跳到主要內容

臺灣博碩士論文加值系統

(44.211.239.1) 您好!臺灣時間:2023/01/31 06:37
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:顏毓瑋
研究生(外文):Yu-Wei Yen
論文名稱:具氧化還原雙重應答高分子奈米微胞於癌症治療之開發
論文名稱(外文):Development of Dual-Redox-Responsive Polymer Micelle for Cancer Therapy
指導教授:駱俊良
指導教授(外文):Chun-Liang Lo
學位類別:碩士
校院名稱:國立陽明大學
系所名稱:醫學工程研究所
學門:工程學門
學類:生醫工程學類
論文種類:學術論文
論文出版年:2014
畢業學年度:102
語文別:中文
論文頁數:77
中文關鍵詞:癌症治療高分子奈米微胞氧化還原應答穀胱苷肽過氧化氫
外文關鍵詞:cancer therapymicelleredox responsiveglutathionehydrogen peroxide
相關次數:
  • 被引用被引用:0
  • 點閱點閱:334
  • 評分評分:
  • 下載下載:14
  • 收藏至我的研究室書目清單書目收藏:0
高分子奈米微胞為具親水與疏水鏈段組成核-殼結構,其中疏水核層能有效攜載疏水性抗癌藥物。高分子奈米微胞可根據腫瘤組織微環境設計成具環境應答性。因此當具環境應答性之高分子奈米微胞依被動標的方式累積在腫瘤組織時,可因應答作用促使奈米微胞釋放藥物,達到局部釋放的效果。本研究旨為開發一具活性氧化物(reactive oxygen species;ROS)與穀胱苷肽(glutathione;GSH)雙重應答性高分子奈米微胞,其中奈米微胞核層為具ROS應答之硫化基團與具GSH應答之雙硫鍵基團所構成。當進入腫瘤組織時,由於因ROS與GSH過度表現使奈米微胞因氧化還原作用變形而釋放藥物,進而毒殺癌細胞。
本研究已成功合成含硫化基與雙硫鍵之雙親性高分子mPEG-b-poly(diethyl sulfide-alt-cystamine)n(mPEG-b-poly(DES-alt-cys)n),亦成功製備出大小約為200 nm之奈米微胞,並可作為疏水性抗癌藥物-喜樹鹼之藥物載體,其載藥率約為50%。在模擬腫瘤氧化還原環境中,喜樹鹼釋放量於48小時可達100%。根據細胞毒性與細胞週期分析結果顯示,攜載喜樹鹼高分子奈米微胞影響人類大腸癌細胞之細胞週期並有相當良好的毒殺效果。藉由共軛焦顯微鏡可觀察到攜載喜樹鹼高分子奈米微胞被攝入大腸癌細胞內並釋放藥物。動物全身分布影像顯示載喜樹鹼奈米微胞能有效累積在腫瘤組織,並在腫瘤抑制中有良好的抑制效果。綜合上述體內、體外之結果,相信本研究開發之具氧化還原雙重應答高分子奈米微胞具有癌症治療之潛能。

Micelles have core-shell structure in which the hydrophobic core provides the basis for the hydrophobic anticancer drugs. Polymeric micelles could be designed for environment-sensitivity based on the external stimuli in tumors. The environment-sensitive micelles could therefore accumulate in tumor by passive targeting and release drug specifically in tumors. In this study, we developed ROS and GSH dual redox-responsive polymeric micelles in which the core layers were composed of sulfide groups and disulfide bond groups. When dual-redox-responsive polymeric micelles are transported into tumor tissue, they would deform and release drug in response to high levels of intracellular ROS and GSH, leading to cytotoxicity.
An amphiphilic copolymer, mPEG-b-poly(diethyl sulfide-alt-cystamine)n (mPEG-b-poly(DES-alt-cys)n), containing sulfide group and disulfide bond was successfully synthesized. Micelles with 200 nm diameter were prepared by solvent exchange method. The anticancer drug, camptothecin(CPT) was incorporated into micelles with a high drug content of 50 w.t.%. After 48h, CPT molecules were completely released in the redox environment. According to the results of in vitro cytotoxicity study and cell cycle analysis, CPT-loaded micelles showed high toxicity for HCT116 colon cancer cells. The images observed by CLSM confirmed the internalization of the polymeric micelles and CPT release behaviors. The in vivo biodistribution study indicated that CPT-loaded micelles exhibited high accumulation in tumor. The tumor inhibition test demonstrated that the CPT-loaded micelles showed good therapeutic effect compared to the CPT molecules. These results suggest that dual-redox-responsive polymeric micelles have promising potential as CPT carriers for cancer therapy.

總目錄
中文摘要 i
英文摘要 ii
總目錄 iv
圖目錄 vii
表目錄 x
第 1 章 研究動機與目的 1
第 2 章 文獻回顧 3
2.1 喜樹鹼之基本介紹 3
2.2 活性氧化物之基本概念 4
2.3 穀胱甘肽之基本概念 5
2.4 癌細胞之活性氧化物調控 6
2.5 癌細胞之穀胱甘肽調控 7
2.6 環境應答性藥物載體之介紹 7
2.6.1 具氧化應答性藥物載體 7
2.6.2 具還原應答性藥物載體 10
2.6.3 具氧化還原雙重應答性藥物載體 13
第 3 章 實驗材料與方法 15
3.1 藥品 15
3.2 實驗儀器與裝置 16
3.3 具氧化還原雙重應答高分子之製備 17
3.3.1 Poly(ethylene glycol) methyl ether之末端改質 17
3.3.2 bis(4-nitrophenyl) diethyl sulfide之合成 20
3.3.3 mPEG-b-poly(diethyl sulfide -alt- cystamine)n之合成 20
3.4 高分子奈米微胞之製備 21
3.5 高分子奈米微胞之基本性質分析 21
3.5.1 粒徑分析 21
3.5.2 界面電位分析 22
3.5.3 微觀結構之分析 22
3.6 臨界微胞濃度之鑑定 22
3.7 穩定性測試 23
3.7.1 粒徑變化之觀測 23
3.7.2 微觀結構變化之觀測 23
3.8 氧化還原應答性測試 23
3.8.1 粒徑變化之觀測 23
3.8.2 微觀結構變化之觀測 24
3.9 高分子奈米微胞包覆抗癌藥物-喜樹鹼 24
3.10 喜樹鹼之檢量線製備 24
3.11 載藥率與有效包覆率分析 24
3.12 喜樹鹼之內酯環鑑定 25
3.13 藥物釋放分析 25
3.13.1 藥物洩漏分析 25
3.13.2 氧化還原環境之藥物釋放分析 26
3.14 高分子奈米微胞生物體外試驗 26
3.14.1 培養基製備 26
3.14.2 高分子奈米微胞之材料毒性測試 26
3.14.3 喜樹鹼與攜載喜樹鹼高分子奈米微胞之毒性測試 27
3.14.4 攜載喜樹鹼高分子奈米微胞之細胞內吞作用 28
3.14.5 攜載喜樹鹼高分子奈米微胞對細胞週期之影響 29
3.15 攜載喜樹鹼高分子奈米微胞之動物活體觀察 30
3.15.1 攜載喜樹鹼高分子奈米微胞之動物器官累積分布 30
3.15.2 攜載喜樹鹼高分子奈米微胞之腫瘤抑制效果 30
3.15.3 攜載喜樹鹼高分子奈米微胞之肝、腎毒性之影響 31
3.16 統計方法 31
第 4 章 結果與討論 32
4.1 具氧化還原雙重應答性高分子之製備 32
4.2 高分子奈米微胞之基本性質 41
4.3 臨界微胞濃度 42
4.4 穩定性與應答性測試 43
4.5 攜載喜樹鹼高分子奈米微胞之基本性質測定 47
4.6 喜樹鹼之藥物活性測試 47
4.7 藥物釋放 48
4.8 細胞毒性 51
4.9 攜載喜樹鹼高分子奈米微胞之細胞內吞作用 56
4.10 細胞週期 58
4.11 攜載喜樹鹼高分子奈米微胞之動物全身累積分布 60
4.12 攜載喜樹鹼高分子奈米微胞之腫瘤抑制效果 62
4.13 攜載喜樹鹼高分子奈米微胞之肝、腎毒性之影響 65
第 5 章 結論 67
參考文獻 69

圖目錄
圖 1-1. 具氧化還原雙重應答高分子奈米微胞於腫瘤組織之藥物釋放示意圖 2
圖 2-1. 活性氧於腫瘤內之惡性循環…………………………………...5
圖 2-2. 硼酸脂基團之氧化機制 9
圖 2-3. 硫代縮酮基團之氧化機制 9
圖 2-4. 硫化基團之氧化機制 10
圖 2-5. 以雙硫鍵與雙碳鍵鍵結之雙親性高分子 11
圖 2-6. 聚乙二醇可拆除式之基因載體示意圖 11
圖 2-7. 硫化鎘奈米粒子封頂之多孔性二氧化矽奈米微球 12
圖 2-8. 具雙硫鍵交聯之奈米微胞 12
圖 2-9. 高分子奈米粒子之藥物釋放機制 13
圖 2-10. 雙硒鍵奈米微胞之氧化還原應答示意圖 14
圖 3-1. mPEG-COOH合成示意圖 18
圖 3-2. mPEG-NHS ester合成示意圖 19
圖 3-3. mPEG-cystamine合成示意圖 19
圖 3-4. bis(4-nitrophenyl) diethyl sulfide合成示意圖 20
圖 3-5. mPEG-b-poly(DES-alt-cys)n合成示意圖 21
圖 3-6. 載藥率與有效包覆率計算公式 25
圖 4-1. mPEG-COOH之1H-NMR光譜圖 33
圖 4-2. mPEG-COOH之FT-IR光譜圖 33
圖 4-3. mPEG-NHS ester之1H-NMR光譜圖 34
圖 4-4. mPEG-NHS ester之FT-IR光譜圖 35
圖 4-5. mPEG-cystamine之1H-NMR光譜圖 36
圖 4-6. mPEG-cystamine之FT-IR光譜圖 36
圖 4-7. bis(4-nitrophenyl) diethyl sulfide之1H-NMR光譜圖 37
圖 4-8. bis(4-nitrophenyl) diethyl sulfide之FT-IR光譜圖 38
圖 4-9. mPEG-b-poly(DES-alt-cys)n之1H-NMR光譜圖 39
圖 4-10. mPEG-b-poly(DES-alt-cys)n之FT-IR光譜圖 40
圖 4-11. mPEG-b-poly(DES-alt-cys)n之GPC圖譜 40
圖 4-12. P27奈米微胞之TEM影像 42
圖 4-13. mPEG-b-poly(DES-alt-cys)27之臨界微胞濃度 43
圖 4-14. P27奈米微胞於pH.7.4 PBS與37oC之穩定度 45
圖 4-15. P27奈米微胞保存於不同溫度下之穩定度 45
圖 4-16. P27奈米微胞於不同氧化還原環境之48小時TEM影像 46
圖 4-17. P27奈米微胞於不同氧化還原環境之應答 46
圖 4-18. 攜載喜樹鹼高分子奈米微胞於不同藥物濃度下之性質 47
圖 4-19. 攜載喜樹鹼高分子奈米微胞之HPLC圖譜 48
圖 4-20. 模擬生物體內氧化還原環境之藥物釋放情形 50
圖 4-21. 蛋白質環境之藥物洩漏 50
圖 4-22. 奈米微胞對小鼠纖維母細胞L929之材料毒性測試 52
圖 4-23. 抗癌藥物喜樹鹼與攜載喜樹鹼高分子奈米微胞對小鼠纖維母細胞L929之細胞毒殺效果 52
圖 4-24. 抗癌藥物喜樹鹼與攜載喜樹鹼高分子奈米微胞對人類肺腺癌A549之細胞毒殺效果 53
圖 4-25. 抗癌藥物喜樹鹼與攜載喜樹鹼高分子奈米微胞對人類非小細胞肺癌H1299之細胞毒殺效果 54
圖 4-26. 抗癌藥物喜樹鹼與攜載喜樹鹼高分子奈米微胞對大腸癌細胞HCT116之細胞毒殺效果 55
圖 4-27. 標定FITC之攜載喜樹鹼高分子奈米微胞於腫瘤細胞氧化環境之共軛焦顯微鏡影像 57
圖 4-28. 標定Alexa 660之攜載喜樹鹼高分子奈米微胞於腫瘤細胞酸性胞器之共軛焦顯微鏡影像 58
圖 4-29. 奈米微胞、抗癌藥物喜樹鹼與攜載喜樹鹼高分子奈米微胞於3、6小時對大腸癌細胞HCT116之細胞週期影響 59
圖 4-30. 細胞週期之量化結果 60
圖 4-31. 非侵入式影像系統之全身藥物分布 61
圖 4-32. 攜載喜樹鹼高分子奈米微胞於24小時之器官累積情形 62
圖 4-33. 攜載喜樹鹼高分子奈米微胞於24小時之各器官相對螢光強 度 62
圖 4-34. 腫瘤抑制效果 64
圖 4-35. 裸鼠之肝功能指標與腎功能指標 66

表目錄
表格 1. 不同鏈長之mPEG-b-poly(DES-alt-cys)n 41
表格 2. 不同鏈長mPEG-b-poly(DES-alt-cys)n之奈米微胞 42

1. N. Bertrand and J.C. Leroux, The journey of a drug-carrier in the body: an anatomo-physiological perspective. J Control Release, 2012. 161(2): p. 152-63.
2. J. Gong, et al., Polymeric micelles drug delivery system in oncology. J Control Release, 2012. 159(3): p. 312-23.
3. G. Gaucher, et al., Block copolymer micelles: preparation, characterization and application in drug delivery. J Control Release, 2005. 109(1-3): p. 169-88.
4. L. Stewart, et al., A model for the mechanism of human topoisomerase I. Science, 1998. 279(5356): p. 1534-41.
5. Y. Pommier, Topoisomerase I inhibitors: camptothecins and beyond. Nature Reviews Cancer, 2006. 6(10): p. 789-802.
6. D.W. Nilesh Patankar, Nano-particulate Drug Delivery systems for Camptothecins Cancer Therapy, 2012. 8: p. 90-104.
7. M. Watanabe, et al., In vivo antitumor activity of camptothecin incorporated in liposomes formulated with an artificial lipid and human serum albumin. Journal of Controlled Release, 2008. 127(3): p. 231-238.
8. C.L. Dora, et al., Evaluation of antimetastatic activity and systemic toxicity of camptothecin-loaded microspheres in mice injected with B16-F10 melanoma cells. Journal of Pharmacy and Pharmaceutical Sciences, 2006. 9(1): p. 22-31.
9. J. Liu, et al., Poly(omega-pentadecalactone-co-butylene-co-succinate) nanoparticles as biodegradable carriers for camptothecin delivery. Biomaterials, 2009. 30(29): p. 5707-5719.
10. J. Boonstra and J.A. Post, Molecular events associated with reactive oxygen species and cell cycle progression in mammalian cells. Gene, 2004. 337: p. 1-13.
11. M. Valko, et al., Free radicals and antioxidants in normal physiological functions and human disease. Int J Biochem Cell Biol, 2007. 39(1): p. 44-84.
12. D. Trachootham, et al., Redox regulation of cell survival. Antioxid Redox Signal, 2008. 10(8): p. 1343-74.
13. D. Trachootham, et al., Targeting cancer cells by ROS-mediated mechanisms: a radical therapeutic approach? Nat Rev Drug Discov, 2009. 8(7): p. 579-91.
14. R. Franco and J.A. Cidlowski, Apoptosis and glutathione: beyond an antioxidant. Cell Death Differ, 2009. 16(10): p. 1303-14.
15. M.L. Circu and T.Y. Aw, Glutathione and modulation of cell apoptosis. Biochim Biophys Acta, 2012. 1823(10): p. 1767-77.
16. V.I. Lushchak, Glutathione homeostasis and functions: potential targets for medical interventions. J Amino Acids, 2012. 2012: p. 736837.
17. Y. Lei, et al., Proteomics identification of ITGB3 as a key regulator in reactive oxygen species-induced migration and invasion of colorectal cancer cells. Mol Cell Proteomics, 2011. 10(10): p. M110 005397.
18. B.P. Patel, et al., Lipid peroxidation, total antioxidant status, and total thiol levels predict overall survival in patients with oral squamous cell carcinoma. Integr Cancer Ther, 2007. 6(4): p. 365-72.
19. E.O. Hileman, et al., Intrinsic oxidative stress in cancer cells: a biochemical basis for therapeutic selectivity. Cancer Chemother Pharmacol, 2004. 53(3): p. 209-19.
20. M. Giorgio, et al., Hydrogen peroxide: a metabolic by-product or a common mediator of ageing signals? Nat Rev Mol Cell Biol, 2007. 8(9): p. 722-8.
21. S.P. Hussain, et al., Radical causes of cancer. Nat Rev Cancer, 2003. 3(4): p. 276-85.
22. B. Benassi, et al., c-Myc phosphorylation is required for cellular response to oxidative stress. Mol Cell, 2006. 21(4): p. 509-19.
23. Z.Z. Huang, et al., Mechanism and significance of increased glutathione level in human hepatocellular carcinoma and liver regeneration. FASEB J, 2001. 15(1): p. 19-21.
24. P. Kuppusamy, et al., Noninvasive imaging of tumor redox status and its modification by tissue glutathione levels. Cancer Res, 2002. 62(1): p. 307-12.
25. A. Russo, et al., Selective modulation of glutathione levels in human normal versus tumor cells and subsequent differential response to chemotherapy drugs. Cancer Res, 1986. 46(6): p. 2845-8.
26. E. Lallana and N. Tirelli, Oxidation-Responsive Polymers: Which Groups to Use, How to Make Them, What to Expect From Them (Biomedical Applications). Macromolecular Chemistry and Physics, 2013: p. 143-158.
27. J.L. Major Jourden and S.M. Cohen, Hydrogen peroxide activated matrix metalloproteinase inhibitors: a prodrug approach. Angew Chem Int Ed Engl, 2010. 49(38): p. 6795-7.
28. K.E. Broaders, et al., A biocompatible oxidation-triggered carrier polymer with potential in therapeutics. J Am Chem Soc, 2011. 133(4): p. 756-8.
29. C. de Gracia Lux, et al., Biocompatible polymeric nanoparticles degrade and release cargo in response to biologically relevant levels of hydrogen peroxide. J Am Chem Soc, 2012. 134(38): p. 15758-64.
30. S. Bakirdere, et al., Effect of Boron on Human Health The Open Mineral Processing Journal, 2010. 3: p. 54-59.
31. S. Colonna, et al., Enantio and diastereoselectivity of cyclohexanone monooxygenase catalyzed oxidation of 1,3-dithioacetals. Tetrahedron-Asymmetry, 1996. 7(2): p. 565-570.
32. A.K. Shukla, et al., Superoxide induced deprotection of 1,3-dithiolanes: A convenient method of dedithioacetalization. Indian Journal of Chemistry Section B-Organic Chemistry Including Medicinal Chemistry, 2004. 43(8): p. 1748-1752.
33. N.C. Ganguly and S.K. Barik, A Facile Mild Deprotection Protocol for 1,3-Dithianes and 1,3-Dithiolanes with 30% Hydrogen Peroxide and Iodine Catalyst in Aqueous Micellar System. Synthesis-Stuttgart, 2009(8): p. 1393-1399.
34. D.S. Wilson, et al., Orally delivered thioketal nanoparticles loaded with TNF-alpha-siRNA target inflammation and inhibit gene expression in the intestines. Nat Mater, 2010. 9(11): p. 923-8.
35. M.S. Shim and Y. Xia, A reactive oxygen species (ROS)-responsive polymer for safe, efficient, and targeted gene delivery in cancer cells. Angew Chem Int Ed Engl, 2013. 52(27): p. 6926-9.
36. M. Valentini, et al., Precise determination of the hydrophobic/hydrophilic junction in polymeric vesicles. Langmuir, 2003. 19(11): p. 4852-4855.
37. A. Napoli, et al., Oxidation-responsive polymeric vesicles. Nat Mater, 2004. 3(3): p. 183-9.
38. V.V. Khutoryanskiy and N. Tirelli, Oxidation-responsiveness of nanomaterials for targeting inflammatory reactions. Pure and Applied Chemistry, 2008. 80(8): p. 1703-1718.
39. M.K. Gupta, et al., Poly(PS-b-DMA) micelles for reactive oxygen species triggered drug release. Journal of Controlled Release, 2012. 162(3): p. 591-598.
40. P. Hu and N. Tirelli, Scavenging ROS: Superoxide Dismutase/Catalase Mimetics by the Use of an Oxidation-Sensitive Nanocarrier/Enzyme Conjugate. Bioconjugate Chemistry, 2012. 23(3): p. 438-449.
41. C.-C. Song, et al., Oxidation-Responsive Polymers for Biomedical Applications. J. Mater. Chem. B,, 2014.
42. H. Sun, et al., Biodegradable micelles with sheddable poly(ethylene glycol) shells for triggered intracellular release of doxorubicin. Biomaterials, 2009. 30(31): p. 6358-66.
43. H. Sun, et al., Shell-sheddable micelles based on dextran-SS-poly(epsilon-caprolactone) diblock copolymer for efficient intracellular release of doxorubicin. Biomacromolecules, 2010. 11(4): p. 848-54.
44. J. Liu, et al., Bioreducible micelles self-assembled from amphiphilic hyperbranched multiarm copolymer for glutathione-mediated intracellular drug delivery. Biomacromolecules, 2011. 12(5): p. 1567-77.
45. T. Thambi, et al., Bioreducible block copolymers based on poly(ethylene glycol) and poly(gamma-benzyl L-glutamate) for intracellular delivery of camptothecin. Bioconjug Chem, 2011. 22(10): p. 1924-31.
46. C. Cui, et al., Cellular uptake, intracellular trafficking, and antitumor efficacy of doxorubicin-loaded reduction-sensitive micelles. Biomaterials, 2013. 34(15): p. 3858-69.
47. G.T. Zugates, et al., Synthesis of poly(beta-amino ester)s with thiol-reactive side chains for DNA delivery. J Am Chem Soc, 2006. 128(39): p. 12726-34.
48. S. Takae, et al., PEG-detachable polyplex micelles based on disulfide-linked block catiomers as bioresponsive nonviral gene vectors. J Am Chem Soc, 2008. 130(18): p. 6001-9.
49. S. Matsumoto, et al., Environment-responsive block copolymer micelles with a disulfide cross-linked core for enhanced siRNA delivery. Biomacromolecules, 2009. 10(1): p. 119-27.
50. C.Y. Lai, et al., A mesoporous silica nanosphere-based carrier system with chemically removable CdS nanoparticle caps for stimuli-responsive controlled release of neurotransmitters and drug molecules. J Am Chem Soc, 2003. 125(15): p. 4451-9.
51. L.-P. Lv, et al., Disulfide-crosslinked biomimetic micelles : formation, thiol reactivity and cytotoxicity behavior. Macromol. Chem. Phys., 2010. 211: p. 2292-2300.
52. N. Kamaly, et al., Targeted polymeric therapeutic nanoparticles: design, development and clinical translation. Chem Soc Rev, 2012. 41(7): p. 2971-3010.
53. L.Y. Tang, et al., Shell-Detachable Micelles Based on Disulfide-Linked Block Copolymer As Potential Carrier for Intracellular Drug Delivery. Bioconjugate Chemistry, 2009. 20(6): p. 1095-1099.
54. S.X. Li, et al., Synthesis and properties of monocleavable amphiphilic comblike copolymers with alternating PEG and PCL grafts. Journal of Polymer Science Part a-Polymer Chemistry, 2012. 50(15): p. 3135-3148.
55. Y. Sun, et al., Disassemblable micelles based on reduction-degradable amphiphilic graft copolymers for intracellular delivery of doxorubicin. Biomaterials, 2010. 31(27): p. 7124-7131.
56. J. Li, et al., Redox-sensitive micelles self-assembled from amphiphilic hyaluronic acid-deoxycholic acid conjugates for targeted intracellular delivery of paclitaxel. Biomaterials, 2012. 33(7): p. 2310-20.
57. J.A. Cook, et al., Cellular glutathione and thiol measurements from surgically resected human lung tumor and normal lung tissue. Cancer Res, 1991. 51(16): p. 4287-94.
58. G.Y. Liou and P. Storz, Reactive oxygen species in cancer. Free Radic Res, 2010. 44(5): p. 479-96.
59. N. Ma, et al., Dual redox responsive assemblies formed from diselenide block copolymers. J Am Chem Soc, 2010. 132(2): p. 442-3.
60. Y.S. Liu, et al., Preparation of Chondroitin Sulfate-g-Poly(epsilon-Caprolactone) Copolymers as a CD44-Targeted Vehicle for Enhanced Intracellular Uptake. Mol Pharm, 2014.
61. H.S. Zhao, et al., Preparation and Characterization of PEG/PLA Multiblock and Triblock Copolymer. Bulletin of the Korean Chemical Society, 2012. 33(5): p. 1638-1642.
62. X. Shuai, et al., Micellar carriers based on block copolymers of poly(epsilon-caprolactone) and poly(ethylene glycol) for doxorubicin delivery. J Control Release, 2004. 98(3): p. 415-26.
63. E.A. Mahmoud, et al., Inflammation responsive logic gate nanoparticles for the delivery of proteins. Bioconjug Chem, 2011. 22(7): p. 1416-21.
64. T.-B. Ren, et al., Shell-sheddable micelles based on star-shaped poly(ε-caprolactone)-SS-poly(ethyl glycol) copolymer for intracellular drug release. Sofe matter, 2011. 7(6): p. 2329-2331.
65. P. Opanasopit, et al., Block copolymer design for camptothecin incorporation into polymeric micelles for passive tumor targeting. Pharm Res, 2004. 21(11): p. 2001-8.
66. Y. Zu, et al., A Novel Preparation Method for Camptothecin (CPT) Loaded Folic Acid Conjugated Dextran Tumor-Targeted Nanoparticles. Int J Mol Sci, 2011. 12(7): p. 4237-49.
67. D.L. Tang, et al., A pH-responsive chitosan-b-poly(p-dioxanone) nanocarrier: formation and efficient antitumor drug delivery. Nanotechnology, 2013. 24(14): p. 145101.
68. F. Du, et al., CPT loaded nanoparticles based on beta-cyclodextrin-grafted poly(ethylene glycol)/poly (L-glutamic acid) diblock copolymer and their inclusion complexes with CPT. Colloids Surf B Biointerfaces, 2014. 113: p. 230-6.
69. Z.M. Prijovich, et al., Effect of pH and human serum albumin on the cytotoxicity of a glucuronide prodrug of 9-aminocamptothecin. Cancer Chemother Pharmacol, 2007. 60(1): p. 7-17.
70. S. Kim, et al., Overcoming the barriers in micellar drug delivery: loading efficiency, in vivo stability, and micelle-cell interaction. Expert Opin Drug Deliv, 2010. 7(1): p. 49-62.
71. F. Meng, et al., Reduction-sensitive polymers and bioconjugates for biomedical applications. Biomaterials, 2009. 30(12): p. 2180-98.
72. R. Kreisberg, et al., Paired natural cysteine mutation mapping: aid to constraining models of protein tertiary structure. Protein Sci, 1995. 4(11): p. 2405-10.
73. M. Yokoyama, Clinical Applications of Polymeric Micelle Carrier Systems in Chemotherapy and Image Diagnosis of Solid Tumors. J Exp Clin Med 2011. 3(4): p. 151-158.
74. Y.P. Tsao, et al., The involvement of active DNA synthesis in camptothecin-induced G2 arrest: altered regulation of p34cdc2/cyclin B. Cancer Res, 1992. 52(7): p. 1823-9.
75. K. Mross, et al., A phase I clinical and pharmacokinetic study of the camptothecin glycoconjugate, BAY 38-3441, as a daily infusion in patients with advanced solid tumors. Ann Oncol, 2004. 15(8): p. 1284-94.
76. O. Rojas-Espinosa, et al., Serum enzymatic changes following infection of mice with Mycobacterium lepraemurium. Int J Lepr Other Mycobact Dis, 1985. 53(2): p. 258-61.
77. P.L. Lu, et al., Multifunctional hollow nanoparticles based on graft-diblock copolymers for doxorubicin delivery. Biomaterials, 2011. 32(8): p. 2213-21.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top