跳到主要內容

臺灣博碩士論文加值系統

(44.212.99.248) 您好!臺灣時間:2023/01/28 11:50
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:江明翰
研究生(外文):Ming-Han Jiang
論文名稱:PIM1激酶負向調控RIG-I訊息傳遞路徑之抑制探討
論文名稱(外文):PIM1 kinase plays a negative role in RIG-I signaling pathway
指導教授:黃麗華黃麗華引用關係
指導教授(外文):Lih-Hwa Hwang
學位類別:碩士
校院名稱:國立陽明大學
系所名稱:微生物及免疫學研究所
學門:生命科學學門
學類:微生物學類
論文種類:學術論文
論文出版年:2014
畢業學年度:102
語文別:中文
論文頁數:82
中文關鍵詞:干擾素RIG-I相互作用磷酸化泛素化
外文關鍵詞:InterferonRIG-IInteractionPhosphorylationUbiquitination
相關次數:
  • 被引用被引用:0
  • 點閱點閱:139
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
面對外來入侵病原的威脅,先天性免疫是宿主的第一道防線。為了即時做出反應,先天性免疫反應機制以模式識別受器 (pattern recognition receptors,PRRs) 辨認病原菌的病原相關分子模式 (pathogen-associated molecular patterns,PAMPs)。在所有模式識別受器中,RLRs (RIG-I like receptors) 在對抗病毒的功能上扮演舉足輕重的角色。先前我們實驗室發現 PIM1 這個絲胺酸/蘇胺酸激酶 (serine/threonine kinase) 可以透過其激酶活性抑制 RLRs 的訊息傳導,且推測其作用點可能在 RIG-I 或其上游。此外,先前的研究亦證明在體外 (in vitro) PIM1與 RIG-I 會有交互作用,且 PIM1 會將 RIG-I 進行磷酸化。本篇論文主要是以體內 (in vivo) 實驗為主,首先我利用外送表現的方式再度確認 RIG-I 與 PIM1 蛋白發生的交互作用,並且在仙台病毒 (SeV) 感染的情況下,此交互作用仍然存在;但觀察細胞內生性 PIM1 與 RIG-I 交互作用時,卻發現 PIM1 主要是與 RIG-I 一個經選擇性切割 (alternative splicing) 產生的異形體 (isoform) 有較強的交互作用,與全長 RIG-I 的交互作用反而較弱。磷酸化方面,同樣以外送表現證實 RIG-I 會受到 PIM1 的磷酸化;而在內生性 RIG-I 磷酸化的研究中,我們以慢病毒方式降低 (knock down) PIM1 表現,並在考量 RIG-I 相對表現量的情況下,發現在 PIM1 基因降低細胞內,其 RIG-I 磷酸化比例明顯低於控制組,故推測內生性 PIM1 可能也會對內生性 RIG-I 進行磷酸化作用。實驗結果更進一步顯示,外送表現之 PIM1 會對外送表現的 RIG-I 增加泛素化,並且使其降解;然而在相同情況下內生性 RIG-I 的總表現量卻未減少。由於我們目前尚未能成功偵測內生性 RIG-I 之泛素化現象,故內生性 RIG-I 是否不會受 PIM1 影響而改變泛素化及降解現象則尚待後續實驗加以證明。
Innate immunity is the first line of defenses to protect host from pathogen infection. In innate immunity, the “pattern recognition receptors (PRRs)” recognize pathogens by sensing their pathogen-associated molecular patterns (PAMPs). Among the PRRs, retinoic acid inducible gene I (RIG-I)-like receptors (RLRs) play significant roles in antiviral responses. Our lab has previously identified PIM1, a serine/threonine kinase and a proto oncogene, as a negative regulator of the RLRs signaling pathway. We have demonstrated in vitro that PIM1 may directly acts on RIG-I or on the molecules upstream of it, and that RIG-I interacts with PIM1 and is phosphorylated by PIM1. In this study, I examined the interaction between PIM1 and RIG-I, and the PIM1-mediated phosphorylation of RIG-I under in vivo condition. Ectopic expression results show that PIM1 and RIG-I interact with each other in the presence or absence of Sendai virus (SeV) infection. Interestingly, however, the endogenous PIM1 interacts more strongly with a RIG-I spliced variant, previously reported to be generated by alternative splicing of the RIG-I mRNA, than with the full-length RIG-I. The ectopic expression data also show that PIM1 can phosphorylate RIG-I by its kinase activity, whereas PIM1-knockdown decreases the relative phosphorylation level of endogenous RIG-I. Finally, our data show that PIM1 expression facilitates the ectopically expressed RIG-I undergoing ubiquitination and degradation, whereas the same condition does not affect the steady state levels of endogenous RIG-I. However, we have not been able to detect the ubiquitination pattern of endogenous RIG-I, so we cann’t conclude at this moment that PIM1 does not induce endogenous RIG-I undergoing ubiquitination and degradation.
致謝 i
中文摘要 iii
英文摘要 iv
目錄 v
圖表目錄 vii
英文縮寫對照表 viii
第一章 緒論 1
第一節 先天免疫系統 (innate immune system) 與第一型干擾素系統
(Type I interferon system) 1
第二節 RLR 訊息傳遞路徑與調控 13
第三節 原致癌基因 (proto-oncogene) PIM1 激酶 15
第四節 前人研究與實驗目的 22
第二章 實驗材料與方法 23
第一節 實驗材料 23
第二節 實驗方法 32
第三章 實驗結果 37
第一節 PIM1 蛋白與 RIG-I 蛋白在活體 (in vivo) 內的相互作用 (interaction) 37
第二節 在活體內 (in vivo) PIM1 蛋白對 RIG-I 蛋白之磷酸化
(phosphorylation) 39
第三節 在活體內 (in vivo) PIM1蛋白增加 RIG-I 蛋白之泛素化
(ubiguitination) 40
第四章 討論 44
圖表 51
附圖 59
參考文獻 65

圖一 在活體內 (in vivo) 外送表現 PIM1 與 RIG-I 之交互作用 51
圖二 K562 細胞以仙台病毒或 IFN-α 刺激後,內生性 PIM1 及 RIG-I 表
現量變化 52
圖三 在活體內 (in vivo) 細胞內生性 PIM1 與 RIG-I 之交互作用 53
圖四 在活體內 (in vivo) 外送表現PIM1 對外送 RIG-I 磷酸化之影響 54
圖五 在活體內 (in vivo) 基因敲落 PIM1 對 RIG-I 磷酸化之影響 55
圖六 在活體內 (in vivo) 外送表現 PIM1 對 RIG-I 泛素化之影響 56
圖七 在活體內 (in vivo) 外送表現 PIM1 增加 RIG-I 之 Lys48 泛素化 57
圖八 PIM1 並不會對細胞內生性 RIG-I 造成降解 58

附圖一 RIG-I 區域劃分及抑制狀態示意圖 59
附圖二 由 RIG-I 或 MDA5以及 RIG-I 與 MDA5 同時辨識之病毒 60
附圖三 RLR 訊息傳遞示意圖 61
附圖四 PIM1 藉由其激酶活性負向調控RLR活化之訊息路徑,且其作用點可
能在 RIG-I 或其上游 62

Ablasser, A., Bauernfeind, F., Hartmann, G., Latz, E., Fitzgerald, K.A., and Hornung, V. (2009). RIG-I-dependent sensing of poly(dA:dT) through the induction of an RNA polymerase III-transcribed RNA intermediate. Nature immunology 10, 1065-1072.
Aho, T.L., Sandholm, J., Peltola, K.J., Mankonen, H.P., Lilly, M., and Koskinen, P.J. (2004). Pim-1 kinase promotes inactivation of the pro-apoptotic Bad protein by phosphorylating it on the Ser112 gatekeeper site. FEBS letters 571, 43-49.
Akira, S. (2009). Pathogen recognition by innate immunity and its signaling (vol 85, pg 143, 2009). P Jpn Acad B-Phys 85, 216-216.
Akira, S., Uematsu, S., and Takeuchi, O. (2006). Pathogen recognition and innate immunity. Cell 124, 783-801.
Alexopoulou, L., Holt, A.C., Medzhitov, R., and Flavell, R.A. (2001). Recognition of double-stranded RNA and activation of NF-kappaB by Toll-like receptor 3. Nature 413, 732-738.
Amaravadi, R., and Thompson, C.B. (2005). The survival kinases Akt and Pim as potential pharmacological targets. The Journal of clinical investigation 115, 2618-2624.
Arimoto, K., Takahashi, H., Hishiki, T., Konishi, H., Fujita, T., and Shimotohno, K. (2007). Negative regulation of the RIG-I signaling by the ubiquitin ligase RNF125. Proceedings of the National Academy of Sciences of the United States of America 104, 7500-7505.
Bachmann, M., Hennemann, H., Xing, P.X., Hoffmann, I., and Moroy, T. (2004). The oncogenic serine/threonine kinase Pim-1 phosphorylates and inhibits the activity of Cdc25C-associated kinase 1 (C-TAK1): a novel role for Pim-1 at the G2/M cell cycle checkpoint. The Journal of biological chemistry 279, 48319-48328.
Bachmann, M., Kosan, C., Xing, P.X., Montenarh, M., Hoffmann, I., and Moroy, T. (2006). The oncogenic serine/threonine kinase Pim-1 directly phosphorylates and activates the G2/M specific phosphatase Cdc25C. The international journal of biochemistry & cell biology 38, 430-443.
Bachmann, M., and Moroy, T. (2005). The serine/threonine kinase Pim-1. The international journal of biochemistry & cell biology 37, 726-730.
Baum, A., and Garcia-Sastre, A. (2010). Induction of type I interferon by RNA viruses: cellular receptors and their substrates. Amino acids 38, 1283-1299.
Baum, A., Sachidanandam, R., and Garcia-Sastre, A. (2010). Preference of RIG-I for short viral RNA molecules in infected cells revealed by next-generation sequencing. Proceedings of the National Academy of Sciences of the United States of America 107, 16303-16308.
Blanco-Aparicio, C., and Carnero, A. (2013). Pim kinases in cancer: diagnostic, prognostic and treatment opportunities. Biochemical pharmacology 85, 629-643.
Bonjardim, C.A., Ferreira, P.C., and Kroon, E.G. (2009). Interferons: signaling, antiviral and viral evasion. Immunology letters 122, 1-11.
Borden, E.C., Sen, G.C., Uze, G., Silverman, R.H., Ransohoff, R.M., Foster, G.R., and Stark, G.R. (2007). Interferons at age 50: past, current and future impact on biomedicine. Nature reviews Drug discovery 6, 975-990.
Brault, L., Gasser, C., Bracher, F., Huber, K., Knapp, S., and Schwaller, J. (2010). PIM serine/threonine kinases in the pathogenesis and therapy of hematologic malignancies and solid cancers. Haematologica 95, 1004-1015.
Bruns, A.M., Pollpeter, D., Hadizadeh, N., Myong, S., Marko, J.F., and Horvath, C.M. (2013). ATP hydrolysis enhances RNA recognition and antiviral signal transduction by the innate immune sensor, laboratory of genetics and physiology 2 (LGP2). The Journal of biological chemistry 288, 938-946.
Bullock, A.N., Debreczeni, J., Amos, A.L., Knapp, S., and Turk, B.E. (2005a). Structure and substrate specificity of the Pim-1 kinase. The Journal of biological chemistry 280, 41675-41682.
Bullock, A.N., Debreczeni, J.E., Fedorov, O.Y., Nelson, A., Marsden, B.D., and Knapp, S. (2005b). Structural basis of inhibitor specificity of the human protooncogene proviral insertion site in moloney murine leukemia virus (PIM-1) kinase. Journal of medicinal chemistry 48, 7604-7614.
Chen, Z.J. (2005). Ubiquitin signalling in the NF-kappaB pathway. Nature cell biology 7, 758-765.
Cheney, I.W., Yan, S., Appleby, T., Walker, H., Vo, T., Yao, N., Hamatake, R., Hong, Z., and Wu, J.Z. (2007). Identification and structure-activity relationships of substituted pyridones as inhibitors of Pim-1 kinase. Bioorganic & medicinal chemistry letters 17, 1679-1683.
Childs, K.S., Randall, R.E., and Goodbourn, S. (2013). LGP2 plays a critical role in sensitizing mda-5 to activation by double-stranded RNA. PloS one 8, e64202.
Clague, M.J., and Urbe, S. (2010). Ubiquitin: same molecule, different degradation pathways. Cell 143, 682-685.
Clemens, M.J. (2005). Translational control in virus-infected cells: models for cellular stress responses. Seminars in cell & developmental biology 16, 13-20.
Clement, J.F., Meloche, S., and Servant, M.J. (2008). The IKK-related kinases: from innate immunity to oncogenesis. Cell research 18, 889-899.
Coccia, E.M., Uze, G., and Pellegrini, S. (2006). Negative regulation of type I interferon signaling: facts and mechanisms. Cellular and molecular biology 52, 77-87.
Cui, J., Song, Y., Li, Y., Zhu, Q., Tan, P., Qin, Y., Wang, H.Y., and Wang, R.F. (2014). USP3 inhibits type I interferon signaling by deubiquitinating RIG-I-like receptors. Cell research 24, 400-416.
Culjkovic, B., Topisirovic, I., Skrabanek, L., Ruiz-Gutierrez, M., and Borden, K.L. (2006). eIF4E is a central node of an RNA regulon that governs cellular proliferation. The Journal of cell biology 175, 415-426.
Cuypers, H.T., Selten, G., Quint, W., Zijlstra, M., Maandag, E.R., Boelens, W., van Wezenbeek, P., Melief, C., and Berns, A. (1984). Murine leukemia virus-induced T-cell lymphomagenesis: integration of proviruses in a distinct chromosomal region. Cell 37, 141-150.
David, M., Chen, H.E., Goelz, S., Larner, A.C., and Neel, B.G. (1995). Differential regulation of the alpha/beta interferon-stimulated Jak/Stat pathway by the SH2 domain-containing tyrosine phosphatase SHPTP1. Molecular and cellular biology 15, 7050-7058.
Debreczeni, J.E., Bullock, A.N., Atilla, G.E., Williams, D.S., Bregman, H., Knapp, S., and Meggers, E. (2006). Ruthenium half-sandwich complexes bound to protein kinase Pim-1. Angewandte Chemie 45, 1580-1585.
Deddouche, S., Goubau, D., Rehwinkel, J., Chakravarty, P., Begum, S., Maillard, P.V., Borg, A., Matthews, N., Feng, Q., van Kuppeveld, F.J., et al. (2014). Identification of an LGP2-associated MDA5 agonist in picornavirus-infected cells. eLife 3, e01535.
Deng, L., Wang, C., Spencer, E., Yang, L., Braun, A., You, J., Slaughter, C., Pickart, C., and Chen, Z.J. (2000). Activation of the IkappaB kinase complex by TRAF6 requires a dimeric ubiquitin-conjugating enzyme complex and a unique polyubiquitin chain. Cell 103, 351-361.
Diao, F., Li, S., Tian, Y., Zhang, M., Xu, L.G., Zhang, Y., Wang, R.P., Chen, D., Zhai, Z., Zhong, B., et al. (2007). Negative regulation of MDA5- but not RIG-I-mediated innate antiviral signaling by the dihydroxyacetone kinase. Proceedings of the National Academy of Sciences of the United States of America 104, 11706-11711.
Diebold, S.S., Kaisho, T., Hemmi, H., Akira, S., and Reis e Sousa, C. (2004). Innate antiviral responses by means of TLR7-mediated recognition of single-stranded RNA. Science 303, 1529-1531.
Dragan, A.I., Hargreaves, V.V., Makeyeva, E.N., and Privalov, P.L. (2007). Mechanisms of activation of interferon regulator factor 3: the role of C-terminal domain phosphorylation in IRF-3 dimerization and DNA binding. Nucleic acids research 35, 3525-3534.
Eiring, A.M., Harb, J.G., Neviani, P., Garton, C., Oaks, J.J., Spizzo, R., Liu, S., Schwind, S., Santhanam, R., Hickey, C.J., et al. (2010). miR-328 functions as an RNA decoy to modulate hnRNP E2 regulation of mRNA translation in leukemic blasts. Cell 140, 652-665.
Erlandsson, L., Blumenthal, R., Eloranta, M.L., Engel, H., Alm, G., Weiss, S., and Leanderson, T. (1998). Interferon-beta is required for interferon-alpha production in mouse fibroblasts. Current biology : CB 8, 223-226.
Feldman, J.D., Vician, L., Crispino, M., Tocco, G., Baudry, M., and Herschman, H.R. (1998). Seizure activity induces PIM-1 expression in brain. Journal of neuroscience research 53, 502-509.
Feng, Q., Hato, S.V., Langereis, M.A., Zoll, J., Virgen-Slane, R., Peisley, A., Hur, S., Semler, B.L., van Rij, R.P., and van Kuppeveld, F.J. (2012). MDA5 detects the double-stranded RNA replicative form in picornavirus-infected cells. Cell reports 2, 1187-1196.
Finley, D. (2009). Recognition and processing of ubiquitin-protein conjugates by the proteasome. Annual review of biochemistry 78, 477-513.
Francois-Newton, V., Magno de Freitas Almeida, G., Payelle-Brogard, B., Monneron, D., Pichard-Garcia, L., Piehler, J., Pellegrini, S., and Uze, G. (2011). USP18-based negative feedback control is induced by type I and type III interferons and specifically inactivates interferon alpha response. PloS one 6, e22200.
Friedmann, M., Nissen, M.S., Hoover, D.S., Reeves, R., and Magnuson, N.S. (1992). Characterization of the proto-oncogene pim-1: kinase activity and substrate recognition sequence. Archives of biochemistry and biophysics 298, 594-601.
Gack, M.U. (2014). Mechanisms of RIG-I-like receptor activation and manipulation by viral pathogens. Journal of virology 88, 5213-5216.
Gack, M.U., Kirchhofer, A., Shin, Y.C., Inn, K.S., Liang, C., Cui, S., Myong, S., Ha, T., Hopfner, K.P., and Jung, J.U. (2008). Roles of RIG-I N-terminal tandem CARD and splice variant in TRIM25-mediated antiviral signal transduction. Proceedings of the National Academy of Sciences of the United States of America 105, 16743-16748.
Gack, M.U., Shin, Y.C., Joo, C.H., Urano, T., Liang, C., Sun, L., Takeuchi, O., Akira, S., Chen, Z., Inoue, S., et al. (2007). TRIM25 RING-finger E3 ubiquitin ligase is essential for RIG-I-mediated antiviral activity. Nature 446, 916-920.
Garcia, M.A., Gil, J., Ventoso, I., Guerra, S., Domingo, E., Rivas, C., and Esteban, M. (2006). Impact of protein kinase PKR in cell biology: from antiviral to antiproliferative action. Microbiology and molecular biology reviews : MMBR 70, 1032-1060.
Geisler, S., Holmstrom, K.M., Skujat, D., Fiesel, F.C., Rothfuss, O.C., Kahle, P.J., and Springer, W. (2010). PINK1/Parkin-mediated mitophagy is dependent on VDAC1 and p62/SQSTM1. Nature cell biology 12, 119-131.
Gu, J.J., Wang, Z., Reeves, R., and Magnuson, N.S. (2009). PIM1 phosphorylates and negatively regulates ASK1-mediated apoptosis. Oncogene 28, 4261-4271.
Haller, O., and Kochs, G. (2011). Human MxA Protein: An Interferon-Induced Dynamin-Like GTPase with Broad Antiviral Activity. J Interf Cytok Res 31, 79-87.
Hayden, M.S., and Ghosh, S. (2004). Signaling to NF-kappaB. Genes & development 18, 2195-2224.
Heil, F., Hemmi, H., Hochrein, H., Ampenberger, F., Kirschning, C., Akira, S., Lipford, G., Wagner, H., and Bauer, S. (2004). Species-specific recognition of single-stranded RNA via toll-like receptor 7 and 8. Science 303, 1526-1529.
Hemmi, H., Takeuchi, O., Kawai, T., Kaisho, T., Sato, S., Sanjo, H., Matsumoto, M., Hoshino, K., Wagner, H., Takeda, K., et al. (2000). A Toll-like receptor recognizes bacterial DNA. Nature 408, 740-745.
Hong, X.X., and Carmichael, G.G. (2013). Innate immunity in pluripotent human cells: attenuated response to interferon-beta. The Journal of biological chemistry 288, 16196-16205.
Hoover, D., Friedmann, M., Reeves, R., and Magnuson, N.S. (1991). Recombinant Human Pim-1 Protein Exhibits Serine Threonine Kinase-Activity. Journal of Biological Chemistry 266, 14018-14023.
Hoover, D.S., Wingett, D.G., Zhang, J., Reeves, R., and Magnuson, N.S. (1997). Pim-1 protein expression is regulated by its 5 '-untranslated region and translation initiation factor eIF-4E. Cell Growth Differ 8, 1371-1380.
Huang, X., Ding, L., Bennewith, K.L., Tong, R.T., Welford, S.M., Ang, K.K., Story, M., Le, Q.T., and Giaccia, A.J. (2009). Hypoxia-inducible mir-210 regulates normoxic gene expression involved in tumor initiation. Molecular cell 35, 856-867.
Irie-Sasaki, J., Sasaki, T., Matsumoto, W., Opavsky, A., Cheng, M., Welstead, G., Griffiths, E., Krawczyk, C., Richardson, C.D., Aitken, K., et al. (2001). CD45 is a JAK phosphatase and negatively regulates cytokine receptor signalling. Nature 409, 349-354.
Isaac, M., Siu, A., and Jongstra, J. (2011). The oncogenic PIM kinase family regulates drug resistance through multiple mechanisms. Drug resistance updates : reviews and commentaries in antimicrobial and anticancer chemotherapy 14, 203-211.
Isaacs, A., and Lindenmann, J. (1957). Virus interference. I. The interferon. Proceedings of the Royal Society of London Series B, Containing papers of a Biological character Royal Society 147, 258-267.
Jacobson, A.D., Zhang, N.Y., Xu, P., Han, K.J., Noone, S., Peng, J., and Liu, C.W. (2009). The lysine 48 and lysine 63 ubiquitin conjugates are processed differently by the 26 s proteasome. The Journal of biological chemistry 284, 35485-35494.
Janeway, C.A., Jr. (1989). Approaching the asymptote? Evolution and revolution in immunology. Cold Spring Harbor symposia on quantitative biology 54 Pt 1, 1-13.
Jensen, S., and Thomsen, A.R. (2012). Sensing of RNA viruses: a review of innate immune receptors involved in recognizing RNA virus invasion. Journal of virology 86, 2900-2910.
Jiang, X., Kinch, L.N., Brautigam, C.A., Chen, X., Du, F., Grishin, N.V., and Chen, Z.J. (2012). Ubiquitin-induced oligomerization of the RNA sensors RIG-I and MDA5 activates antiviral innate immune response. Immunity 36, 959-973.
Jin, L., Williamson, A., Banerjee, S., Philipp, I., and Rape, M. (2008). Mechanism of ubiquitin-chain formation by the human anaphase-promoting complex. Cell 133, 653-665.
Kageyama, M., Takahasi, K., Narita, R., Hirai, R., Yoneyama, M., Kato, H., and Fujita, T. (2011). 55 Amino acid linker between helicase and carboxyl terminal domains of RIG-I functions as a critical repression domain and determines inter-domain conformation. Biochemical and biophysical research communications 415, 75-81.
Kaiser, S.E., Riley, B.E., Shaler, T.A., Trevino, R.S., Becker, C.H., Schulman, H., and Kopito, R.R. (2011). Protein standard absolute quantification (PSAQ) method for the measurement of cellular ubiquitin pools. Nature methods 8, 691-696.
Kanayama, A., Seth, R.B., Sun, L., Ea, C.K., Hong, M., Shaito, A., Chiu, Y.H., Deng, L., and Chen, Z.J. (2004). TAB2 and TAB3 activate the NF-kappaB pathway through binding to polyubiquitin chains. Molecular cell 15, 535-548.
Kang, D.C., Gopalkrishnan, R.V., Wu, Q., Jankowsky, E., Pyle, A.M., and Fisher, P.B. (2002). mda-5: An interferon-inducible putative RNA helicase with double-stranded RNA-dependent ATPase activity and melanoma growth-suppressive properties. Proceedings of the National Academy of Sciences of the United States of America 99, 637-642.
Kato, H., Takeuchi, O., Sato, S., Yoneyama, M., Yamamoto, M., Matsui, K., Uematsu, S., Jung, A., Kawai, T., Ishii, K.J., et al. (2006). Differential roles of MDA5 and RIG-I helicases in the recognition of RNA viruses. Nature 441, 101-105.
Kawai, T., and Akira, S. (2006). Innate immune recognition of viral infection. Nature immunology 7, 131-137.
Kawai, T., Takahashi, K., Sato, S., Coban, C., Kumar, H., Kato, H., Ishii, K.J., Takeuchi, O., and Akira, S. (2005). IPS-1, an adaptor triggering RIG-I- and Mda5-mediated type I interferon induction. Nature immunology 6, 981-988.
Kim, K.I., Yan, M., Malakhova, O., Luo, J.K., Shen, M.F., Zou, W., de la Torre, J.C., and Zhang, D.E. (2006). Ube1L and protein ISGylation are not essential for alpha/beta interferon signaling. Molecular and cellular biology 26, 472-479.
Kim, O., Jiang, T., Xie, Y., Guo, Z., Chen, H., and Qiu, Y. (2004). Synergism of cytoplasmic kinases in IL6-induced ligand-independent activation of androgen receptor in prostate cancer cells. Oncogene 23, 1838-1844.
Knobeloch, K.P., Utermohlen, O., Kisser, A., Prinz, M., and Horak, I. (2005). Reexamination of the role of ubiquitin-like modifier ISG15 in the phenotype of UBP43-deficient mice. Molecular and cellular biology 25, 11030-11034.
Kohlway, A., Luo, D., Rawling, D.C., Ding, S.C., and Pyle, A.M. (2013). Defining the functional determinants for RNA surveillance by RIG-I. EMBO reports 14, 772-779.
Kolakofsky, D., Kowalinski, E., and Cusack, S. (2012). A structure-based model of RIG-I activation. Rna 18, 2118-2127.
Komuro, A., and Horvath, C.M. (2006). RNA- and virus-independent inhibition of antiviral signaling by RNA helicase LGP2. Journal of virology 80, 12332-12342.
Krug, A., French, A.R., Barchet, W., Fischer, J.A., Dzionek, A., Pingel, J.T., Orihuela, M.M., Akira, S., Yokoyama, W.M., and Colonna, M. (2004a). TLR9-dependent recognition of MCMV by IPC and DC generates coordinated cytokine responses that activate antiviral NK cell function. Immunity 21, 107-119.
Krug, A., Luker, G.D., Barchet, W., Leib, D.A., Akira, S., and Colonna, M. (2004b). Herpes simplex virus type 1 activates murine natural interferon-producing cells through toll-like receptor 9. Blood 103, 1433-1437.
Kumar, A., Mandiyan, V., Suzuki, Y., Zhang, C., Rice, J., Tsai, J., Artis, D.R., Ibrahim, P., and Bremer, R. (2005). Crystal structures of proto-oncogene kinase Pim1: a target of aberrant somatic hypermutations in diffuse large cell lymphoma. Journal of molecular biology 348, 183-193.
Larner, A.C., Chaudhuri, A., and Darnell, J.E., Jr. (1986). Transcriptional induction by interferon. New protein(s) determine the extent and length of the induction. The Journal of biological chemistry 261, 453-459.
Latz, E., Schoenemeyer, A., Visintin, A., Fitzgerald, K.A., Monks, B.G., Knetter, C.F., Lien, E., Nilsen, N.J., Espevik, T., and Golenbock, D.T. (2004). TLR9 signals after translocating from the ER to CpG DNA in the lysosome. Nature immunology 5, 190-198.
Lemaitre, B., Nicolas, E., Michaut, L., Reichhart, J.M., and Hoffmann, J.A. (1996). The dorsoventral regulatory gene cassette spatzle/Toll/cactus controls the potent antifungal response in Drosophila adults. Cell 86, 973-983.
Li, J., Peet, G.W., Balzarano, D., Li, X., Massa, P., Barton, R.W., and Marcu, K.B. (2001). Novel NEMO/IkappaB kinase and NF-kappa B target genes at the pre-B to immature B cell transition. The Journal of biological chemistry 276, 18579-18590.
Li, Q., and Verma, I.M. (2002). NF-kappaB regulation in the immune system. Nature reviews Immunology 2, 725-734.
Lilly, M., Sandholm, J., Cooper, J.J., Koskinen, P.J., and Kraft, A. (1999). The PIM-1 serine kinase prolongs survival and inhibits apoptosis-related mitochondrial dysfunction in part through a bcl-2-dependent pathway. Oncogene 18, 4022-4031.
Lin, R., Heylbroeck, C., Pitha, P.M., and Hiscott, J. (1998). Virus-dependent phosphorylation of the IRF-3 transcription factor regulates nuclear translocation, transactivation potential, and proteasome-mediated degradation. Molecular and cellular biology 18, 2986-2996.
Losman, J.A., Chen, X.P., Vuong, B.Q., Fay, S., and Rothman, P.B. (2003). Protein phosphatase 2A regulates the stability of Pim protein kinases. The Journal of biological chemistry 278, 4800-4805.
Lund, J., Sato, A., Akira, S., Medzhitov, R., and Iwasaki, A. (2003). Toll-like receptor 9-mediated recognition of Herpes simplex virus-2 by plasmacytoid dendritic cells. The Journal of experimental medicine 198, 513-520.
Luo, D., Kohlway, A., and Pyle, A.M. (2013). Duplex RNA activated ATPases (DRAs): platforms for RNA sensing, signaling and processing. RNA biology 10, 111-120.
Ma, J., Arnold, H.K., Lilly, M.B., Sears, R.C., and Kraft, A.S. (2007). Negative regulation of Pim-1 protein kinase levels by the B56beta subunit of PP2A. Oncogene 26, 5145-5153.
Maharaj, N.P., Wies, E., Stoll, A., and Gack, M.U. (2012). Conventional protein kinase C-alpha (PKC-alpha) and PKC-beta negatively regulate RIG-I antiviral signal transduction. Journal of virology 86, 1358-1371.
Makowska, Z., Duong, F.H., Trincucci, G., Tough, D.F., and Heim, M.H. (2011). Interferon-beta and interferon-lambda signaling is not affected by interferon-induced refractoriness to interferon-alpha in vivo. Hepatology 53, 1154-1163.
Malakhova, O.A., Kim, K.I., Luo, J.K., Zou, W., Kumar, K.G., Fuchs, S.Y., Shuai, K., and Zhang, D.E. (2006). UBP43 is a novel regulator of interferon signaling independent of its ISG15 isopeptidase activity. The EMBO journal 25, 2358-2367.
Malakhova, O.A., Yan, M., Malakhov, M.P., Yuan, Y., Ritchie, K.J., Kim, K.I., Peterson, L.F., Shuai, K., and Zhang, D.E. (2003). Protein ISGylation modulates the JAK-STAT signaling pathway. Genes & development 17, 455-460.
Martens, S., and Howard, J. (2006). The interferon-inducible GTPases. Annual review of cell and developmental biology 22, 559-589.
Matsumoto, M.L., Wickliffe, K.E., Dong, K.C., Yu, C., Bosanac, I., Bustos, D., Phu, L., Kirkpatrick, D.S., Hymowitz, S.G., Rape, M., et al. (2010). K11-linked polyubiquitination in cell cycle control revealed by a K11 linkage-specific antibody. Mol Cell 39, 477-484.
Merika, M., and Thanos, D. (2001). Enhanceosomes. Current opinion in genetics & development 11, 205-208.
Meylan, E., Curran, J., Hofmann, K., Moradpour, D., Binder, M., Bartenschlager, R., and Tschopp, J. (2005). Cardif is an adaptor protein in the RIG-I antiviral pathway and is targeted by hepatitis C virus. Nature 437, 1167-1172.
Mikkers, H., Allen, J., Knipscheer, P., Romeijn, L., Hart, A., Vink, E., and Berns, A. (2002). High-throughput retroviral tagging to identify components of specific signaling pathways in cancer. Nature genetics 32, 153-159.
Mikkers, H., Nawijn, M., Allen, J., Brouwers, C., Verhoeven, E., Jonkers, J., and Berns, A. (2004). Mice deficient for all PIM kinases display reduced body size and impaired responses to hematopoietic growth factors. Molecular and cellular biology 24, 6104-6115.
Mizuno, K., Shirogane, T., Shinohara, A., Iwamatsu, A., Hibi, M., and Hirano, T. (2001). Regulation of Pim-1 by Hsp90. Biochemical and biophysical research communications 281, 663-669.
Morin, P., Braganca, J., Bandu, M.T., Lin, R., Hiscott, J., Doly, J., and Civas, A. (2002). Preferential binding sites for interferon regulatory factors 3 and 7 involved in interferon-A gene transcription. Journal of molecular biology 316, 1009-1022.
Morishita, D., Katayama, R., Sekimizu, K., Tsuruo, T., and Fujita, N. (2008). Pim kinases promote cell cycle progression by phosphorylating and down-regulating p27Kip1 at the transcriptional and posttranscriptional levels. Cancer Res 68, 5076-5085.
Mukhopadhyay, D., and Riezman, H. (2007). Proteasome-independent functions of ubiquitin in endocytosis and signaling. Science 315, 201-205.
Murray, P.J. (2007). The JAK-STAT signaling pathway: input and output integration. Journal of immunology 178, 2623-2629.
Myers, M.P., Andersen, J.N., Cheng, A., Tremblay, M.L., Horvath, C.M., Parisien, J.P., Salmeen, A., Barford, D., and Tonks, N.K. (2001). TYK2 and JAK2 are substrates of protein-tyrosine phosphatase 1B. The Journal of biological chemistry 276, 47771-47774.
Nasser, M.W., Datta, J., Nuovo, G., Kutay, H., Motiwala, T., Majumder, S., Wang, B., Suster, S., Jacob, S.T., and Ghoshal, K. (2008). Down-regulation of micro-RNA-1 (miR-1) in lung cancer. Suppression of tumorigenic property of lung cancer cells and their sensitization to doxorubicin-induced apoptosis by miR-1. The Journal of biological chemistry 283, 33394-33405.
Nawijn, M.C., Alendar, A., and Berns, A. (2011). For better or for worse: the role of Pim oncogenes in tumorigenesis. Nature reviews Cancer 11, 23-34.
Nishiya, T., Kajita, E., Miwa, S., and Defranco, A.L. (2005). TLR3 and TLR7 are targeted to the same intracellular compartments by distinct regulatory elements. The Journal of biological chemistry 280, 37107-37117.
Oshiumi, H., Miyashita, M., Matsumoto, M., and Seya, T. (2013). A distinct role of Riplet-mediated K63-Linked polyubiquitination of the RIG-I repressor domain in human antiviral innate immune responses. PLoS pathogens 9, e1003533.
Osiak, A., Utermohlen, O., Niendorf, S., Horak, I., and Knobeloch, K.P. (2005). ISG15, an interferon-stimulated ubiquitin-like protein, is not essential for STAT1 signaling and responses against vesicular stomatitis and lymphocytic choriomeningitis virus. Molecular and cellular biology 25, 6338-6345.
Padma, R., and Nagarajan, L. (1991). The Human Pim-1 Gene-Product Is a Protein Serine Kinase. Cancer Res 51, 2486-2489.
Palaty, C.K., Clark-Lewis, I., Leung, D., and Pelech, S.L. (1997). Phosphorylation site substrate specificity determinants for the Pim-1 protooncogene-encoded protein kinase. Biochemistry and cell biology = Biochimie et biologie cellulaire 75, 153-162.
Panda, D., Dinh, P.X., Beura, L.K., and Pattnaik, A.K. (2010). Induction of interferon and interferon signaling pathways by replication of defective interfering particle RNA in cells constitutively expressing vesicular stomatitis virus replication proteins. Journal of virology 84, 4826-4831.
Panne, D., Maniatis, T., and Harrison, S.C. (2007). An atomic model of the interferon-beta enhanceosome. Cell 129, 1111-1123.
Pestka, S., Krause, C.D., and Walter, M.R. (2004). Interferons, interferon-like cytokines, and their receptors. Immunological reviews 202, 8-32.
Pippig, D.A., Hellmuth, J.C., Cui, S., Kirchhofer, A., Lammens, K., Lammens, A., Schmidt, A., Rothenfusser, S., and Hopfner, K.P. (2009). The regulatory domain of the RIG-I family ATPase LGP2 senses double-stranded RNA. Nucleic acids research 37, 2014-2025.
Platanias, L.C. (2005). Mechanisms of type-I- and type-II-interferon-mediated signalling. Nature reviews Immunology 5, 375-386.
Pomerantz, J.L., and Baltimore, D. (1999). NF-kappaB activation by a signaling complex containing TRAF2, TANK and TBK1, a novel IKK-related kinase. The EMBO journal 18, 6694-6704.
Precious, B., Childs, K., Fitzpatrick-Swallow, V., Goodbourn, S., and Randall, R.E. (2005). Simian virus 5 V protein acts as an adaptor, linking DDB1 to STAT2, to facilitate the ubiquitination of STAT1. Journal of virology 79, 13434-13441.
Qian, K.C., Wang, L., Hickey, E.R., Studts, J., Barringer, K., Peng, C., Kronkaitis, A., Li, J., White, A., Mische, S., et al. (2005). Structural basis of constitutive activity and a unique nucleotide binding mode of human Pim-1 kinase. The Journal of biological chemistry 280, 6130-6137.
Raiborg, C., and Stenmark, H. (2009). The ESCRT machinery in endosomal sorting of ubiquitylated membrane proteins. Nature 458, 445-452.
Randall, R.E., and Goodbourn, S. (2008). Interferons and viruses: an interplay between induction, signalling, antiviral responses and virus countermeasures. The Journal of general virology 89, 1-47.
Ren, X., and Hurley, J.H. (2010). VHS domains of ESCRT-0 cooperate in high-avidity binding to polyubiquitinated cargo. The EMBO journal 29, 1045-1054.
Ritchie, K.J., Hahn, C.S., Kim, K.I., Yan, M., Rosario, D., Li, L., de la Torre, J.C., and Zhang, D.E. (2004). Role of ISG15 protease UBP43 (USP18) in innate immunity to viral infection. Nature medicine 10, 1374-1378.
Rodriguez, K.R., Bruns, A.M., and Horvath, C.M. (2014). MDA5 and LGP2: Accomplices and Antagonists of Antiviral Signal Transduction. Journal of virology 88, 8194-8200.
Rogers, R.S., Horvath, C.M., and Matunis, M.J. (2003). SUMO modification of STAT1 and its role in PIAS-mediated inhibition of gene activation. The Journal of biological chemistry 278, 30091-30097.
Roh, M., Gary, B., Song, C., Said-Al-Naief, N., Tousson, A., Kraft, A., Eltoum, I.E., and Abdulkadir, S.A. (2003). Overexpression of the oncogenic kinase Pim-1 leads to genomic instability. Cancer Res 63, 8079-8084.
Ronnblom, L. (2011). The type I interferon system in the etiopathogenesis of autoimmune diseases. Upsala journal of medical sciences 116, 227-237.
Rothenfusser, S., Goutagny, N., DiPerna, G., Gong, M., Monks, B.G., Schoenemeyer, A., Yamamoto, M., Akira, S., and Fitzgerald, K.A. (2005). The RNA helicase Lgp2 inhibits TLR-independent sensing of viral replication by retinoic acid-inducible gene-I. Journal of immunology 175, 5260-5268.
Saito, T., Hirai, R., Loo, Y.M., Owen, D., Johnson, C.L., Sinha, S.C., Akira, S., Fujita, T., and Gale, M., Jr. (2007). Regulation of innate antiviral defenses through a shared repressor domain in RIG-I and LGP2. Proceedings of the National Academy of Sciences of the United States of America 104, 582-587.
Saito, T., Owen, D.M., Jiang, F., Marcotrigiano, J., and Gale, M., Jr. (2008). Innate immunity induced by composition-dependent RIG-I recognition of hepatitis C virus RNA. Nature 454, 523-527.
Saris, C.J., Domen, J., and Berns, A. (1991). The pim-1 oncogene encodes two related protein-serine/threonine kinases by alternative initiation at AUG and CUG. The EMBO journal 10, 655-664.
Satoh, T., Kato, H., Kumagai, Y., Yoneyama, M., Sato, S., Matsushita, K., Tsujimura, T., Fujita, T., Akira, S., and Takeuchi, O. (2010). LGP2 is a positive regulator of RIG-I- and MDA5-mediated antiviral responses. Proceedings of the National Academy of Sciences of the United States of America 107, 1512-1517.
Schlee, M. (2013). Master sensors of pathogenic RNA - RIG-I like receptors. Immunobiology 218, 1322-1335.
Schlee, M., Roth, A., Hornung, V., Hagmann, C.A., Wimmenauer, V., Barchet, W., Coch, C., Janke, M., Mihailovic, A., Wardle, G., et al. (2009). Recognition of 5' triphosphate by RIG-I helicase requires short blunt double-stranded RNA as contained in panhandle of negative-strand virus. Immunity 31, 25-34.
Schmidt, A., Schwerd, T., Hamm, W., Hellmuth, J.C., Cui, S., Wenzel, M., Hoffmann, F.S., Michallet, M.C., Besch, R., Hopfner, K.P., et al. (2009). 5'-triphosphate RNA requires base-paired structures to activate antiviral signaling via RIG-I. Proceedings of the National Academy of Sciences of the United States of America 106, 12067-12072.
Schneider, W.M., Chevillotte, M.D., and Rice, C.M. (2014). Interferon-stimulated genes: a complex web of host defenses. Annual review of immunology 32, 513-545.
Selten, G., Cuypers, H.T., and Berns, A. (1985). Proviral Activation of the Putative Oncogene Pim-1 in Mulv Induced T-Cell Lymphomas. The EMBO Journal 4, 1793-1798.
Selten, G., Cuypers, H.T., Boelens, W., Robanusmaandag, E., Verbeek, J., Domen, J., Vanbeveren, C., and Berns, A. (1986). The Primary Structure of the Putative Oncogene Pim-1 Shows Extensive Homology with Protein-Kinases. Cell 46, 603-611.
Seth, R.B., Sun, L., Ea, C.K., and Chen, Z.J. (2005). Identification and characterization of MAVS, a mitochondrial antiviral signaling protein that activates NF-kappaB and IRF 3. Cell 122, 669-682.
Sharma, S., tenOever, B.R., Grandvaux, N., Zhou, G.P., Lin, R., and Hiscott, J. (2003). Triggering the interferon antiviral response through an IKK-related pathway. Science 300, 1148-1151.
Shay, K.P., Wang, Z., Xing, P.X., McKenzie, I.F., and Magnuson, N.S. (2005). Pim-1 kinase stability is regulated by heat shock proteins and the ubiquitin-proteasome pathway. Molecular cancer research : MCR 3, 170-181.
Silverman, R.H., and Weiss, S.R. (2014). Viral Phosphodiesterases That Antagonize Double-Stranded RNA Signaling to RNase L by Degrading 2-5A. Journal of interferon & cytokine research : the official journal of the International Society for Interferon and Cytokine Research 34, 455-463.
Simoncic, P.D., Lee-Loy, A., Barber, D.L., Tremblay, M.L., and McGlade, C.J. (2002). The T cell protein tyrosine phosphatase is a negative regulator of janus family kinases 1 and 3. Current biology : CB 12, 446-453.
Stancato, L.F., David, M., Carter-Su, C., Larner, A.C., and Pratt, W.B. (1996). Preassociation of STAT1 with STAT2 and STAT3 in separate signalling complexes prior to cytokine stimulation. The Journal of biological chemistry 271, 4134-4137.
Sun, Z., Ren, H., Liu, Y., Teeling, J.L., and Gu, J. (2011). Phosphorylation of RIG-I by casein kinase II inhibits its antiviral response. Journal of virology 85, 1036-1047.
Takaoka, A., and Yanai, H. (2006). Interferon signalling network in innate defence. Cellular microbiology 8, 907-922.
Tang, X., Gao, J.S., Guan, Y.J., McLane, K.E., Yuan, Z.L., Ramratnam, B., and Chin, Y.E. (2007). Acetylation-dependent signal transduction for type I interferon receptor. Cell 131, 93-105.
ten Hoeve, J., de Jesus Ibarra-Sanchez, M., Fu, Y., Zhu, W., Tremblay, M., David, M., and Shuai, K. (2002). Identification of a nuclear Stat1 protein tyrosine phosphatase. Molecular and cellular biology 22, 5662-5668.
Tenoever, B.R., Ng, S.L., Chua, M.A., McWhirter, S.M., Garcia-Sastre, A., and Maniatis, T. (2007). Multiple functions of the IKK-related kinase IKKepsilon in interferon-mediated antiviral immunity. Science 315, 1274-1278.
Thrower, J.S., Hoffman, L., Rechsteiner, M., and Pickart, C.M. (2000). Recognition of the polyubiquitin proteolytic signal. The EMBO journal 19, 94-102.
Tong, Y., Stewart, K.D., Thomas, S., Przytulinska, M., Johnson, E.F., Klinghofer, V., Leverson, J., McCall, O., Soni, N.B., Luo, Y., et al. (2008). Isoxazolo[3,4-b]quinoline-3,4(1H,9H)-diones as unique, potent and selective inhibitors for Pim-1 and Pim-2 kinases: chemistry, biological activities, and molecular modeling. Bioorganic & medicinal chemistry letters 18, 5206-5208.
Ungureanu, D., Vanhatupa, S., Gronholm, J., Palvimo, J.J., and Silvennoinen, O. (2005). SUMO-1 conjugation selectively modulates STAT1-mediated gene responses. Blood 106, 224-226.
Ungureanu, D., Vanhatupa, S., Kotaja, N., Yang, J., Aittomaki, S., Janne, O.A., Palvimo, J.J., and Silvennoinen, O. (2003). PIAS proteins promote SUMO-1 conjugation to STAT1. Blood 102, 3311-3313.
Vanderlugt, N.M.T., Domen, J., Verhoeven, E., Linders, K., Vandergulden, H., Allen, J., and Berns, A. (1995). Proviral Tagging in E-Mu-Myc Transgenic Mice Lacking the Pim-1 Protooncogene Leads to Compensatory Activation of Pim-2. The EMBO Journal 14, 2536-2544.
Wang, C., Deng, L., Hong, M., Akkaraju, G.R., Inoue, J., and Chen, Z.J. (2001a). TAK1 is a ubiquitin-dependent kinase of MKK and IKK. Nature 412, 346-351.
Wang, T., Town, T., Alexopoulou, L., Anderson, J.F., Fikrig, E., and Flavell, R.A. (2004). Toll-like receptor 3 mediates West Nile virus entry into the brain causing lethal encephalitis. Nature medicine 10, 1366-1373.
Wang, Z., Bhattacharya, N., Mixter, P.F., Wei, W., Sedivy, J., and Magnuson, N.S. (2002). Phosphorylation of the cell cycle inhibitor p21Cip1/WAF1 by Pim-1 kinase. Biochimica et biophysica acta 1593, 45-55.
Wang, Z., Bhattacharya, N., Weaver, M., Petersen, K., Meyer, M., Gapter, L., and Magnuson, N.S. (2001b). Pim-1: a serine/threonine kinase with a role in cell survival, proliferation, differentiation and tumorigenesis. Journal of veterinary science 2, 167-179.
Weber, F., Haller, O., and Kochs, G. (2000). MxA GTPase blocks reporter gene expression of reconstituted Thogoto virus ribonucleoprotein complexes. Journal of virology 74, 560-563.
White, E. (2003). The pims and outs of survival signaling: role for the Pim-2 protein kinase in the suppression of apoptosis by cytokines. Genes & development 17, 1813-1816.
Wies, E., Wang, M.K., Maharaj, N.P., Chen, K., Zhou, S., Finberg, R.W., and Gack, M.U. (2013). Dephosphorylation of the RNA sensors RIG-I and MDA5 by the phosphatase PP1 is essential for innate immune signaling. Immunity 38, 437-449.
Williamson, A., Wickliffe, K.E., Mellone, B.G., Song, L., Karpen, G.H., and Rape, M. (2009). Identification of a physiological E2 module for the human anaphase-promoting complex. Proceedings of the National Academy of Sciences of the United States of America 106, 18213-18218.
Wullaert, A., Heyninck, K., Janssens, S., and Beyaert, R. (2006). Ubiquitin: tool and target for intracellular NF-kappaB inhibitors. Trends in immunology 27, 533-540.
Xie, Y., Xu, K., Dai, B., Guo, Z., Jiang, T., Chen, H., and Qiu, Y. (2006). The 44 kDa Pim-1 kinase directly interacts with tyrosine kinase Etk/BMX and protects human prostate cancer cells from apoptosis induced by chemotherapeutic drugs. Oncogene 25, 70-78.
Xu, L.G., Wang, Y.Y., Han, K.J., Li, L.Y., Zhai, Z., and Shu, H.B. (2005). VISA is an adapter protein required for virus-triggered IFN-beta signaling. Molecular cell 19, 727-740.
Xu, P., Duong, D.M., Seyfried, N.T., Cheng, D., Xie, Y., Robert, J., Rush, J., Hochstrasser, M., Finley, D., and Peng, J. (2009). Quantitative proteomics reveals the function of unconventional ubiquitin chains in proteasomal degradation. Cell 137, 133-145.
Yeow, W.S., Au, W.C., Juang, Y.T., Fields, C.D., Dent, C.L., Gewert, D.R., and Pitha, P.M. (2000). Reconstitution of virus-mediated expression of interferon alpha genes in human fibroblast cells by ectopic interferon regulatory factor-7. The Journal of biological chemistry 275, 6313-6320.
Yoneyama, M., and Fujita, T. (2008). Structural mechanism of RNA recognition by the RIG-I-like receptors. Immunity 29, 178-181.
Yoneyama, M., and Fujita, T. (2010). Recognition of viral nucleic acids in innate immunity. Reviews in medical virology 20, 4-22.
Yoneyama, M., Kikuchi, M., Natsukawa, T., Shinobu, N., Imaizumi, T., Miyagishi, M., Taira, K., Akira, S., and Fujita, T. (2004). The RNA helicase RIG-I has an essential function in double-stranded RNA-induced innate antiviral responses. Nature immunology 5, 730-737.
Yoo, J.S., Kato, H., and Fujita, T. (2014). Sensing viral invasion by RIG-I like receptors. Current opinion in microbiology 20C, 131-138.
You, M., Yu, D.H., and Feng, G.S. (1999). Shp-2 tyrosine phosphatase functions as a negative regulator of the interferon-stimulated Jak/STAT pathway. Molecular and cellular biology 19, 2416-2424.
Zeng, W., Sun, L., Jiang, X., Chen, X., Hou, F., Adhikari, A., Xu, M., and Chen, Z.J. (2010). Reconstitution of the RIG-I pathway reveals a signaling role of unanchored polyubiquitin chains in innate immunity. Cell 141, 315-330.
Zhang, F., Beharry, Z.M., Harris, T.E., Lilly, M.B., Smith, C.D., Mahajan, S., and Kraft, A.S. (2009). PIM1 protein kinase regulates PRAS40 phosphorylation and mTOR activity in FDCP1 cells. Cancer biology & therapy 8, 846-853.
Zhang, Y., Wang, Z., and Magnuson, N.S. (2007). Pim-1 kinase-dependent phosphorylation of p21Cip1/WAF1 regulates its stability and cellular localization in H1299 cells. Molecular cancer research : MCR 5, 909-922.
Zhu, N., Ramirez, L.M., Lee, R.L., Magnuson, N.S., Bishop, G.A., and Gold, M.R. (2002). CD40 signaling in B cells regulates the expression of the Pim-1 kinase via the NF-kappa B pathway. Journal of immunology 168, 744-754.
Zippo, A., De Robertis, A., Serafini, R., and Oliviero, S. (2007). PIM1-dependent phosphorylation of histone H3 at serine 10 is required for MYC-dependent transcriptional activation and oncogenic transformation. Nature cell biology 9, 932-944.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊