a real-time single-molecule approach. Biochemistry 50, 8270-8280
53. Slonczewski, J. L., Macnab, R. M., Alger, J. R., and Castle, A. M. (1982) Effects of pH and repellent tactic stimuli on protein methylation levels in Escherichia coli. Journal of bacteriology 152, 384-399
54. Alekseev, A. A., Bakhlanova, I. V., Baitin, D. M., and Lantsov, V. A. (1995) [RecA proteins in Escherichia coli: damage to the C-terminal subdomain decreases multimerization of the protein]. Doklady Akademii nauk / [Rossiiskaia akademii nauk] 345, 268-271
55. Shelley, W. B. (1951) Experimental miliaria in man. IV. Sweat retention vesicles following destruction of terminal sweat duct. The Journal of investigative dermatology 16, 53-64
56. Kurumizaka, H., Ikawa, S., Ikeya, T., Ogawa, T., and Shibata, T. (1994) A chimeric RecA protein exhibits altered double-stranded DNA binding. The Journal of biological chemistry 269, 3068-3075

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊