跳到主要內容

臺灣博碩士論文加值系統

(44.192.20.240) 您好!臺灣時間:2024/02/26 01:36
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:徐浩彬
研究生(外文):Hao-Bin Syu
論文名稱:人類臍帶間質幹細胞之條件培養液治療大白鼠腹膜透析所引起的腹膜纖維化
論文名稱(外文):The Paracrine Effects from Human Umbilical Mesenchymal Stem Cells on Treatment for Peritoneal Dialysis-Induced Fibrosis in Rat
指導教授:傅毓秀傅毓秀引用關係
指導教授(外文):Yu-Show Fu
學位類別:碩士
校院名稱:國立陽明大學
系所名稱:解剖學及細胞生物學研究所
學門:醫藥衛生學門
學類:醫學學類
論文種類:學術論文
論文出版年:2014
畢業學年度:102
語文別:中文
論文頁數:119
中文關鍵詞:腹膜纖維化
外文關鍵詞:Peritoneal Fibrosis
相關次數:
  • 被引用被引用:0
  • 點閱點閱:265
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
腹膜透析是一種腎臟的替代性療法,但長期使用腹膜透析會造成
嚴重的併發症-腹膜纖維化 (peritoneal fibrosis)。研究發現透析液中的
葡萄糖經代謝後, 會產生葡萄糖代謝產物 (glucose degradation
product),如:methylglyoxal (MGO),這類代謝產物已被認為是造成
腹膜損傷的重要原因之一。
目前臨床上發現,使用腹膜透析的病人約七至八年即會產生腹膜
纖維化的可能,因此,勢必要再尋找另一種更好、更安全、無副作用、
又長效的治療方式來治療、或避免腹膜透析時腹膜纖維化的生成。
存在於人類臍帶瓦頓氏凝膠內的間質幹細胞 (human umbilical
cord mesenchymal stem cells in wharton’s jelly,簡稱 HUMSCs) 是良
好的幹細胞來源。根據本實驗室先前的研究結果顯示,移植人類臍帶
間質幹細胞能有效降低大鼠肝臟纖維化的情況,植入的幹細胞並沒有
偵測到轉變為肝臟細胞,可能是藉由釋出生物激素幫助肝組織的再生。
先前我們的研究結果亦證明,移植人類臍帶間質幹細胞到進行腹膜透
析的大白鼠體內,發現可避免腹膜纖維化的產生,推測是幹細胞釋出
生物激素,抑制、或保護腹膜發炎。
因此,本論文將探討正常氧濃度、與低氧濃度培養下的人類臍帶
2
間質幹細胞之條件培養液,觀察其對大白鼠腹膜纖維化的治療效果。
首先,以含有 20mM methylglyoxal (MGO) 之透析液打入大白鼠腹腔
中,連續三週、或四週,結果顯示,PD/MGO 3W 組、和PD/MGO 4W
組,腹腔呈現腹繭的生成,壁層及臟層腹膜均有增厚的情形,且腹膜
內膠原纖維的含量也明顯增多 (p<0.05)。同時,應用ED1 免疫染色,
發現增厚腹膜內的活化白血球增多。以Griffonia simplicifolia 1
(GS1)-lectin 觀察血管的新生,結果顯示,血管會大量的增生 (p<
0.05)。因此,確定大白鼠腹膜纖維化的動物模式已建立。
在PD/MGO 處理連續三週後,第四週一開始,除了給予透析液
之外,還加入在低氧、或正常氧培養下的人類臍帶間質幹細胞之條件
培養液之濃縮粉末,分別處理一天、或七天。結果顯示,正常氧培養
之條件培養液處理一天、或七天、及低氧培養之條件培養液處理一天,
其腹膜的厚度、腹膜膠原纖維的含量、腹膜的發炎、與腹膜的血管生
成,與正常組相比,都有顯著性的增加 (p<0.05),但與PD/MGO 4W
組相比,則有統計上的降低 (p<0.05)。然而,處理低氧環境培養下
之條件培養液七天組,可改善因PD/MGO 透析混合液所導致腹膜的
增厚、發炎、與血管增生,與正常組相比,並沒有明顯的差異。
以human cytokine array 偵測八十五種人類臍帶間質幹細胞條件
3
培養液中人類生物激素的種類與含量,發現正常氧、與低氧環境培養
下之條件培養液含有大量的IL-8、Serpin E1、IL-6、CXCL1、MIF、
IGFBP3、Thrombospontin1、PTX3、TIMP、MMP9、Coagulation factor
III、DPPIV、Serpin F1、與HGF,其中IL-6、與CXCL1 的表現量,
在低氧環境培養下之條件培養液顯著高出許多 (p<0.05)。
由實驗結果推測,人類臍帶間質幹細胞之條件培養液含有多種生
物激素,能有效治療腹膜纖維化的修復,對臨床上長期使用腹膜透析
的患者,期望能維持其腹膜的功能,對治療腹膜纖維化提供一個新的
治療方向。
A major complication in continuous ambulatory peritoneal dialysis in
end-stage renal disease patients undergoing long-term peritoneal dialysis (PD)
is peritoneal fibrosis, which can result in peritoneal structural and functional
changes, predominantly in the submesothelial compact collagenous zone,
membrane hyperpermeability, and ultrafitration failure. Glucose
degradation products in the peritoneal dialysis solution such as
methylglyoxal (MGO), are risk factors for peritoneal fibrosis. Human
umbilical mesenchymal cells (HUMSCs) in Wharton's jelly possess stem cell
properties and are easily obtained and processed as compared to embryonic
and bone marrow stem cells. This study focuses on the effects of
HUMSCs-conditioned medium in a rat peritoneal fibrosis model. In the
animal model, intraperitoneal injections for 3 weeks or 4 weeks of PD
containing 20 mM of MGO into the rats (referred to the PD/MGO 3W and
PD/MGO 4W group) markedly induced abdominal cocoon formation,
peritoneal thickening and collagen accumulation. Immunohistochemical
analyses indicated neoangiogenesis and significant increase in the numbers
of ED-1 and α-SMA positive cells in the thickened peritoneum in the rats of
the groups PD/MGO 3W and PD/MGO 4W. Furthermore, PD/MGO
treatment for 3 weeks and 4 weeks caused functional impairments in the
peritoneal membrane. However, in comparison with the PD/MGO group,
5
intraperitoneal administration of HUMSCs-conditioned medium into the rats
significantly ameliorated the PD/MGO-induced abdominal cocoon formation,
peritoneal fibrosis, inflammation, neoangiogenesis and ultrafiltration failure.
Thus, direct treatment of HUMSCs-conditioned medium might provide a
potential therapeutic strategy in the prevention of peritoneal fibrosis.
中文摘要 ....................................... 1
英文摘要 ...................................... 4
第一章 緒論.................................. 6
1.1 腹膜透析 ........................ 6
1.1.1 腹膜透析的優點 ........7
1.1.2 腹膜透析的缺點 ....... 7
1.2 腹膜纖維化的發生機轉 .................... 8
1.3 腹膜纖維化的動物模式 ................... 10
1.4 治療腹膜纖維化的基礎醫學研究 ............. 11
1.5 幹細胞治療腹膜纖維化 ................... 12
1.6 幹細胞條件培養液 ....... 13
1.7 人類臍帶間質幹細胞 .............. 16
第二章 實驗目的 .................. 18
第三章 材料與方法 ................... 19
3.1 人類臍帶間質幹細胞之培養 ............. 19
3.2 人類臍帶間質幹細胞之條件培養液製備 .......... 20
3.3 計數人類臍帶間質幹細胞在正常及低氧下之細胞數 ..... 20
II
3.4 實驗動物 ....................... 21
3.5 腹腔內埋管 ................... 21
3.6 腹膜透析液 ................... 22
3.7 腹膜纖維化的大白鼠模式建立 .............. 22
3.8 人類臍帶間質幹細胞之條件培養液移植 ....... 22
3.9 實驗分組 ....................... 23
3.10 實驗動物犧牲、灌流固定、與冷凍切片 .............. 24
3.11 蘇木紫-伊紅染色 (Hematoxylin & Eosin Stain,簡稱 .. 25
H&E Stain).......................... 25
3.12 組織膠原纖維染色 (Sirius Red Stain) .......... 26
3.13 組織免疫染色 .............. 26
3.14 腹膜血管的測量 .......... 27
3.15 可溶性膠原纖維測量 (Soluble Collagen Measurement) .. 28
3.16 西方墨漬法 (Western Blot) ................. 29
3.16.1 蛋白質萃取 ............. 29
3.16.2 蛋白質濃度測試 ...................... 29
3.16.3 電泳 (Electrophoresis) ............. 30
3.16.4 西方墨漬法 (Western blot) ............... 31
III
3.16.5 影像截取計算 ......................... 32
3.17 Human cytokine array ......... 32
3.17.1 以cytokine array 作分析 ........... 32
3.18 統計分析 (Statistical Analysis) ................... 33
第四章 結果................................ 34
4.1 腹膜纖維化動物模式的建立 .................. 34
4.2 腹膜纖維化大白鼠體重的變化情形 ................ 34
4.3 處理低氧環境培養下的人類臍帶間質幹細胞之條件培養 ... 35
液,可以避免因PD/MGO 透析液所造成腹繭生成 ............ 35
4.4 處理低氧環境培養下的人類臍帶間質幹細胞之條件培養 .... 36
液,可抑制因PD/MGO 透析液所造成壁層腹膜的增厚............. 36
4.5 處理低氧環境培養下的人類臍帶間質幹細胞之條件培養 .... 37
液,可抑制因PD/MGO 透析液所造成臟層腹膜的增厚............. 37
4.6 處理低氧環境培養下的人類臍帶間質幹細胞之條件培養 .... 39
液,可避免因PD/MGO 透析液所造成壁層腹膜纖維化的增多 ... 39
4.7 處理低氧環境培養下的人類臍帶間質幹細胞之條件培養 .... 41
液,可避免因 PD/MGO 透析液所造成臟層腹膜纖維化的增加....... 41
4.8 處理低氧環境培養下的人類臍帶間質幹細胞之條件培養 .... 43
液,可抑制因PD/MGO 透析液所導致小腸腸繫膜內膠原蛋白含量的增加.... 43
4.9 處理低氧環境培養下的人類臍帶間質幹細胞之條件培養 .... 45
液,可降低因PD/MGO 透析液所造成腹膜的發炎反應............. 45
4.10 處理低氧環境培養下的人類臍帶間質幹細胞之條件培養 .. 45
液,可減緩腹膜內因PD/MGO 透析液所導致血管的增生......... 45
4.11 處理低氧濃度培養下的人類臍帶間質幹細胞之條件培養 .. 47
液,可修復腹膜透析的功能 .................... 47
4.11.1 腹水體積(Drain volume) ........ 47
4.11.2 葡萄糖濃度變化 (D4/D0 glucose)....... 48
4.12 正常氧濃度、或低氧濃度培養下的人類臍帶間質幹細胞 .. 48
之條件培養液中,人類生物激素的表現情形 ......... 48
第五章 討論................................ 50
5.1 移植人類臍帶間質幹細胞、或處理人類臍帶間質幹細胞 .... 50
之條件培養液,對於修復腹膜纖維化的差異 ............ 50
5.2 處理人類臍帶間質幹細胞之條件培養液有效修復腹膜纖維化 .... 51
5.3 低氧環境下,刺激人類臍帶間質幹細胞分泌更多生長激
素,有助於修復腹膜纖維化、及降低發炎反應的能力 .............. 52
5.4 正常、與低氧環境下人類臍帶間質幹細胞之條件培養液,
處理一天、或七天, 對於改善腹膜纖維化的差異 ......... 54
第六章 結論與未來展望 ..................... 57
第七章 參考文獻 ........................ 58
第八章 圖表................................ 67
圖一、誘發大白鼠腹膜纖維化、和處理人類臍帶間質幹細 ........ 68
胞之條件培養液的實驗流程圖。 .................. 68
圖二、由大白鼠壁層腹膜 (肌肉)之微觀變化,顯示腹膜纖維化之動
物模式的建立。 ................. 70
圖三、由大白鼠肝臟表面腹膜之微觀變化,顯示腹膜纖維化之動物模
式的建立。 ................................... 71
圖四、由大白鼠腹腔內各器官的沾粘情形,顯示腹膜纖維化 .......... 72
之動物模式的建立。 .................. 72
圖五、給予 PD/MGO 透析液、或人類臍帶間質幹細胞之條件....... 74
培養液處理後的體重變化情形。 ................. 74
圖六、大白鼠腹腔巨觀的變化情形。 ................ 75
圖七、以 H&E 染色,觀察腹壁上的腹膜厚度,顯示處理低氧環境培
養下的人類臍帶間質幹細胞之條件培養液,可避免大白鼠因給予
PD/MGO 透析液所造成壁層腹膜的增厚。 ........... 77
圖八、以 H&E 染色結果,定量腹壁上的腹膜厚度,顯示處理低氧環
境培養下的人類臍帶間質幹細胞之條件培養液,可避免大白鼠因給予
PD/MGO 透析液所造成壁層腹膜的增厚。 ........... 79
圖九、以 H&E 染色,觀察臟層腹膜的厚度,顯示處理低氧環境培養
下的人類臍帶間質幹細胞之條件培養液,可避免大白鼠因給予
PD/MGO 透析液所造成臟層腹膜的增厚。 ........ 81
圖十、以 H&E 染色結果,定量臟層腹膜厚度,顯示處理低氧環境培
養下的人類臍帶間質幹細胞之條件培養液,可避免大白鼠因給予
PD/MGO 透析液所造成臟層腹膜的增厚。 ........... 83
圖十一、以 Sirius red 染色,觀察壁層腹膜內膠原纖維的變化情形,
結果顯示,處理低氧環境培養下的人類臍帶間質幹細胞之條件培養液,
可阻止大白鼠壁層腹膜,因給予PD/MGO 透析液所造成的腹膜纖維
化。 ............. 85
圖十二、以 Sirius red 染色結果,定量壁層腹膜內膠原纖維的改變情
VII
形,結果顯示處理低氧環境培養下的人類臍帶間質幹細胞之條件培養
液,可阻止大白鼠壁層腹膜,因給予 PD/MGO 透析液所造成的腹膜
纖維化。 .................................. 86
圖十三、以 Sirius red 染色,觀察臟層腹膜內膠原纖維的變化情形,
結果顯示,處理低氧環境培養下的人類臍帶間質幹細胞之條件培養液,
可阻止大白鼠臟層腹膜,因給予PD/MGO 透析液所造成的腹膜纖維
化。 ............................................. 88
圖十四、以 Sirius red 染色結果,定量臟層腹膜內膠原纖維的改變情
形,結果顯示,處理低氧環境培養下的人類臍帶間質幹細胞之條件培
養液,可阻止大白鼠臟層腹膜,因給予 PD/MGO 透析液所造成的腹
膜纖維化。 .................... 90
圖十五、以西方墨漬法證實,處理低氧環境培養下的人類臍帶間質幹
細胞之條件培養液,可降低大白鼠腸繫膜內 collagen 的含量。 .... 92
圖十六、處理低氧環境培養下的人類臍帶間質幹細胞之條件培養液,
可降低大白鼠腸繫膜內可溶性膠原纖維的含量。 ............... 93
圖十七、圖片顯示,處理低氧環境培養下的人類臍帶間質幹細胞之條
件培養液,可以阻止因 PD /MGO 透析液所造成的腹膜內發炎反應。
.................. 95
VIII
圖十八、圖片顯示,處理低氧環境培養下的人類臍帶間質幹細胞之條
件培養液,可以避免因 PD/MGO 透析液而造成膜內 α-SMA 的增加。
..................................................... 96
圖十九、圖片顯示,處理低氧環境培養下的人類臍帶間質幹細胞之條
件培養液,可改善因 PD /MGO 透析液所造成血管的增生。.......... 97
圖二十、以GS1-lectin 染色結果,定量壁層腹膜內血管的面積、長度、
與數目,結果顯示,處理低氧環境培養下的人類臍帶間質幹細胞之條
件培養液,可降低因 PD/MGO 透析液所造成血管的增生。........... 98
圖二十一、處理低氧環境培養下的人類臍帶間質幹細胞之條件培養液,
有助於恢復腹膜透析的功能。 .........102
圖二十二、 以 human cytokine array 來偵測,正常氧濃度、與低氧環
境培養下的人類臍帶間質幹細胞之條件培養液中,人類生物激素的表
現情形。 ......... 104
圖二十三、 以 human cytokine array 來偵測,正常氧濃度、與低氧環
境培養下的人類臍帶間質幹細胞之條件培養液中,人類生物激素的表
現情形。 .................................. 106
圖二十四、以 human cytokine array 結果,定量正常氧濃度、與低氧
環境培養下的人類臍帶間質幹細胞之條件培養液中,人類生物激素的
變化情形。 ............ 108
表一、給予 PD/MGO 透析液、或人類臍帶間質幹細胞之條件培養液
處理後的體重變化情形。 ......... 109
表二、以 H&E 染色結果,定量壁層腹膜厚度,顯示處理低氧環境培
養下的人類臍帶間質幹細胞之條件培養液,可避免大白鼠因給予
PD/MGO 透析液所造成腹腔腹壁層上腹膜的增厚。 .... 110
表三、以 H&E 染色結果,定量臟層腹膜厚度,顯示處理低氧環境培
養下的人類臍帶間質幹細胞之條件培養液,可避免大白鼠因給予
PD/MGO 透析液所造成腹腔內臟層腹膜的增厚。 ......... 111
表四、以 Sirius red 染色結果,定量壁層腹膜內膠原纖維的改變情形,
結果顯示處理低氧環境培養下的人類臍帶間質幹細胞之條件培養液,
可阻止大白鼠腹壁上的腹膜,因給予 PD/MGO 透析液所造成的腹膜
纖維化。 ..................... 112
表五、以 Sirius red 染色結果,定量臟層腹膜內膠原纖維的改變情形,
結果顯示,處理低氧環境培養下的人類臍帶間質幹細胞之條件培養液,
可阻止大白鼠腹腔內臟層腹膜,因給予 PD/MGO 透析液所造成的腹
膜纖維化。 ................................ 113
表六、以西方墨漬法證實,以西方墨漬法證實,處理低氧環境培養下
X
的人類臍帶間質幹細胞之條件培養液,可降低大白鼠腸繫膜內
collagen 的含量。 .................... 114
表七、處理低氧環境培養下的人類臍帶間質幹細胞之條件培養液,可
降低大白鼠腸繫膜內可溶性膠原纖維的含量。 ................................ 115
表八、以GS1-lectin 染色結果,定量壁層腹膜內血管的面積、長度、
與數目,結果顯示,處理低氧環境培養下的人類臍帶間質幹細胞之條
件培養液,可降低因 PD/MGO 透析液所造成血管的增生。......... 116
表八、以GS1-lectin 染色結果,定量壁層腹膜內血管的面積、長度、
與數目,結果顯示,處理低氧環境培養下的人類臍帶間質幹細胞之條
件培養液,可降低因 PD/MGO 透析液所造成血管的增生。......... 117
表九、處理低氧環境培養下的人類臍帶間質幹細胞之條件培養液,有
助於恢復腹膜透析的功能。 .... 118
表十、以 human cytokine array 結果,定量正常氧濃度、與低氧環境
培養下的人類臍帶間質幹細胞之條件培養液中,人類生物激素的變化
情形。 ......................................... 119
Arno, A.I., S. Amini-Nik, P.H. Blit, M. Al-Shehab, C. Belo, E. Herer, C.H. Tien, and M.G.
Jeschke. 2014. Human Wharton's jelly-mesenchymal stem cells promote skin
wound healing through paracrine signaling. Stem cell research & therapy. 5:28.
Bachmaier, K., S. Toya, and A.B. Malik. 2014. Therapeutic administration of the
chemokine CXCL1/KC abrogates autoimmune inflammatory heart disease. PloS
one. 9:e89647.
Bajo, M.A., G. del Peso, M.A. Castro, A. Cirugeda, M.J. Castro, T. Olea, O. Costero, J.A.
Sanchez-Tomero, C. Diaz, and R. Selgas. 2004. Pathogenic significance of
hypertrophic mesothelial cells in peritoneal effluent and ex vivo culture.
Advances in peritoneal dialysis. Conference on Peritoneal Dialysis. 20:43-46.
Bohlender, J.M., S. Franke, G. Stein, and G. Wolf. 2005. Advanced glycation end
products and the kidney. American journal of physiology. Renal physiology.
289:F645-659.
Bradford, M.M. 1976. A rapid and sensitive method for the quantitation of
microgram quantities of protein utilizing the principle of protein-dye binding.
Analytical biochemistry. 72:248-254.
Cantinieaux, D., R. Quertainmont, S. Blacher, L. Rossi, T. Wanet, A. Noel, G. Brook, J.
Schoenen, and R. Franzen. 2013. Conditioned medium from bone
marrow-derived mesenchymal stem cells improves recovery after spinal cord
injury in rats: an original strategy to avoid cell transplantation. PloS one.
8:e69515.
Chao, K.C., K.F. Chao, Y.S. Fu, and S.H. Liu. 2008. Islet-like clusters derived from
mesenchymal stem cells in Wharton's Jelly of the human umbilical cord for
59
transplantation to control type 1 diabetes. PloS one. 3:e1451.
Chen, L., Y. Xu, J. Zhao, Z. Zhang, R. Yang, J. Xie, X. Liu, and S. Qi. 2014. Conditioned
medium from hypoxic bone marrow-derived mesenchymal stem cells enhances
wound healing in mice. PloS one. 9:e96161.
Coles, G.A., and J.D. Williams. 1998. What is the place of peritoneal dialysis in the
integrated treatment of renal failure? Kidney international. 54:2234-2240.
Coronel, F., A. Berni, S. Cigarran, N. Calvo, and J.A. Herrero. 2004. Effects of a
ngiotensin II receptor blocker (irbesartan) on peritoneal membrane functions.
Advances in peritoneal dialysis. Conference on Peritoneal Dialysis. 20:27-30.
Cselenyak, A., E. Pankotai, E.M. Horvath, L. Kiss, and Z. Lacza. 2010. Mesenchymal
stem cells rescue cardiomyoblasts from cell death in an in vitro ischemia model
via direct cell-to-cell connections. BMC cell biology. 11:29.
Davies, S.J., J. Bryan, L. Phillips, and G.I. Russell. 1996. Longitudinal changes in
peritoneal kinetics: the effects of peritoneal dialysis and peritonitis. Nephrology,
dialysis, transplantation : official publication of the European Dialysis and
Transplant Association - European Renal Association. 11:498-506.
Davies, S.J., L. Phillips, P.F. Naish, and G.I. Russell. 2001. Peritoneal glucose exposure
and changes in membrane solute transport with time on peritoneal dialysis.
Journal of the American Society of Nephrology : JASN. 12:1046-1051.
Dobbie, J.W. 1992. Pathogenesis of peritoneal fibrosing syndromes (sclerosing
peritonitis) in peritoneal dialysis. Peritoneal dialysis international : journal of the
International Society for Peritoneal Dialysis. 12:14-27.
Duman, S., K. Wieczorowska-Tobis, A. Styszynski, B. Kwiatkowska, A. Breborowicz,
and D.G. Oreopoulos. 2004. Intraperitoneal enalapril ameliorates morphologic
changes induced by hypertonic peritoneal dialysis solutions in rat peritoneum.
60
Advances in peritoneal dialysis. Conference on Peritoneal Dialysis. 20:31-36.
Fang, W., J.Q. Qian, Z.Y. Yu, and S.S. Chen. 2004. Morphological changes of the
peritoneum in peritoneal dialysis patients. Chinese medical journal.
117:862-866.
Fang, C.C., C.J. Yen, Y.M. Chen, T.S. Chu, M.T. Lin, J.Y. Yang, and T.J. Tsai. 2006.
Diltiazem suppresses collagen synthesis and IL-1beta-induced TGF-beta1
production on human peritoneal mesothelial cells. Nephrology, dialysis,
transplantation : official publication of the European Dialysis and Transplant
Association - European Renal Association. 21:1340-1347.
Fu, Y.S., Y.T. Shih, Y.C. Cheng, and M.Y. Min. 2004. Transformation of human umbilical
mesenchymal cells into neurons in vitro. Journal of biomedical science.
11:652-660.
Gandhi, V.C., H.M. Humayun, T.S. Ing, J.T. Daugirdas, V.R. Jablokow, S. Iwatsuki, W.P.
Geis, and J.E. Hano. 1980. Sclerotic thickening of the peritoneal membrane in
maintenance peritoneal dialysis patients. Archives of internal medicine.
140:1201-1203.
Guo, H., J.C. Leung, M.F. Lam, L.Y. Chan, A.W. Tsang, H.Y. Lan, and K.N. Lai. 2007.
Smad7 transgene attenuates peritoneal fibrosis in uremic rats treated with
peritoneal dialysis. Journal of the American Society of Nephrology : JASN.
18:2689-2703.
Hansen-Smith, F.M., L. Watson, D.Y. Lu, and I. Goldstein. 1988. Griffonia simplicifolia I:
fluorescent tracer for microcirculatory vessels in nonperfused thin muscles and
sectioned muscle. Microvascular research. 36:199-215.
Hirahara, I., E. Kusano, S. Yanagiba, Y. Miyata, Y. Ando, S. Muto, and Y. Asano. 2006.
Peritoneal injury by methylglyoxal in peritoneal dialysis. Peritoneal dialysis
61
international : journal of the International Society for Peritoneal Dialysis.
26:380-392.
Hung, K.Y., R.S. Shyu, C.C. Fang, C.C. Tsai, P.H. Lee, T.J. Tsai, and B.S. Hsieh. 2001.
Dipyridamole inhibits human peritoneal mesothelial cell proliferation in vitro
and attenuates rat peritoneal fibrosis in vivo. Kidney international.
59:2316-2324.
Hung, S.C., R.R. Pochampally, S.C. Chen, S.C. Hsu, and D.J. Prockop. 2007. Angiogenic
effects of human multipotent stromal cell conditioned medium activate the
PI3K-Akt pathway in hypoxic endothelial cells to inhibit apoptosis, increase
survival, and stimulate angiogenesis. Stem cells (Dayton, Ohio). 25:2363-2370.
Io, H., C. Hamada, Y. Ro, Y. Ito, I. Hirahara, and Y. Tomino. 2004. Morphologic changes
of peritoneum and expression of VEGF in encapsulated peritoneal sclerosis rat
models. Kidney international. 65:1927-1936.
Ito, T., and N. Yorioka. 2008. Peritoneal damage by peritoneal dialysis solutions.
Clinical and experimental nephrology. 12:243-249.
Jimenez-Heffernan, J.A., A. Aguilera, L.S. Aroeira, E. Lara-Pezzi, M.A. Bajo, G. del Peso,
M. Ramirez, C. Gamallo, J.A. Sanchez-Tomero, V. Alvarez, M. Lopez-Cabrera, and
R. Selgas. 2004. Immunohistochemical characterization of fibroblast
subpopulations in normal peritoneal tissue and in peritoneal dialysis-induced
fibrosis. Virchows Archiv : an international journal of pathology. 444:247-256.
Jorres, A., T.O. Bender, A. Finn, J. Witowski, S. Frohlich, G.M. Gahl, U. Frei, H. Keck,
and J. Passlick-Deetjen. 1998. Biocompatibility and buffers: effect of
bicarbonate-buffered peritoneal dialysis fluids on peritoneal cell function.
Kidney international. 54:2184-2193.
Kim, Y.L., S.H. Kim, J.H. Kim, S.J. Kim, C.D. Kim, D.K. Cho, Y.J. Kim, and J.B. Moberly.
62
1999. Effects of peritoneal rest on peritoneal transport and peritoneal
membrane thickening in continuous ambulatory peritoneal dialysis rats.
Peritoneal dialysis international : journal of the International Society for
Peritoneal Dialysis. 19 Suppl 2:S384-387.
Krediet, R.T. 1999. The peritoneal membrane in chronic peritoneal dialysis. Kidney
international. 55:341-356.
Lai, K.N., J.C. Leung, L.Y. Chan, F.F. Li, S.C. Tang, M.F. Lam, K.C. Tse, T.P. Yip, T.M. Chan,
A. Wieslander, and H. Vlassara. 2004. Differential expression of receptors for
advanced glycation end-products in peritoneal mesothelial cells exposed to
glucose degradation products. Clinical and experimental immunology.
138:466-475.
Lin, Y.C., T.L. Ko, Y.H. Shih, M.Y. Lin, T.W. Fu, H.S. Hsiao, J.Y. Hsu, and Y.S. Fu. 2011.
Human umbilical mesenchymal stem cells promote recovery after ischemic
stroke. Stroke; a journal of cerebral circulation. 42:2045-2053.
Ma, L., X.Y. Feng, B.L. Cui, F. Law, X.W. Jiang, L.Y. Yang, Q.D. Xie, and T.H. Huang. 2005.
Human umbilical cord Wharton's Jelly-derived mesenchymal stem cells
differentiation into nerve-like cells. Chinese medical journal. 118:1987-1993.
Margetts, P.J., M. Kolb, T. Galt, C.M. Hoff, T.R. Shockley, and J. Gauldie. 2001a. Gene
transfer of transforming growth factor-beta1 to the rat peritoneum: effects on
membrane function. Journal of the American Society of Nephrology : JASN.
12:2029-2039.
Margetts, P.J., M. Kolb, L. Yu, C.M. Hoff, and J. Gauldie. 2001b. A chronic
inflammatory infusion model of peritoneal dialysis in rats. Peritoneal dialysis
international : journal of the International Society for Peritoneal Dialysis. 21
Suppl 3:S368-372.
63
Margetts, P.J., P. Bonniaud, L. Liu, C.M. Hoff, C.J. Holmes, J.A. West-Mays, and M.M.
Kelly. 2005. Transient overexpression of TGF-{beta}1 induces epithelial
mesenchymal transition in the rodent peritoneum. Journal of the American
Society of Nephrology : JASN. 16:425-436.
Martinson, E., A. Wieslander, P. Kjellstrand, and U. Boberg. 1992. Toxicity of heat
sterilized peritoneal dialysis fluids is derived from degradation of glucose. ASAIO
journal (American Society for Artificial Internal Organs : 1992). 38:M370-372.
McElreavey, K.D., A.I. Irvine, K.T. Ennis, and W.H. McLean. 1991. Isolation, culture and
characterisation of fibroblast-like cells derived from the Wharton's jelly portion
of human umbilical cord. Biochemical Society transactions. 19:29s.
Mitchell, K.E., M.L. Weiss, B.M. Mitchell, P. Martin, D. Davis, L. Morales, B. Helwig, M.
Beerenstrauch, K. Abou-Easa, T. Hildreth, D. Troyer, and S. Medicetty. 2003.
Matrix cells from Wharton's jelly form neurons and glia. Stem cells (Dayton,
Ohio). 21:50-60
Mortier, S., D. Faict, C.G. Schalkwijk, N.H. Lameire, and A.S. De Vriese. 2004.
Long-term exposure to new peritoneal dialysis solutions: Effects on the
peritoneal membrane. Kidney international. 66:1257-1265.
Mortier, S., D. Faict, N.H. Lameire, and A.S. De Vriese. 2005. Benefits of switching
from a conventional to a low-GDP bicarbonate/lactate-buffered dialysis solution
in a rat model. Kidney international. 67:1559-1565.
Nakayama, M., A. Sakai, M. Numata, and T. Hosoya. 2003. Hyper-vascular change and
formation of advanced glycation endproducts in the peritoneum caused by
methylglyoxal and the effect of an anti-oxidant, sodium sulfite. American journal
of nephrology. 23:390-394.
Nakayama, M. and H. Terawaki 2014. "Multidisciplinary clinical strategies for
64
encapsulating peritoneal sclerosis in peritoneal dialysis: Update from Japan." Int
J Urol.
Nishimura, H., Y. Ito, M. Mizuno, A. Tanaka, Y. Morita, S. Maruyama, Y. Yuzawa, and S.
Matsuo. 2008. Mineralocorticoid receptor blockade ameliorates peritoneal
fibrosis in new rat peritonitis model. American journal of physiology. Renal
physiology. 294:F1084-1093.
Noh, H., J.S. Kim, K.H. Han, G.T. Lee, J.S. Song, S.H. Chung, J.S. Jeon, H. Ha, and H.B.
Lee. 2006. Oxidative stress during peritoneal dialysis: implications in functional
and structural changes in the membrane. Kidney international. 69:2022-2028.
Rakoff-Nahoum, S., J. Paglino, F. Eslami-Varzaneh, S. Edberg, and R. Medzhitov. 2004.
Recognition of commensal microflora by toll-like receptors is required for
intestinal homeostasis. Cell. 118:229-241.
Rodrigues, A., M. Martins, M.J. Santos, I. Fonseca, J.C. Oliveira, A. Cabrita, J. Melo e
Castro, and R.T. Krediet. 2004. Evaluation of effluent markers cancer antigen 125,
vascular endothelial growth factor, and interleukin-6: relationship with
peritoneal transport. Advances in peritoneal dialysis. Conference on Peritoneal
Dialysis. 20:8-12.
Sarugaser, R., D. Lickorish, D. Baksh, M.M. Hosseini, and J.E. Davies. 2005. Human
umbilical cord perivascular (HUCPV) cells: a source of mesenchymal progenitors.
Stem cells (Dayton, Ohio). 23:220-229.
Scheller, J., A. Chalaris, D. Schmidt-Arras, and S. Rose-John. 2011. The pro- and
anti-inflammatory properties of the cytokine interleukin-6. Biochimica et
biophysica acta. 1813:878-888.
Tanabe, K., Y. Maeshima, K. Ichinose, H. Kitayama, Y. Takazawa, K. Hirokoshi, M.
Kinomura, H. Sugiyama, and H. Makino. 2007. Endostatin peptide, an inhibitor
65
of angiogenesis, prevents the progression of peritoneal sclerosis in a mouse
experimental model. Kidney international. 71:227-238.
Tilg, H., E. Trehu, M.B. Atkins, C.A. Dinarello, and J.W. Mier. 1994. Interleukin-6 (IL-6)
as an anti-inflammatory cytokine: induction of circulating IL-1 receptor
antagonist and soluble tumor necrosis factor receptor p55. Blood. 83:113-118.
Timmers, L., S.K. Lim, I.E. Hoefer, F. Arslan, R.C. Lai, A.A. van Oorschot, M.J. Goumans,
C. Strijder, S.K. Sze, A. Choo, J.J. Piek, P.A. Doevendans, G. Pasterkamp, and D.P.
de Kleijn. 2011. Human mesenchymal stem cell-conditioned medium improves
cardiac function following myocardial infarction. Stem cell research. 6:206-214.
Tsai, P.C., T.W. Fu, Y.M. Chen, T.L. Ko, T.H. Chen, Y.H. Shih, S.C. Hung, and Y.S. Fu. 2009.
The therapeutic potential of human umbilical mesenchymal stem cells from
Wharton's jelly in the treatment of rat liver fibrosis. Liver transplantation :
official publication of the American Association for the Study of Liver Diseases
and the International Liver Transplantation Society. 15:484-495.
Tulpar, S., M.H. Poyrazoglu, H. Ozbilge, F. Bastug, Z. Gunduz, Y.A. Torun, E.G. Kaya, H.
Akgun, I. Dursun, and R. Dusunsel. 2012. Modulation of inflammation by
mesenchymal stem cell transplantation in peritoneal dialysis in rats. Renal
failure. 34:1317-1323.
Ueno, T., A. Nakashima, S. Doi, T. Kawamoto, K. Honda, Y. Yokoyama, T. Doi, Y. Higashi,
N. Yorioka, Y. Kato, N. Kohno, and T. Masaki. 2013. Mesenchymal stem cells
ameliorate experimental peritoneal fibrosis by suppressing inflammation and
inhibiting TGF-beta1 signaling. Kidney international. 84:297-307.
Wang, H.S., S.C. Hung, S.T. Peng, C.C. Huang, H.M. Wei, Y.J. Guo, Y.S. Fu, M.C. Lai, and
C.C. Chen. 2004. Mesenchymal stem cells in the Wharton's jelly of the human
umbilical cord. Stem cells (Dayton, Ohio). 22:1330-1337.
66
Wang, N., Q. Li, L. Zhang, H. Lin, J. Hu, D. Li, S. Shi, S. Cui, J. Zhou, J. Ji, J. Wan, G. Cai,
and X. Chen. 2012. Mesenchymal stem cells attenuate peritoneal injury through
secretion of TSG-6. PloS one. 7:e43768.
Wieslander, A.P., A. Andren, E. Martinson, P. Kjellstrand, and M. Hultqvist. 1993.
Toxicity of effluent peritoneal dialysis fluid. Advances in peritoneal dialysis.
Conference on Peritoneal Dialysis. 9:31-35.
Xing, Z., J. Gauldie, G. Cox, H. Baumann, M. Jordana, X.F. Lei, and M.K. Achong. 1998.
IL-6 is an antiinflammatory cytokine required for controlling local or systemic
acute inflammatory responses. The Journal of clinical investigation.
101:311-320.
Yang, C.C., Y.H. Shih, M.H. Ko, S.Y. Hsu, H. Cheng, and Y.S. Fu. 2008. Transplantation of
human umbilical mesenchymal stem cells from Wharton's jelly after complete
transection of the rat spinal cord. PloS one. 3:e3336.
Zareie, M., L.H. Hekking, A.G. Welten, B.A. Driesprong, I.L. Schadee-Eestermans, D.
Faict, A. Leyssens, C.G. Schalkwijk, R.H. Beelen, P.M. ter Wee, and J. van den
Born. 2003. Contribution of lactate buffer, glucose and glucose degradation
products to peritoneal injury in vivo. Nephrology, dialysis, transplantation :
official publication of the European Dialysis and Transplant Association -
European Renal Association. 18:2629-2637.
Zeier, M., V. Schwenger, R. Deppisch, U. Haug, K. Weigel, U. Bahner, C. Wanner, H.
Schneider, T. Henle, and E. Ritz. 2003. Glucose degradation products in PD fluids:
do they disappear from the peritoneal cavity and enter the systemic circulation?
Kidney international. 63:298-305.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top