跳到主要內容

臺灣博碩士論文加值系統

(44.192.79.149) 您好!臺灣時間:2023/06/03 00:39
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:顏安峰
研究生(外文):Phung Anh (Alex) Nguyen
論文名稱:運用海量數據 (Big data)改善病人安全並減少醫囑資訊系統的給藥錯誤: 機率模式
論文名稱(外文):“Big Data” Approach to Improve Patient Safety and Reduce Medication Errors in Computerized Physician Order Entry (CPOE) system: A Probabilistic Model
指導教授:李友專李友專引用關係
指導教授(外文):Yu-Chuan (Jack) Li
學位類別:博士
校院名稱:國立陽明大學
系所名稱:生物醫學資訊研究所
學門:生命科學學門
學類:生物化學學類
論文種類:學術論文
論文出版年:2013
畢業學年度:102
語文別:英文
論文頁數:97
中文關鍵詞:資料探勘關聯法則臨床決策支援病人安全用藥錯誤處方適當模型機率模型
外文關鍵詞:Data miningassociation rule miningclinical decision supportpatient safetymedication errorsAOP modelprobabilistic model
相關次數:
  • 被引用被引用:5
  • 點閱點閱:2338
  • 評分評分:
  • 下載下載:403
  • 收藏至我的研究室書目清單書目收藏:1
近年來資訊科技及網際網路的創新和普及化,已有愈來愈多的醫療機構導入資訊科技(Health Information Technology, HIT)作為提升工作效率、改善醫療作業流程、協助醫護人員減少人為錯誤、提升照護品質、降低醫院成本支出及減少不必要之醫療資源浪費之有效的系統化輔助。最常見的資訊科技介入為電子病歷(Electronic Health Records, EHR)和醫囑資訊系統(Computerized Physician Order Entry, CPOE),其產生出來的資料量以日俱增,而有意義的統計分析這些巨量資料(big data)將更有助於醫療人員從事臨床醫學研究、促進民眾預防保健與疾病治療、加速研究者探索生物醫學領域之知識,更能提供政策制定者有用的資訊以提升全民醫療品質。

然而,用藥錯誤在醫療院所中並不罕見,其影響不僅會造成巨大的成本耗費,嚴重時更會危害病人生命安全,但事實上許多錯誤是可以防範未然的。過去資訊科技與自動化系統運用規則模式(rule-based) 與確定性模型 (deterministic models) 有效預防用藥錯誤,而現在則傾向以機率模式 (probabilistic) 代表其疾病、治療、處置等於病人就診紀錄中出現的隨機性。

因此,本研究之目的為應用台灣全民健康保險資料庫(2002年)共一億零三百五十萬次醫師開立之處方(其中包含ICD9-CM編碼的兩億零四百五十萬個診斷和使用ATC編碼的三億四千七百七十萬種藥物),利用資料探勘之關聯規則(Association Rule)建立一個可以藉由辨識藥物和疾病之間的少見之關聯性,降低同一處方中之用藥不適當之機率模型。

疾病與藥物(Disease-Medication, DM)和藥物與藥物(Medication-Medication, MM)其共同出現的次數與關聯性的強度之吸引力數值,我們稱之為Q值。吾人利用DMQs和MMQ在同一次就診處方上的數量及組合,建立出處方適當模型 (Appropriateness of Prescription, AOP) 自動偵測醫師開立之處方是否合適。本研究模型之評估為比較執行AOP模式與醫學專家驗證之結果,其適當的處方精確度(Accuracy)為96%,不適當的處方精確度為45%,敏感度(Sensitivity)和特異性(Specificity)分別為75.9%和89.5%。本研究亦於臺北醫學大學附設醫院內科部進行一個月的先導研究,將AOP模型與該部門之CPOE系統連接,測試結果發現在1,056次處方中,僅8次觸發系統提醒,而其中37.5%被正確地偵測為不適當的處方。

本研究成功的建立了一個有效率之以機率模型自動辨識少見的疾病與藥物、藥物與藥物的AOP工具,未來能繼續應用AOP模型協助提醒醫生開立藥物不適當性、減少用藥錯誤,進而提升病人安全和整體醫療照護品質。

Health information technology (HIT) is the area where health care experts, policymakers, payers, and consumers consider health information technologies, such as electronic health records (EHR) and computerized physician order entry (CPOE), to be critical to transforming the health care industry. Due to the rapid pace of change in technology that had dramatically increased health data accumulated by the health providers. The allure of big data and healthcare analytics is that they can unlock the potential of this information by extracting, analyzing, and making it meaningful to healthcare organizations and providers in biomedical science’s field.

Furthermore, medication errors are common, life threatening, costly but preventable. Information technology and automated systems are highly efficient for preventing medication errors by applying “rule-based” methods and deterministic models. However, a probabilistic approach is preferred to represent the uncertainty of patients’ response to treatment in health care population. Therefore, this study was to construct a probabilistic model that can reduce medication errors by identifying uncommon or rare associations between medications and diseases.

The association rules of mining techniques are utilized for 103.5 million prescriptions from 2002 Taiwan’s National Health Insurance database. The dataset included 204.5 million diagnoses with ICD9-CM codes and 347.7 million medications by using ATC codes. Disease-Medication (DM) and Medication-Medication (MM) associations were computed by their co-occurrence and associations’ strength were measured by the interestingness or lift values which being referred as Q values. By considering the number and combination of DMQs and MMQs in one prescription, we developed the Appropriateness of Prescription (AOP) model that can determine the appropriateness of a given prescription. Validation of this model was done by comparing the results of evaluation performed by the AOP model and verified by human experts. The results showed 96% accuracy for appropriate and 45% accuracy for inappropriate prescriptions, with a sensitivity and specificity of 75.9% and 89.5%, respectively. Moreover, the AOP model was implemented in CPOE system at Internal Medicine Department of Taipei Medical University Hospital (TMUH) as a pilot study. Out of 1,056 prescriptions, 8 reminders were triggered, in which 37.5% of prescriptions were considered correctly classified as “inappropriate”.

Thus, we successfully developed the AOP model as an efficient tool for automatic identification of uncommon or rare associations between disease-medication and medication-medication in prescriptions. The future work consists of applying the AOP model in clinical trial and further in clinical practice to aid in improving patients safety and quality of care as well as to enable better decision support and quality measurement.
Acknowledgement ii
Chinese Abstract iii
Abstract v
Content vii
Figures Content xi
Tables Content xii
Chapter 1 Introduction 1
1.1 Background 1
Health information technology (HIT) 1
Big Data 2
The knowledge discovery in database (KDD) 3
Data interaction 4
1.2 Related work and motivation 6
1.3 The goal of this study and Research contribution 9
1.4 Structure of the dissertation 9
Chapter 2 Literature Review 12
2.1 Medication errors and clinical problems 13
2.2 Rule based methods - Deterministic models vs. Probabilistic models 14
2.3 Association rules discovery 17
Frequent item-set mining 18
An efficient algorithm 20
Measure of interestingness 22
Chapter 3 A Probabilistic Model 23
3.1 Principles 24
3.2 Phase (I): Data gathering and cleaning 25
3.3 Phase (II): Creating Disease-Medication (DM) and Medication-Medication (MM) database 25
The assumption of “Disease-Medication/Medication-Medication association” in this study 25
Quantify the Associations’ strength (Q values) 26
Creating Disease-Medication and Medication-Medication database 30
Validating the associations’ strength of Database 34
3.4 Phase (III): Developing an Appropriateness of Prescription (AOP) model 37
3.5 Phase (IV): To test and evaluate the AOP model 39
Step 1: To test AOP model (Training) 40
Step 2: The evaluation of AOP model by human experts 41
Chapter 4 Results 42
4.1 Results of Step 1 42
4.2 Results of Step 2 42
Chapter 5 Application and Implementation 48
5.1 The scope of the AOP model 48
5.2 Reminder system’s description 49
DM and MM association database (HOSDB) 49
Web-service 50
5.3 A pilot study 53
Chapter 6 Discussion 54
6.1 Bureau of National Health Insurance 54
6.2 Q values as a measure for strength of associations 55
6.3 NHI database (DM and MM database) and validation of the database 59
6.4 The Appropriateness of Prescription (AOP) model 59
6.5 Unexpected Positive Associations 60
6.6 Alert Fatigue 61
6.7 Analysis 62
6.8 Comparison to other techniques 63
6.9 Other limitations 64
6.10 Future works 66
Chapter 7 Conclusion 68
References 69
Appendix 78
S1. An example of prescriptions in raw data 78
S2. Brief Introduction before administering questionnaires 79
S3. Description of questionnaires that used to evaluate the AOP model 80
S4. Apriori algorithm 81
S5. Top 20 positive disease-medication association under Q 82
S6. Top 20 negative disease-medication association under Q 83
S7. Publication 84
1. Kohn LT, Corrigan JM, Donaldson MS (2000) To err is human: building a safer health system: National Academies Press.
2. Bloom BS (2002) Crossing the quality chasm: a new health system for the 21st century. JAMA: The Journal of the American Medical Association 287: 646-647.
3. Thompson TG, Brailer DJ (2004) The decade of health information technology: delivering consumer-centric and information-rich health care. Washington, DC: US Department of Health and Human Services.
4. Asch SM, McGlynn EA, Hogan MM, Hayward RA, Shekelle P, et al. (2004) Comparison of quality of care for patients in the Veterans Health Administration and patients in a national sample. Annals of Internal Medicine 141: 938-945.
5. Epstein AM, Lee TH, Hamel MB (2004) Paying physicians for high-quality care. New England Journal of Medicine 350: 406-410.
6. Smith M (2004) E-Health: Road Map for 21st Century Health Care Consumers. Executive Speeches 19: 9-11.
7. Hackbarth GM, Reischaver RD, Miller ME (2004) Report to the congress: New Approaches in Medicare. Medicare Payment Advisory Commission: Medpac
8. Wu S, Chaudhry B, Wang J, Maglione M, Mojica W, et al. (2006) Systematic review: impact of health information technology on quality, efficiency, and costs of medical care. Annals of internal medicine 144: 742-752.
9. Ramachandran V (2013) How Is Information Technology Changing Healthcare? Mashable: Mashable.
10. Chassin MR, Galvin RW (1998) The urgent need to improve health care quality. JAMA: the journal of the American Medical Association 280: 1000-1005.
11. Ash JS, Gorman PN, Seshadri V, Hersh WR (2004) Computerized physician order entry in US hospitals: results of a 2002 survey. Journal of the American Medical Informatics Association 11: 95-99.
12. Ash JS, Stavri PZ, Kuperman GJ (2003) A consensus statement on considerations for a successful CPOE implementation. Journal of the American Medical Informatics Association 10: 229-234.
13. Valdes I, Kibbe DC, Tolleson G, Kunik ME, Petersen LA (2004) Barriers to proliferation of electronic medical records. Informatics in primary care 12: 3-9.
14. Audet A-M, Doty MM, Peugh J, Shamasdin J, Zapert K, et al. (2004) Information technologies: when will they make it into physicians' black bags? Medscape General Medicine 6.
15. Force TAaAJT (2011) EHR Adoption and Health Care Reform. the AAAAI and ACAAI Joint Task Force on Health Care Reform.
16. News HI Electronic Health Record (EHR). Healthcare IT index: Healthcare IT News.
17. CDC (2011) Electronic Health Records: What’s in it for Everyone? : CDC.
18. MIKE2.0 Big Data Definition. MIKE2.0: MIKE2.0.
19. White T (2012) Hadoop: The Definitive Guide: O'Reilly Media.
20. Laney D (2001) 3D Data Management: Controlling Data Volume, Velocity, and Variety. META Group. pp. %&;.
21. Laney D (2012) The Importance of 'Big Data': A Definition. Gartner: Gartner.
22. Foundation T (2013) Big Data and the public sector: A Survey of IT Decision Makers in Federal and State Public Sector Organizations. PENN, SCHOEN &; BERLAND ASSOCIATES, LLC and SAP.
23. Reinhardt UE (2008) Atlantic Crossing: Humbled in Taiwan. BMJ: British Medical Journal 336: 72.
24. Chen Y-C, Yeh H-Y, Wu J-C, Haschler I, Chen T-J, et al. (2011) Taiwan's National Health Insurance Research Database: administrative health care database as study object in bibliometrics. Scientometrics 86: 365-380.
25. Fayyad U, Piatetsky-Shapiro G, Smyth P (1996) From data mining to knowledge discovery in databases. AI magazine 17: 37.
26. Kopp BJ, Erstad BL, Allen ME, Theodorou AA, Priestley G (2006) Medication errors and adverse drug events in an intensive care unit: direct observation approach for detection. Crit Care Med 34: 415-425.
27. Nguyen PA, Syed-Abdul S, Iqbal U, Hsu M-H, Huang C-L, et al. (2013) A Probabilistic Model for Reducing Medication Errors. PloS one 8: e82401.
28. Hao T-H, Chen C-I, Chen C, Chiu W-T, Wang P-Y, et al. (2004) A Roadmap to Construct the Center of Patient Safety Informatics: Using Taipei Medical University Wan Fang Hospital as Example. MEDINFO 2004. Korea: MEDINFO.
29. (2007) Preventing Medication Errors: Quality Chasm Series; Aspden P, Wolcott J, Bootman JL, Cronenwett LR, editors: The National Academies Press.
30. Koppel R, Metlay JP, Cohen A, et al. (2005) Role of computerized physician order entry systems in facilitating medication errors. JAMA 293: 1197-1203.
31. Wyatt JC (1995) Hospital information management: the need for clinical leadership. BMJ 311: 175-178.
32. Heathfield H, Pitty D, Hanka R (1998) Evaluating information technology in health care: barriers and challenges. BMJ 316: 1959.
33. Fernandopulle R, Ferris T, Epstein A, McNeil B, Newhouse J, et al. (2003) A research agenda for bridging the 'quality chasm.'. Health Aff (Millwood) 22: 178-190.
34. Bates DW, Gawande AA (2003) Improving safety with information technology. N Engl J Med 348: 2526-2534.
35. Bates DW, Cullen DJ, Laird N, Petersen LA, Small SD, et al. (1995) Incidence of adverse drug events and potential adverse drug events. Implications for prevention. ADE Prevention Study Group. JAMA 274: 29-34.
36. Bates DW, Cohen M, Leape LL, Overhage JM, Shabot MM, et al. (2001) Reducing the frequency of errors in medicine using information technology. J Am Med Inform Assoc 8: 299-308.
37. Kaushal R, Shojania KG, Bates DW (2003) Effects of computerized physician order entry and clinical decision support systems on medication safety: a systematic review. Arch Intern Med 163: 1409-1416.
38. Bates DW, Leape LL, Cullen DJ, Laird N, Petersen LA, et al. (1998) Effect of computerized physician order entry and a team intervention on prevention of serious medication errors. JAMA 280: 1311-1316.
39. Bates DW, Kuperman G, Teich JM (1994) Computerized physician order entry and quality of care. Qual Manag Health Care 2: 18-27.
40. Schiff GD, Rucker TD (1998) Computerized prescribing: building the electronic infrastructure for better medication usage. JAMA 279: 1024-1029.
41. Blendon RJ, DesRoches CM, Brodie M, Benson JM, Rosen AB, et al. (2002) Views of practicing physicians and the public on medical errors. N Engl J Med 347: 1933-1940.
42. Teich JM, Merchia PR, Schmiz JL, Kuperman GJ, Spurr CD, et al. (2000) Effects of computerized physician order entry on prescribing practices. Arch Intern Med 160: 2741-2747.
43. Kuperman GJ, Teich JM, Gandhi TK, Bates DW (2001) Patient safety and computerized medication ordering at Brigham and Women's Hospital. Jt Comm J Qual Improv 27: 509-521.
44. Paoletti RD, Suess TM, Lesko MG, Feroli AA, Kennel JA, et al. (2007) Using bar-code technology and medication observation methodology for safer medication administration. Am J Health Syst Pharm 64: 536-543.
45. Chapuis C, Roustit M, Bal G, Schwebel C, Pansu P, et al. (2010) Automated drug dispensing system reduces medication errors in an intensive care setting. Crit Care Med 38: 2275-2281.
46. Taxis K, Dean B, Barber N (1999) Hospital drug distribution systems in the UK and Germany--a study of medication errors. Pharm World Sci 21: 25-31.
47. Bates DW, Kuperman GJ, Wang S, Gandhi T, Kittler A, et al. (2003) Ten commandments for effective clinical decision support: making the practice of evidence-based medicine a reality. J Am Med Inform Assoc 10: 523-530.
48. Chase HS, Radhakrishnan J, Shirazian S, Rao MK, Vawdrey DK (2010) Under-documentation of chronic kidney disease in the electronic health record in outpatients. J Am Med Inform Assoc 17: 588-594.
49. Meystre S, Haug PJ (2006) Natural language processing to extract medical problems from electronic clinical documents: performance evaluation. J Biomed Inform 39: 589-599.
50. Wright A, Chen ES, Maloney FL (2010) An automated technique for identifying associations between medications, laboratory results and problems. J Biomed Inform 43: 891-901.
51. Burton MM, Simonaitis L, Schadow G (2008) Medication and indication linkage: A practical therapy for the problem list? AMIA Annu Symp Proc: 86-90.
52. Cao H, Markatou M, Melton GB, Chiang MF, Hripcsak G (2005) Mining a clinical data warehouse to discover disease-finding associations using co-occurrence statistics. AMIA Annu Symp Proc. 2006/06/17 ed. pp. 106-110.
53. Carpenter JD, Gorman PN (2002) Using medication list--problem list mismatches as markers of potential error. Proc AMIA Symp. 2002/12/05 ed. pp. 106-110.
54. Pacheco JA, Avila PC, Thompson JA, Law M, Quraishi JA, et al. (2009) A highly specific algorithm for identifying asthma cases and controls for genome-wide association studies. AMIA Annu Symp Proc 2009: 497-501.
55. Denny JC, Ritchie MD, Basford MA, Pulley JM, Bastarache L, et al. (2010) PheWAS: demonstrating the feasibility of a phenome-wide scan to discover gene-disease associations. Bioinformatics 26: 1205-1210.
56. Pendergrass SA, Dudek SM, Crawford DC, Ritchie MD (2012) Visually integrating and exploring high throughput Phenome-Wide Association Study (PheWAS) results using PheWAS-View. BioData Min 5: 5.
57. Goethals B (2003) Survey on frequent pattern mining. Helsinki, Finland: Univ. of Helsinki.
58. Iskander J, Pool V, Zhou W, English-Bullard R (2006) Data mining in the US using the Vaccine Adverse Event Reporting System. Drug Saf 29: 375-384.
59. Carrino JA, Ohno-Machado L (2005) Development of radiology prediction models using feature analysis. Acad Radiol 12: 415-421.
60. Sarawagi S, Thomas S, Agrawal R (2000) Integrating Association Rule Mining with Relational Database Systems: Alternatives and Implications. Data Mining and Knowledge Discovery 4: 89-125.
61. Brossette SE, Sprague AP, Hardin JM, Waites KB, Jones WT, et al. (1998) Association rules and data mining in hospital infection control and public health surveillance. J Am Med Inform Assoc 5: 373-381.
62. Wright A, Sittig DF (2006) Automated development of order sets and corollary orders by data mining in an ambulatory computerized physician order entry system. AMIA Annu Symp Proc. 2007/01/24 ed. pp. 819-823.
63. Chen ES, Cimino JJ (2003) Automated discovery of patient-specific clinician information needs using clinical information system log files. AMIA Annu Symp Proc. 2004/01/20 ed. pp. 145-149.
64. Mullins IM, Siadaty MS, Lyman J, Scully K, Garrett CT, et al. (2006) Data mining and clinical data repositories: Insights from a 667,000 patient data set. Comput Biol Med 36: 1351-1377.
65. Doddi S, Marathe A, Ravi SS, Torney DC (2001) Discovery of association rules in medical data. Med Inform Internet Med 26: 25-33.
66. Hripcsak G, Albers DJ (2013) Next-generation phenotyping of electronic health records. J Am Med Inform Assoc 20: 117-121.
67. Piatetsky-Shapiro G, Matheus CJ. The interestingness of deviations; 1994. pp. 25-36.
68. Silberschatz A, Tuzhilin A (1996) What makes patterns interesting in knowledge discovery systems. Knowledge and Data Engineering, IEEE Transactions on 8: 970-974.
69. Gandhi TK, Weingart SN, Borus J, Seger AC, Peterson J, et al. (2003) Adverse drug events in ambulatory care. N Engl J Med 348: 1556-1564.
70. Kaushal R, Bates DW, Landrigan C, McKenna KJ, Clapp MD, et al. (2001) Medication errors and adverse drug events in pediatric inpatients. JAMA 285: 2114-2120.
71. Barach P, Small SD (2000) Reporting and preventing medical mishaps: lessons from non-medical near miss reporting systems. BMJ 320: 759-763.
72. Anselmi ML, Peduzzi M, Dos Santos CB (2007) Errors in the administration of intravenous medication in Brazilian hospitals. J Clin Nurs 16: 1839-1847.
73. Valentin A, Capuzzo M, Guidet B, Moreno R, Metnitz B, et al. (2009) Errors in administration of parenteral drugs in intensive care units: multinational prospective study. BMJ 338: b814.
74. Hughes RG, Edgerton EA (2005) Reducing pediatric medication errors: children are especially at risk for medication errors. Am J Nurs 105: 79-80, 82, 85 passim.
75. Lesar TS, Lomaestro BM, Pohl H (1997) Medication-prescribing errors in a teaching hospital. A 9-year experience. Arch Intern Med 157: 1569-1576.
76. Kaushal R, Bates DW (2001) Computerized Physician Order Entry (CPOE) with Clinical Decision Support Systems (CDSSs). Making Health Care Safer: A Critical Analysis of Patient Safety Practices: 58.
77. Berger RG, Kichak J (2004) Computerized physician order entry: helpful or harmful? Journal of the American Medical Informatics Association 11: 100-103.
78. Bobb A, Gleason K, Husch M, Feinglass J, Yarnold PR, et al. (2004) The epidemiology of prescribing errors: the potential impact of computerized prescriber order entry. Archives of Internal Medicine 164: 785.
79. Feied CF, Handler JA, Smith MS, Gillam M, Kanhouwa M, et al. (2004) Clinical information systems: instant ubiquitous clinical data for error reduction and improved clinical outcomes. Academic emergency medicine 11: 1162-1169.
80. Cook R (2002) Safety technology: solutions or experiments? Nursing economic$ 20: 80.
81. Bates DW, Teich JM, Lee J, Seger D, Kuperman GJ, et al. (1999) The impact of computerized physician order entry on medication error prevention. Journal of the American Medical Informatics Association 6: 313-321.
82. Bates DW, Boyle DL, Vander Vliet MB, Leape L (1995) Relationship between medication errors and adverse drug events. Journal of General Internal Medicine 10: 199-205.
83. Evans RS, Pestotnik SL, Classen DC, Clemmer TP, Weaver LK, et al. (1998) A computer-assisted management program for antibiotics and other antiinfective agents. New England Journal of Medicine 338: 232-238.
84. Garg AX, Adhikari NK, McDonald H, Rosas-Arellano MP, Devereaux P, et al. (2005) Effects of computerized clinical decision support systems on practitioner performance and patient outcomes. JAMA: the journal of the American Medical Association 293: 1223-1238.
85. Eslami S, Abu-Hanna A, De Keizer NF (2007) Evaluation of outpatient computerized physician medication order entry systems: a systematic review. Journal of the American Medical Informatics Association 14: 400-406.
86. Shamliyan TA, Duval S, Du J, Kane RL (2008) Just what the doctor ordered. Review of the evidence of the impact of computerized physician order entry system on medication errors. Health services research 43: 32-53.
87. Wolfstadt JI, Gurwitz JH, Sunila Kalkar MBBS M, Rochon PA (2008) The effect of computerized physician order entry with clinical decision support on the rates of adverse drug events: a systematic review. Journal of General Internal Medicine 23: 451-458.
88. Ammenwerth E, Schnell-Inderst P, Machan C, Siebert U (2008) The effect of electronic prescribing on medication errors and adverse drug events: a systematic review. Journal of the American Medical Informatics Association 15: 585-600.
89. Duch W Rule-Based Methods.
90. Bezdek JC (1981) Models for Pattern Recognition. Pattern Recognition with Fuzzy Objective Function Algorithms: Springer. pp. 1-13.
91. Briggs AH, Goeree R, Blackhouse G, O’Brien BJ (2002) Probabilistic analysis of cost-effectiveness models: choosing between treatment strategies for gastroesophageal reflux disease. Medical Decision Making 22: 290-308.
92. Husmeier D, Dybowski R, Roberts S (2005) Probabilistic modeling in bioinformatics and medical informatics: Springer.
93. Pawlak Z, Wong SKM, Ziarko W (1988) Rough sets: probabilistic versus deterministic approach. International Journal of Man-Machine Studies 29: 81-95.
94. Brotcorne L, Laporte G, Semet F (2003) Ambulance location and relocation models. European journal of operational research 147: 451-463.
95. Willan AR, O'Brien BJ (1996) Confidence intervals for cost‐effectiveness ratios: An application of Fieller's theorem. Health economics 5: 297-305.
96. Li Y-C, Haug PJ. Evaluating the quality of a probabilistic diagnostic system using different inferencing strategies; 1993. American Medical Informatics Association. pp. 471.
97. Frawley WJ, Piatetsky-Shapiro G, Matheus CJ (1992) Knowledge discovery in databases: An overview. AI magazine 13: 57.
98. Brachman RJ, Anand T. The process of knowledge discovery in databases; 1996. American Association for Artificial Intelligence. pp. 37-57.
99. Hand DJ (2007) Principles of data mining. Drug safety 30: 621-622.
100. Hand DJ, Mannila H, Smyth P (2001) Principles of data mining (adaptive computation and machine learning). The MIT Press.
101. Klösgen W, Żytkow JM. Knowledge discovery in databases terminology; 1996. American Association for Artificial Intelligence. pp. 573-592.
102. Oded Maimon, Rokach L (2010) Data Mining and Knowledge Discovery Handbook. Springer New York Dordrecht Heidelberg London: Springer Science, Business Media. 1285 p.
103. Agrawal R., Imielinski T, A S (1993) Mining Association Rules Between Sets of Items in Large Databases. ACM SIGMOD Conference Washington DC, USA.
104. Tan P-N, Kumar V, Srivastava J (2002) Selecting the right interestingness measure for association patterns. Proceedings of the eighth ACM SIGKDD international conference on Knowledge discovery and data mining. Edmonton, Alberta, Canada: ACM. pp. 32-41.
105. Geng L, Hamilton HJ (2006) Interestingness measures for data mining: A survey. ACM Comput Surv 38: 9.
106. Tan P-N, Kumar V. Interestingness measures for association patterns: A perspective; 2000.
107. Hidalgo CA, Blumm N, Barabasi AL, Christakis NA (2009) A dynamic network approach for the study of human phenotypes. PLoS Comput Biol 5: e1000353.
108. Brin S, Motwani R, Ullman JD, Tsur S. Dynamic itemset counting and implication rules for market basket data; 1997. ACM. pp. 255-264.
109. Walpole RE, Myers RH, Myers SL, Ye K (1993) Probability and statistics for engineers and scientists: Prentice Hall Upper Saddle River^ eNJ NJ.
110. Ross SM (2009) Introduction to probability and statistics for engineers and scientists: Academic Press.
111. Shanti BF, Tan G, Shanti IF (2006) Adjuvant Analgesia for Management of Chronic Pain. Vertical Health: Practical Pain Management.
112. Lin A (2012) Checking up on Taiwan healthcare: Market challenges and opportunities. PwC.
113. Chan WSH (2010) Taiwan’s healthcare report 2010. The EPMA journal 1: 563-585.
114. Chen CC, Chen K, Hsu CY, Li YC (2011) Developing guideline-based decision support systems using protege and jess. Comput Methods Programs Biomed 102: 288-294.
115. Guillet; F, Hamilton; HJ (Feb 1st, 2007) Quality Measures in Data Mining. Studies in Computational Intelligence: Springer. 314 p.
116. Christensen J, Grønborg T, Sørensen M, Schendel D, Parner ET, et al. (2013) Prenatal valproate exposure and risk of autism spectrum disorders and childhood autism. JAMA 309: 1696-1703.
117. Christensen J, Grønborg T, Sørensen M, Schendel D, Parner ET, et al. (2013) Valproate in pregnancy linked to autism in children. BMJ 346: f2602.
118. Narayanasamy V, Mukhopadhyay S, Palakal M, Potter DA (2004) TransMiner: mining transitive associations among biological objects from text. J Biomed Sci 11: 864-873.
119. Chen ES, Hripcsak G, Xu H, Markatou M, Friedman C (2008) Automated acquisition of disease drug knowledge from biomedical and clinical documents: an initial study. J Am Med Inform Assoc 15: 87-98.
120. Kodratoff Y (2001) Comparing machine learning and knowledge discovery in databases: an application to knowledge discovery in texts. In: Georgios P, Vangelis K, Constantine DS, editors. Machine Learning and Its Applications: Springer-Verlag New York, Inc. pp. 1-21.
121. Smyth P, Goodman RM (1991) Rule Induction Using Information Theory. Knowledge Discovery in Databases. pp. 159-176.
122. Van der Sijs H, Mulder A, van Gelder T, Aarts J, Berg M, et al. (2009) Drug safety alert generation and overriding in a large Dutch university medical centre. Pharmacoepidemiol Drug Saf 18: 941-947.
123. Taylor LK, Kawasumi Y, Bartlett G, Tamblyn R (2005) Inappropriate prescribing practices: the challenge and opportunity for patient safety. Healthc Q 8 Spec No: 81-85.
124. Van Der Sijs H, Aarts J, Vulto A, Berg M (2006) Overriding of drug safety alerts in computerized physician order entry. Journal of the American Medical Informatics Association 13: 138-147.
125. Yang DH, Kang JH, Park YB, Park YJ, Oh HS, et al. (2013) Association rule mining and network analysis in oriental medicine. PLoS One 8: e59241.
126. Lee C-H, Chen JC-Y, Tseng VS (2011) A novel data mining mechanism considering bio-signal and environmental data with applications on asthma monitoring. Computer Methods and Programs in Biomedicine 101: 44-61.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top