跳到主要內容

臺灣博碩士論文加值系統

(44.220.247.152) 您好!臺灣時間:2024/09/15 10:23
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:陳湘瀅
研究生(外文):Hsiang-Ying Chen
論文名稱:半胱胺酸蛋白61在膽固醇代謝中所扮演的角色
論文名稱(外文):Role of Cycteine-Rich Protein 61 in Cholesterol Metabolism
指導教授:李宗玄
指導教授(外文):Tzong-Shyuan Lee
學位類別:碩士
校院名稱:國立陽明大學
系所名稱:生理學研究所
學門:醫藥衛生學門
學類:醫學學類
論文種類:學術論文
論文出版年:2014
畢業學年度:102
語文別:英文
論文頁數:81
中文關鍵詞:半胱胺酸蛋白61粥狀動脈硬化發炎膽固醇巨噬細胞泡沫細胞氧化低密度脂蛋白
外文關鍵詞:CCN1CYR61AtherosclerosisInflammationCholesterolMacrophageFoam celloxLDL
相關次數:
  • 被引用被引用:0
  • 點閱點閱:86
  • 評分評分:
  • 下載下載:1
  • 收藏至我的研究室書目清單書目收藏:0
全身性的膽固醇代謝失調是導致動脈粥狀硬化及脂肪肝發生的主因之一。體內膽固醇的運送包括兩個主要階段:將腸道吸收的膽固醇送往周邊組織作運用而多餘的膽固醇則透過脂蛋白送回肝臟作進一步代謝。當血液中的膽固醇含量過高時,便容易堆積在血管壁的巨噬細胞中或是累積在肝臟細胞中,導致動脈粥狀硬化或是脂肪肝,而目前已知有許多細胞激素參與並調控此病理機轉。半胱胺酸蛋白61,屬於細胞外基質蛋白,在胚胎發育的血管新生中扮演很重要的角色。研究亦發現,在動脈粥狀硬化的病變處,半胱胺酸蛋白61表現量明顯增加,然而其在全身性的膽固醇代謝及相關疾病中所扮演的角色仍非常不明確。首先,我們發現半胱胺酸蛋白61大量表現於載脂蛋白E基因剔除小鼠的主動脈的粥樣硬化病變處,且主要是位於巨噬細胞衍生之泡沫細胞的位置。而細胞實驗中,給予氧化的低密度脂蛋白則顯著的提升半胱胺酸蛋白61在巨噬細胞中的表現量,且半胱胺酸蛋白61加劇了氧化低密度脂蛋白所造成的脂質堆積現象。主要是因為半胱胺酸蛋白61令載脂蛋白A及高密度脂蛋白專一的細胞膽固醇排除功能失調,且是基於三磷酸腺苷結合盒轉運體A1和G1及肝異受體alpha的蛋白表現量受到調降的影響所致。而在過量表現半胱胺酸蛋白61於巨噬細胞中亦得到相似的結果,膽固醇排除及三磷酸腺苷結合盒轉運體A1和G1與肝異受體alpha的表現量接下降。除此之外,腹腔注射半胱胺酸蛋白61於載脂蛋白E基因剔除小鼠,惡化其高血脂、全身性發炎反應及動脈粥狀硬化的生成。半胱胺酸蛋白61亦降低其膽固醇排除的能力及主動脈中相關蛋白質表現。值得注意的是,半胱胺酸蛋白61加劇肝臟的脂質堆積其調控肝臟與膽固醇代謝相關脂蛋白表現,包括:肝異受體alpha、三磷酸腺苷結合盒轉運體G5和G8、膽固醇7alpha-羥化酶、低密度脂蛋白受體和前蛋白轉化酶枯草溶菌素9。總結來說,我們的研究發現,半胱胺酸蛋白61惡化粥狀動脈硬化及脂肪肝的生成透過促進泡沫細胞形成及損害肝臟細胞之膽固醇代謝的能力。
Deregulation of cholesterol metabolism plays a critical role in pathogenesis of atherosclerosis or liver steatosis. Cholesterol delivers to peripheral tissues for usage and remains cholesterol transports back to liver for clearance are two key events in cholesterol homeostasis. When the circulating levels of cholesterol are overloaded, lipid will accumulate in macrophage foam cells or in liver, leading to atherosclerosis or liver steatosis. Several cytokines are known to participate in deregulation of cholesterol metabolism in atherosclerosis or liver steatosis. Cysteine-rich protein 61 (CCN1), an extracellular matrix cytokine, plays an important role in embryonic angiogenesis. Additionally, CCN1 can be detected in lesion during the development of atherosclerosis. However, the role of CCN1 in regulation of cholesterol metabolism and related metabolic diseases is largely unknown. Our results demonstrated that the protein level of CCN1 was increased in atherosclerotic aortas and the predominant expression of CCN1 was found in foamy macrophage of atherosclerotic lesions of apolipoprotein E–deficient (apoE−/−) mice. In macrophages, treatment with oxidized low-density lipoprotein (oxLDL) increased the CCN1 expression and CCN1 exacerbated oxLDL-induced lipid accumulation. Furthermore, CCN1 impaired the apolipoprotein AI- and high-density lipoprotein-dependent cholesterol efflux by down-regelation the expression of ATP-binding cassette transporter A1 (ABCA1) and ABCG1 and liver X receptor alpha(LXR alpha). Similarly, overexpression of CCN1 in macrophage decreased cholesterol efflux and the expression of ABCA1 and ABCG1. Moreover, administration with CCN1 in apoE−/− mice worsened hyperlipidemia, systemic inflammation and atherosclerosis. CCN1 also decreased the capacity of cholesterol efflux and down-regulated protein expression of ABCA1 and ABCG1 in aortas. Notably, CCN1 exacerbated lipid accumulation in liver and down-regulated the expression of cholesterol clearance-related proteins, including ABCG5, ABCG8, LXR alpha cholesterol 7 alpha-hydrolase, LDL receptor and proprotein convertase subtilisin/kexin type 9. In conclusion, our findings suggest that CCN1 exacerbates atherosclerosis and liver steatosis by promoting macrophage foam cell formation and impairing hepatic cholesterol metabolism.
致謝 VII
Abbreviations VIII
Abstract X
摘要 XII
Introduction 1
1.1 CCN family 1
1.2 CCN1/CYR61 2
1.3 Biological function of CCN1 3
1.4 CCN1 in pathologies 4
2.1 Atherosclerosis 4
2.2 Lipoproteins 5
2.3 Progression of early-stage of atherosclerosis 6
2.4 The homeostasis of cholesterol metabolism in macrophages 8
2.5 Atherosclerotic lesion progression 10
2.6 The role of liver in reverse cholesterol transport system 11
Objective 13
Materials and methods 14
1. Reagents 14
2. Mice 15
3. Histological and immunohistochemical examination 15
4. Cell culture 16
5. Preparation of tissue and cell lysates 17
6. Western blot analysis 17
7. Preparation of oxLDL 18
8. Dil-oxLDL binding assay 18
9. Cholesterol efflux assay 19
10. Reverse transcription polymerase chain reaction (RT-PCR) 20
11. Transient Transfection 21
12. Cholesterol and triglyceride measurement 22
13. Serum lipid profile analysis 22
14. Measurement of inflammatory cytokines 22
15.Statistical analysis 23
Results 24
1. Expression of CCN1 is increased in atherosclerotic lesions of apoE−/− mice. 24
2. oxLDL increases CCN1 expression and CCN1 exacerbates oxLDL-induced lipid accumulation in macrophages. 24
3. CCN1 does not affect oxLDL internalization and protein expression of CD36, SR-A, LAL and ACAT-1. 25
4. CCN1 decreases apoAI- and HDL-dependent cholesterol efflux and related protein expression in macrophages. 25
5. CCN1 provokes down-regulation of LXRa , ABCA1 and ABCG1 in macrophages. 26
6. Overexpression of CCN1 in macrophages decreases cholesterol efflux efficiency and related protein expression. 27
7. CCN1 exacerbates atherosclerosis, hyperlipidemia and inflammation in apoE−/− mice. 27
8. CCN1 decreases cholesterol efflux efficiency and RCT-related protein expression in aortas of apoE−/− mice. 28
9. CCN1 deregulates cholesterol metabolism and related protein expression in liver of apoE−/− mice. 29
10. Effects of CCN1 on body weight, fat weight and fat morphology in apoE−/− mice. 30
11. CCN1 increases the levels of smooth muscle cell in fibrous cap of atherosclerotic lesions in apoE−/− mice. 30
Discussion 31
References 40

Figures 58
Figure 1. Expression of CCN1 is increased in atherosclerotic lesions of apoE−/− mice. 58
Figure 2. Expression of CCN1 is increased in atherosclerotic lesions of apoE−/− mice. 59
Figure 3. OxLDL induces CCN1 expression in macrophages. 60
Figure 4. CCN1 exacerbates oxLDL-induced lipid accumulation in macrophages. 61
Figure 5. CCN1 does not affect oxLDL internalization. 62
Figure 6. CCN1 does not affect the protein level of scavenger receptors in macrophages. 63
Figure 7. CCN1 does not affect cholesterol storage-related protein level in macrophages 64
Figure 8. CCN1 reduces apoAI- and HDL-dependent cholesterol efflux in macrophages. 65
Figure 9. CCN1 decreases cholesterol efflux related protein expression in macrophages. 66
Figure 10. CCN1 reduces mRNA level of ABCA1 and ABCG1 in macrophages. 67
Figure 11. CCN1 decreases LXRa protein expression and its activity in macrophages. 68
Figure 12. Overexpression of CCN1 in macrophages decreases cholesterol efflux related protein expression. 69
Figure 13. Overexpression of CCN1 in macrophages decreases apoAI- and HDL-dependent cholesterol efflux efficiency. 70
Figure 14. CCN1 exacerbates atherosclerotic lesion size in apoE−/− mice. 71
Figure 15. CCN1 worsens dyslipidemia in apoE−/− mice. 72
Figure 16. CCN1 elevates CETP activity and protein expression in apoE−/− mice. 73
Figure 17. CCN1 aggravates inflammation in apoE−/− mice. 74
Figure 18. CCN1 reduces cholesterol efflux efficiency in apoE−/− mice. 75
Figure 19. CCN1 decreases RCT-related protein expression in aortas of apoE−/− mice. 76
Figure 20. CCN1 worsens cholesterol metabolism in liver of apoE−/− mice. 77
Figure 21. CCN1 disrupts cholesterol metabolism related protein expression in liver of apoE−/− mice. 78
Figure 22. Effects of CCN1 on body weight, fat weight and fat morphology in apoE−/− mice. 79
Figure 23. CCN1 increases the levels of smooth muscle cell in fibrous cap of atherosclerotic lesions in apoE−/− mice. 80
Figure 24. A proposed model with the role of CCN1 in systemic cholesterol homeostasis in apoE−/− mice. 81
1. Bork P. The modular architecture of a new family of growth regulators related to connective tissue growth factor. FEBS Lett. 1993; 327(2): 125-130.
2. Bornstein P, Sage EH. Matricellular proteins: extracellular modulators of cell function. Curr Opin Cell Biol. 2002; 14(5): 608-616.
3. Chen CC, Lau LF. Functions and mechanisms of action of CCN matricellular proteins. Int J Biochem Cell Biol. 2009; 41(4): 771-783.
4. Katsube K, Sakamoto K, Tamamura Y, Yamaguchi A. Role of CCN, a vertebrate specific gene family, in development. Dev Growth Differ. 2009; 51(1): 55-67.
5. Brigstock DR, Goldschmeding R, Katsube KI, Lam SC, Lau LF, Lyons K, Naus C, Perbal B, Riser B, Takigawa M, Yeger H. Proposal for a unified CCN nomenclature. Mol Pathol. 2003; 56(2): 127-128.
6. Perbal B, Takigawa M. (ed.) CCN Proteins: A New Family of Cell Growth And Differentiation Regulators. 2005; London: World Scientific Publishers.
7. Bork P. The modular architecture of a new family of growth regulators related to connective tissue growth factor. FEBS Lett. 1993; 327(2):125-130.
8. Desnoyers L. Structural basis and therapeutic implication of the interaction of CCN proteins with glycoconjugates. Curr Pharm Des. 2004; 10(31): 3913-3928.
9. Brigstock DR. Regulation of angiogenesis and endothelial cell function by connective tissue growth factor (CTGF) and cysteine-rich 61 (CYR61). Angiogenesis. 2002; 5(3): 153-165.
10. Lin CG, Leu SJ, Chen N, Tebeau CM, Lin SX, Yeung CY, Lau LF. CCN3 (NOV) is a novel angiogenic regulator of the CCN protein family. J Biol Chem. 2003; 278(26): 24200-24208.
11. Takigawa M, Nakanishi T, Kubota S, Nishida T. Role of CTGF/HCS24/ecogenin in skeletal growth control. J Cell Physiol. 2003; 194(3): 256-266.
12. Ivkovic S, Yoon BS, Popoff SN, Safadi FF, Libuda DE, Stephenson RC, Daluiski A, Lyons KM. Connective tissue growth factor coordinates chondrogenesis and angiogenesis during skeletal development. Development. 2003; 130(12): 2779-2791
13. Heath E, Tahri D, Andermarcher E, Schofield P, Fleming S, Boulter CA. Abnormal skeletal and cardiac development, cardiomyopathy, muscle atrophy and cataracts in mice with a targeted disruption of the Nov (Ccn3) gene. BMC Dev Biol. 2008; 8: 18.
14. Luo Q, Kang Q, Si W, Jiang W, Park JK, Peng Y, Li X, Luu HH, Luo J, Montag AG, Haydon RC, He TC. Connective tissue growth factor (CTGF) is regulated by Wnt and bone morphogenetic proteins signaling in osteoblast differentiation of mesenchymal stem cells. J Biol Chem. 2004; 279(53): 55958-55968.
15. Schutze N, Noth U, Schneidereit J, Hendrich C, Jakob F. Differential expression of CCN-family members in primary human bone marrow-derived mesenchymal stem cells during osteogenic, chondrogenic and adipogenic differentiation. Cell Commun Signal. 2005; 3(1): 5.
16. Si W, Kang Q, Luu HH, Park JK, Luo Q, Song WX, Jiang W, Luo X, Li X, Yin H, Montag AG, Haydon RC, He TC. CCN1/Cyr61 is regulated by the canonical Wnt signal and plays an important role in Wnt3A-induced osteoblast differentiation of mesenchymal stem cells. Mol Cell Biol. 2006; 26(8): 2955-2964.
17. Aggarwal BB. Signalling pathways of the TNF superfamily: a double-edged sword. Nat Rev Immunol. 2003; 3(9): 745-756.
18. Cooker LA, Peterson D, Rambow J, Riser ML, Riser RE, Najmabadi F, Brigstock D, Riser BL. TNF-alpha, but not IFN-gamma, regulates CCN2 (CTGF), collagen type I, and proliferation in mesangial cells: possible roles in the progression of renal fibrosis. Am J Physiol Renal Physiol. 2007; 293(1): F157-165.
19. Gashaw I, Stiller S, Böing C, Kimmig R, Winterhager E. Premenstrual regulation of the pro-angiogenic factor CYR61 in human endometrium. Endocrinology. 2008; 149(5): 2261-2269.
20. Igarashi A, Okochi H, Bradham DM, Grotendorst GR. Regulation of connective tissue growth factor gene expression in human skin fibroblasts and during wound repair. Mol Biol Cell. 1993; 4(6): 637-645.
21. Chen CC, Mo FE, Lau LF. The angiogenic factor Cyr61 activates a genetic program for wound healing in human skin fibroblasts. J Biol Chem. 2001; 276(50): 47329-47337.
22. Kubota S, Takigawa M. CCN family proteins and angiogenesis: from embryo to adulthood. Angiogenesis. 2007; 10(1): 1-11.
23. Brigstock DR. The CCN family: a new stimulus package. J Endocrinol. 2003; 178(2): 169-175.
24. Jun JI, Lau LF. Taking aim at the extracellular matrix: CCN proteins as emerging therapeutic targets. Nat Rev Drug Discov. 2011; 10(12): 945-963.
25. Adler SG, Schwartz S, Williams ME, Arauz-Pacheco C, Bolton WK, Lee T, Li D, Neff TB, Urquilla PR, Sewell KL. Phase 1 study of anti-CTGF monoclonal antibody in patients with diabetes and microalbuminuria. Clin J Am Soc Nephrol. 2010; 5(8):1420-1428.
26. Jun JI, Lau LF. The Matricellular Protein CCN1/CYR61 Induces Fibroblast Senescence and Restricts Fibrosis in Cutaneous Wound Healing. Nat Cell Biol. 2010; 12:676-685.
27. Chiodoni C, Colombo MP, Sangaletti S. Matricellular proteins: from homeostasis to inflammation, cancer, and metastasis. Cancer Metastasis Rev. 2010; 29: 295-307.
28. Lau LF, Nathans D. Identification of a set of genes expressed during the G0/G1 transition of cultured mouse cells. EMBO J. 1985; 4: 3145-3151.
29. O’Brien TP, Yang GP, Sanders L, Lau LF. Expression of cyr61, a growth factor-inducible immediate-early gene. Mol Cell Biol. 1990; 10: 3569-3577.
30. Kireeva ML, MO FE, Yang GP, Lau LF. Cyr61, a product of a growth factor-inducible immediate-early gene, promotes cell proliferation, migration, and adhesion Mol Cell Biol. 1996; 16(4): 1326-1334.
31. Martinerie C, Viegas-Pequignot E, Nguyen VC, Perbal B. Chromosomal mapping and expression of the human cyr61 gene in tumour cells from the nervous system. Mol Pathol. 1997; 50(6): 310-316.
32. Jay P, Bergé-Lefranc JL, Marsollier C, Méjean C, Taviaux S, Berta P. The human growth factor-inducible immediate early gene, CYR61, maps to chromosome 1p. Oncogene.1997; 14(14): 1753-1757.
33. Kolesnikova TV, Lau LF. Human CYR61-mediated enhancement of bFGF-induced DNA synthesis in human umbilical vein endothelial cells. Oncogene. 1998; 16(6): 747-754.
34. Lau LF. CCN1/CYR61: the very model of a modern matricellular protein. Cell Mol Life Sci. 2011; 68(19): 3149-3163.
35. Leu SJ, Lam SC, Lau LF. Pro-angiogenic activities of CYR61 (CCN1) mediated through integrins alphavbeta3 and alpha6beta1 in human umbilical vein endothelial cells. J Biol Chem. 2002; 277(48): 46248-46255.
36. Grzeszkiewicz TM, Lindner V, Chen N, Lam SC, Lau LF The angiogenic factor cysteine-rich 61 (CYR61, CCN1) supports vascular smooth muscle cell adhesion and stimulates chemotaxis through integrin alpha(6)beta(1) and cell surface heparan sulfate proteoglycans. Endocrinology. 2002; 143(4): 1441-1450.
37. Mo FE, Muntean AG, Chen CC, Stolz DB, Watkins SC, Lau LF. CYR61 (CCN1) is essential for placental development and vascular integrity. Mol Cell Biol. 2002; 22(24): 8709-8720.
38. Mo FE, Lau LF. The matricellular protein CCN1 is essential for cardiac development. Circ Res. 2006; 99(9): 961-969.
39. Kim SM, Park JH, Chung SK, Kim JY, Hwang HY, Chung KC, Jo I, Park SI, Nam JH. Coxsackievirus B3 infection induces cyr61 activation via JNK to mediate cell death. J Virol. 2004; 78(24): 13479-13488.
40. Kurozumi K, Hardcastle J, Thakur R, Shroll J, Nowicki M, Otsuki A, Chiocca EA, Kaur B. Oncolytic HSV-1 infection of tumors induces angiogenesis and upregulates CYR61. Mol Ther. 2008; 16(8):1382-1391.
41. Wiedmaier N, Müller S, Köberle M, Manncke B, Krejci J, Autenrieth IB, Bohn E. Bacteria induce CTGF and CYR61 expression in epithelial cells in a lysophosphatidic acid receptor-dependent manner. Int J Med Microbiol. 2008; 298(3-4):231-243.
42. Igarashi A, Okochi H, Bradham DM, Grotendorst GR. Regulation of connective tissue growth factor gene expression in human skin fibroblasts and during wound repair. Mol Biol Cell. 1993; 4(6): 637-645.
43. Latinkic BV, Mo FE, Greenspan JA, Copeland NG, Gilbert DJ, Jenkins NA, Ross SR, Lau LF. Promoter function of the angiogenic inducer Cyr61gene in transgenic mice: tissue specificity, inducibility during wound healing, and role of the serum response element. Endocrinology. 2001; 142(6): 2549-2557.
44. Kular L, Pakradouni J, Kitabgi P, Laurent M, Martinerie C. The CCN family: a new class of inflammation modulators? Biochimie. 2011; 93(3): 377-388.
45. Bai T, Chen CC, Lau LF. Matricellular protein CCN1 activates a proinflammatory genetic program in murine macrophages. J Immunol. 2010; 184(6):3223-3232.
46. Chaqour B, Goppelt-Struebe M. Mechanical regulation of the Cyr61/CCN1 and CTGF/CCN2 proteins. FEBS J. 2006; 273(16): 3639-3649.
47. Schober JM, Chen N, Grzeszkiewicz TM, Jovanovic I, Emeson EE, Ugarova TP, Ye RD, Lau LF, Lam SC. Identification of integrin alpha(M)beta(2) as an adhesion receptor on peripheral blood monocytes for Cyr61 (CCN1) and connective tissue growth factor (CCN2): immediate-early gene products expressed in atherosclerotic lesions. Blood. 2002; 99(12): 4457-4465.
48. Grzeszkiewicz TM, Lindner V, Chen N, Lam SC, Lau LF. The angiogenic factor cysteine-rich 61 (CYR61, CCN1) supports vascular smooth muscle cell adhesion and stimulates chemotaxis through integrin alpha(6)beta(1) and cell surface heparan sulfate proteoglycans. Endocrinology. 2002; 143(4): 1441-1450.
49. Hilfiker A, Hilfiker-Kleiner D, Fuchs M, Kaminski K, Lichtenberg A, Rothkötter HJ, Schieffer B, Drexler H. Expression of CYR61, an angiogenic immediate early gene, in arteriosclerosis and its regulation by angiotensin II. Circulation. 2002; 106(2): 254-260.
50. Ross R. The pathogenesis of atherosclerosis: a perspective for the 1990s. Nature. 1993; 362(6423): 801-809.
51. Glass CK, Witztum JL. Atherosclerosis. The road ahead. Cell. 2001; 104(4): 503-516.
52. Li AC, Glass CK. The macrophage foam cell as a target for therapeutic intervention. Nat Med. 2002; 8(11): 1235-1242.
53. Kleemann R, Zadelaar S, Kooistra T. Cytokines and atherosclerosis: a comprehensive review of studies in mice. Cardiovasc Res. 2008; 79(3): 360-376.
54. Giannoglou GD, Chatzizisis YS, Zamboulis C, Parcharidis GE, Mikhailidis DP, Louridas GE. Elevated heart rate and atherosclerosis: an overview of the pathogenetic mechanisms. Int J Cardiol. 2008; 126(3): 302-312.
55. Carmena R1, Duriez P, Fruchart JC. Atherogenic lipoprotein particles in atherosclerosis. Circulation. 2004; 109(23 Suppl 1): III2-7.
56. Assmann G, Gotto AM Jr. HDL cholesterol and protective factors in atherosclerosis. Circulation. 2004; 109(23 Suppl 1): III8-14.
57. Hegele RA. Plasma lipoproteins: genetic influences and clinical implications. Nat Rev Genet. 2009; 10(2): 109-121.
58. Itabe H, Obama T, Kato R. The Dynamics of Oxidized LDL during Atherogenesis. J Lipids. 2011; 2011: 418313.
59. Chang GJ, Woo P, Honda HM, Ignarro LJ, Young L, Berliner JA, Demer LL. Oxidation of LDL to a biologically active form by derivatives of nitric oxide and nitrite in the absence of superoxide. Dependence on pH and oxygen. Arterioscler Thromb. 1994; 14(11): 1808-1814.
60. Bots ML, Hoes AW, Koudstaal PJ, Hofman A, Grobbee DE. Common carotid intima-media thickness and risk of stroke and myocardial infarction: the Rotterdam Study. Circulation. 1997; 96(5): 1432-1437.
61. Yang Z, Ming XF. Recent advances in understanding endothelial dysfunction in atherosclerosis. Clin Med Res. 2006; 4(1): 53-65.
62. Li H, Förstermann U. Prevention of atherosclerosis by interference with the vascular nitric oxide system. Curr Pharm Des. 2009; 15(27): 3133-3145.
63. Galkina E, Ley K. Immune and inflammatory mechanisms of atherosclerosis. Annu Rev Immunol. 2009; 27: 165-197.
64. Hansson GK, Hermansson A. The immune system in atherosclerosis. Nat Immunol. 2011; 12(3): 204-212.
65. Hansson GK. Inflammation, atherosclerosis, and coronary artery disease. N Engl J Med. 2005; 352(16): 1685-1695.
66. Moore KJ, Sheedy FJ, Fisher EA. Macrophages in atherosclerosis: a dynamic balance. Nat Rev Immunol. 2013; 13(10): 709-721.
67. Charo IF, Taubman MB. Chemokines in the pathogenesis of vascular disease. Circ Res. 2004; 95(9): 858-866.
68. de Winther MP, van Dijk KW, Havekes LM, Hofker MH. Macrophage scavenger receptor class A: A multifunctional receptor in atherosclerosis. Arterioscler Thromb Vasc Biol. 2000; 20(2): 290-297.
69. Harb D, Bujold K, Febbraio M, Sirois MG, Ong H, Marleau S. The role of the scavenger receptor CD36 in regulating mononuclear phagocyte trafficking to atherosclerotic lesions and vascular inflammation. Cardiovasc Res. 2009; 83(1): 42-51.
70. Kunjathoor VV, Febbraio M, Podrez EA, Moore KJ, Andersson L, Koehn S, Rhee JS, Silverstein R, Hoff HF, Freeman MW. Scavenger receptors class A-I/II and CD36 are the principal receptors responsible for the uptake of modified low density lipoprotein leading to lipid loading in macrophages. J Biol Chem. 2002; 277(51): 49982-49988.
71. Rahaman SO, Lennon DJ, Febbraio M, Podrez EA, Hazen SL, Silverstein RL. A CD36-dependent signaling cascade is necessary for macrophage foam cell formation. Cell Metab. 2006; 4(3): 211-221.
72. Ouimet M, Franklin V, Mak E, Liao X, Tabas I, Marcel YL. Autophagy regulates cholesterol efflux from macrophage foam cells via lysosomal acid lipase. Cell Metab. 2011; 13(6): 655-667.
73. Krieger M. Scavenger receptor class B type I is a multiligand HDL receptor that influences diverse physiologic systems. J Clin Invest. 2001; 108(6): 793-797.
74. Gu X, Kozarsky K, Krieger M. Scavenger receptor class B, type I-mediated [3H]cholesterol efflux to high and low density lipoproteins is dependent on lipoprotein binding to the receptor. J Biol Chem. 2000; 275(39): 29993-30001.
75. Yvan-Charvet L, Ranalletta M, Wang N, Han S, Terasaka N, Li R, Welch C, Tall AR. Combined deficiency of ABCA1 and ABCG1 promotes foam cell accumulation and accelerates atherosclerosis in mice. J Clin Invest. 2007; 117(12): 3900-3908.
76. Baldán A, Bojanic DD, Edwards PA. The ABCs of sterol transport. J Lipid Res. 2009; 50 Suppl: S80-85.
77. Dean M, Rzhetsky A, Allikmets R. The human ATP-binding cassette (ABC) transporter superfamily. Genome Res. 2001; 11(7): 1156-1166.
78. Ohashi R, Mu H, Wang X, Yao Q, Chen C. Reverse cholesterol transport and cholesterol efflux in atherosclerosis. QJM. 2005; 98(12): 845-856.
79. Rader DJ, Alexander ET, Weibel GL, Billheimer J, Rothblat GH. The role of reverse cholesterol transport in animals and humans and relationship to atherosclerosis. J Lipid Res. 2009; 50 Suppl: S189-194.
80. Yu XH, Fu YC, Zhang DW, Yin K, Tang CK. Foam cells in atherosclerosis. Clin Chim Acta. 2013; 424: 245-252.
81. Kohro T, Nakajima T, Wada Y, Sugiyama A, Ishii M, Tsutsumi S, Aburatani H, Imoto I, Inazawa J, Hamakubo T, Kodama T, Emi M. Genomic structure and mapping of human orphan receptor LXR alpha: upregulation of LXR mRNA during monocyte to macrophage differentiation. J Atheroscler Thromb. 2000; 7(3): 145-151.
82. Zelcer N, Tontonoz P. Liver X receptors as integrators of metabolic and inflammatory signaling. J Clin Invest. 2006; 116(3): 607-614.
83. Groen AK, Oude Elferink RP, Verkade HJ, Kuipers F. The ins and outs of reverse cholesterol transport. Ann Med. 2004; 36(2): 135-145.
84. Chiang JY. Bile acid metabolism and signaling. Compr Physiol. 2013; 3(3): 1191-1212.
85. Jia L, Betters JL, Yu L. Niemann-pick C1-like 1 (NPC1L1) protein in intestinal and hepatic cholesterol transport. Annu Rev Physiol. 2011; 73: 239-259.
86. Ferri N. Proprotein convertase subtilisin/kexin type 9: from the discovery to the development of new therapies for cardiovascular diseases. Scientifica (Cairo). 2012; 2012: 927352.
87. Weingärtner O, Laufs U, Böhm M, Lütjohann D. An alternative pathway of reverse cholesterol transport: the oxysterol 27-hydroxycholesterol. Atherosclerosis. 2010; 209(1): 39-41.
88. Erickson SK, Lear SR, Deane S, Dubrac S, Huling SL, Nguyen L, Bollineni JS, Shefer S, Hyogo H, Cohen DE, Shneider B, Sehayek E, Ananthanarayanan M, Balasubramaniyan N, Suchy FJ, Batta AK, Salen G. Hypercholesterolemia and changes in lipid and bile acid metabolism in male and female cyp7A1-deficient mice. J Lipid Res. 2003; 44(5): 1001-1009.
89. Wittenburg H, Carey MC. Biliary cholesterol secretion by the twinned sterol half-transporters ABCG5 and ABCG8. J Clin Invest. 2002; 110(5): 605-609.
90. Repa JJ, Mangelsdorf DJ. The liver X receptor gene team: potential new players in atherosclerosis. Nat Med. 2002; 8(11): 1243-1248.
91. Hilfiker-Kleiner D, Kaminski K, Kaminska A, Fuchs M, Klein G, Podewski E, Grote K, Kiian I, Wollert KC, Hilfiker A, Drexler H. Regulation of proangiogenic factor CCN1 in cardiac muscle: impact of ischemia, pressure overload, and neurohumoral activation. Circulation. 2004; 109(18): 2227-2233.
92. Berliner JA, Heinecke JW. The role of oxidized lipoproteins in atherogenesis. Free Radic Biol Med. 1996; 20(5): 707-727.
93. O'Brien TP, Lau LF. Expression of the growth factor-inducible immediate early gene cyr61 correlates with chondrogenesis during mouse embryonic development. Cell Growth Differ. 1992; 3(9): 645-654.
94. Grzeszkiewicz TM, Lindner V, Chen N, Lam SC, Lau LF. The angiogenic factor cysteine-rich 61 (CYR61, CCN1) supports vascular smooth muscle cell adhesion and stimulates chemotaxis through integrin alpha(6)beta(1) and cell surface heparan sulfate proteoglycans. Endocrinology. 2002; 143(4): 1441-1450.
95. Kunjathoor VV, Febbraio M, Podrez EA, Moore KJ, Andersson L, Koehn S, Rhee JS, Silverstein R, Hoff HF, Freeman MW. Scavenger receptors class A-I/II and CD36 are the principal receptors responsible for the uptake of modified low density lipoprotein leading to lipid loading in macrophages. J Biol Chem. 2002; 277(51): 49982-49988.
96. Du H, Grabowski GA. Lysosomal acid lipase and atherosclerosis .Curr Opin Lipidol. 2004; 15(5): 539-544.
97. Miyazaki A, Sakashita N, Lee O, Takahashi K, Horiuchi S, Hakamata H, Morganelli PM, Chang CC, Chang TY. Expression of ACAT-1 protein in human atherosclerotic lesions and cultured human monocytes-macrophages. Arterioscler Thromb Vasc Biol. 1998; 18(10): 1568-1574.
98. Van Eck M, Bos IS, Hildebrand RB, Van Rij BT, Van Berkel TJ. Dual role for scavenger receptor class B, type I on bone marrow-derived cells in atherosclerotic lesion development. Am J Pathol. 2004; 165(3): 785-794.
99. Joyce CW, Amar MJ, Lambert G, Vaisman BL, Paigen B, Najib-Fruchart J, Hoyt RF Jr, Neufeld ED, Remaley AT, Fredrickson DS, Brewer HB Jr, Santamarina-Fojo S. The ATP binding cassette transporter A1 (ABCA1) modulates the development of aortic atherosclerosis in C57BL/6 and apoE-knockout mice. Proc Natl Acad Sci USA. 2002; 99(1): 407-412.
100. Out R, Hoekstra M, Hildebrand RB, Kruit JK, Meurs I, Li Z, Kuipers F, Van Berkel TJ, Van Eck M. Macrophage ABCG1 deletion disrupts lipid homeostasis in alveolar macrophages and moderately influences atherosclerotic lesion development in LDL receptor-deficient mice. Arterioscler Thromb Vasc Biol. 2006; 26(10): 2295-2300.
101. Leask A, Abraham DJ. All in the CCN family: essential matricellular signaling modulators emerge from the bunker. J Cell Sci. 2006;119(Pt 23): 4803-4810.
102. Chen Y, Du XY. Functional properties and intracellular signaling of CCN1/Cyr61. J Cell Biochem. 2007; 100(6): 1337-1345.
103. Mantlo NB, Escribano A. Update on the discovery and development of cholesteryl ester transfer protein inhibitors for reducing residual cardiovascular risk. J Med Chem. 2014; 57(1): 1-17.
104. Ikonen E. Cellular cholesterol trafficking and compartmentalization. Nat Rev Mol Cell Biol. 2008; 9(2): 125-138.
105. Feingold KR, Moser AH, Shigenaga JK, Patzek SM, Grunfeld C. Inflammation stimulates the expression of PCSK9. Biochem Biophys Res Commun. 2008; 374(2): 341-344.
106. Ma KL, Ruan XZ, Powis SH, Chen Y, Moorhead JF, Varghese Z. Inflammatory stress exacerbates lipid accumulation in hepatic cells and fatty livers of apolipoprotein E knockout mice. Hepatology. 2008; 48(3): 770-781.
107. Cinti S. Between brown and white: novel aspects of adipocyte differentiation. Ann Med. 2011; 43(2): 104-115.
108. Barbatelli G, Murano I, Madsen L, Hao Q, Jimenez M, Kristiansen K, Giacobino JP, De Matteis R, Cinti S. The emergence of cold-induced brown adipocytes in mouse white fat depots is determined predominantly by white to brown adipocyte transdifferentiation. Am J Physiol Endocrinol Metab. 2010; 298(6): E1244-1253.
109. Cinti S. The adipose organ at a glance. Dis Model Mech. 2012; 5(5): 588-594.
110. Kireeva ML, Lam SC, Lau LF. Adhesion of human umbilical vein endothelial cells to the immediate-early gene product Cyr61 is mediated through integrin alphavbeta3. J Biol Chem. 1998; 273(5): 3090-3096.
111. Chen N, Chen CC, Lau LF. Adhesion of human skin fibroblasts to Cyr61 is mediated through integrin alpha 6beta 1 and cell surface heparan sulfate proteoglycans. J Biol Chem. 2000; 275(32): 24953-24961.
112. Grzeszkiewicz TM, Lindner V, Chen N, Lam SC, Lau LF. The angiogenic factor cysteine-rich 61 (CYR61, CCN1) supports vascular smooth muscle cell adhesion and stimulates chemotaxis through integrin alpha(6)beta(1) and cell surface heparan sulfate proteoglycans. Endocrinology. 2002; 143(4): 1441-1450.
113. Bai T, Chen CC, Lau LF. Matricellular protein CCN1 activates a proinflammatory genetic program in murine macrophages. J Immunol. 2010; 184(6): 3223-3232.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊