|
1. N. Bertrand and J.C. Leroux, The journey of a drug-carrier in the body: an anatomo-physiological perspective. J Control Release, 2012. 161(2): p. 152-63. 2. J. Gong, et al., Polymeric micelles drug delivery system in oncology. J Control Release, 2012. 159(3): p. 312-23. 3. G. Gaucher, et al., Block copolymer micelles: preparation, characterization and application in drug delivery. J Control Release, 2005. 109(1-3): p. 169-88. 4. L. Stewart, et al., A model for the mechanism of human topoisomerase I. Science, 1998. 279(5356): p. 1534-41. 5. Y. Pommier, Topoisomerase I inhibitors: camptothecins and beyond. Nature Reviews Cancer, 2006. 6(10): p. 789-802. 6. D.W. Nilesh Patankar, Nano-particulate Drug Delivery systems for Camptothecins Cancer Therapy, 2012. 8: p. 90-104. 7. M. Watanabe, et al., In vivo antitumor activity of camptothecin incorporated in liposomes formulated with an artificial lipid and human serum albumin. Journal of Controlled Release, 2008. 127(3): p. 231-238. 8. C.L. Dora, et al., Evaluation of antimetastatic activity and systemic toxicity of camptothecin-loaded microspheres in mice injected with B16-F10 melanoma cells. Journal of Pharmacy and Pharmaceutical Sciences, 2006. 9(1): p. 22-31. 9. J. Liu, et al., Poly(omega-pentadecalactone-co-butylene-co-succinate) nanoparticles as biodegradable carriers for camptothecin delivery. Biomaterials, 2009. 30(29): p. 5707-5719. 10. J. Boonstra and J.A. Post, Molecular events associated with reactive oxygen species and cell cycle progression in mammalian cells. Gene, 2004. 337: p. 1-13. 11. M. Valko, et al., Free radicals and antioxidants in normal physiological functions and human disease. Int J Biochem Cell Biol, 2007. 39(1): p. 44-84. 12. D. Trachootham, et al., Redox regulation of cell survival. Antioxid Redox Signal, 2008. 10(8): p. 1343-74. 13. D. Trachootham, et al., Targeting cancer cells by ROS-mediated mechanisms: a radical therapeutic approach? Nat Rev Drug Discov, 2009. 8(7): p. 579-91. 14. R. Franco and J.A. Cidlowski, Apoptosis and glutathione: beyond an antioxidant. Cell Death Differ, 2009. 16(10): p. 1303-14. 15. M.L. Circu and T.Y. Aw, Glutathione and modulation of cell apoptosis. Biochim Biophys Acta, 2012. 1823(10): p. 1767-77. 16. V.I. Lushchak, Glutathione homeostasis and functions: potential targets for medical interventions. J Amino Acids, 2012. 2012: p. 736837. 17. Y. Lei, et al., Proteomics identification of ITGB3 as a key regulator in reactive oxygen species-induced migration and invasion of colorectal cancer cells. Mol Cell Proteomics, 2011. 10(10): p. M110 005397. 18. B.P. Patel, et al., Lipid peroxidation, total antioxidant status, and total thiol levels predict overall survival in patients with oral squamous cell carcinoma. Integr Cancer Ther, 2007. 6(4): p. 365-72. 19. E.O. Hileman, et al., Intrinsic oxidative stress in cancer cells: a biochemical basis for therapeutic selectivity. Cancer Chemother Pharmacol, 2004. 53(3): p. 209-19. 20. M. Giorgio, et al., Hydrogen peroxide: a metabolic by-product or a common mediator of ageing signals? Nat Rev Mol Cell Biol, 2007. 8(9): p. 722-8. 21. S.P. Hussain, et al., Radical causes of cancer. Nat Rev Cancer, 2003. 3(4): p. 276-85. 22. B. Benassi, et al., c-Myc phosphorylation is required for cellular response to oxidative stress. Mol Cell, 2006. 21(4): p. 509-19. 23. Z.Z. Huang, et al., Mechanism and significance of increased glutathione level in human hepatocellular carcinoma and liver regeneration. FASEB J, 2001. 15(1): p. 19-21. 24. P. Kuppusamy, et al., Noninvasive imaging of tumor redox status and its modification by tissue glutathione levels. Cancer Res, 2002. 62(1): p. 307-12. 25. A. Russo, et al., Selective modulation of glutathione levels in human normal versus tumor cells and subsequent differential response to chemotherapy drugs. Cancer Res, 1986. 46(6): p. 2845-8. 26. E. Lallana and N. Tirelli, Oxidation-Responsive Polymers: Which Groups to Use, How to Make Them, What to Expect From Them (Biomedical Applications). Macromolecular Chemistry and Physics, 2013: p. 143-158. 27. J.L. Major Jourden and S.M. Cohen, Hydrogen peroxide activated matrix metalloproteinase inhibitors: a prodrug approach. Angew Chem Int Ed Engl, 2010. 49(38): p. 6795-7. 28. K.E. Broaders, et al., A biocompatible oxidation-triggered carrier polymer with potential in therapeutics. J Am Chem Soc, 2011. 133(4): p. 756-8. 29. C. de Gracia Lux, et al., Biocompatible polymeric nanoparticles degrade and release cargo in response to biologically relevant levels of hydrogen peroxide. J Am Chem Soc, 2012. 134(38): p. 15758-64. 30. S. Bakirdere, et al., Effect of Boron on Human Health The Open Mineral Processing Journal, 2010. 3: p. 54-59. 31. S. Colonna, et al., Enantio and diastereoselectivity of cyclohexanone monooxygenase catalyzed oxidation of 1,3-dithioacetals. Tetrahedron-Asymmetry, 1996. 7(2): p. 565-570. 32. A.K. Shukla, et al., Superoxide induced deprotection of 1,3-dithiolanes: A convenient method of dedithioacetalization. Indian Journal of Chemistry Section B-Organic Chemistry Including Medicinal Chemistry, 2004. 43(8): p. 1748-1752. 33. N.C. Ganguly and S.K. Barik, A Facile Mild Deprotection Protocol for 1,3-Dithianes and 1,3-Dithiolanes with 30% Hydrogen Peroxide and Iodine Catalyst in Aqueous Micellar System. Synthesis-Stuttgart, 2009(8): p. 1393-1399. 34. D.S. Wilson, et al., Orally delivered thioketal nanoparticles loaded with TNF-alpha-siRNA target inflammation and inhibit gene expression in the intestines. Nat Mater, 2010. 9(11): p. 923-8. 35. M.S. Shim and Y. Xia, A reactive oxygen species (ROS)-responsive polymer for safe, efficient, and targeted gene delivery in cancer cells. Angew Chem Int Ed Engl, 2013. 52(27): p. 6926-9. 36. M. Valentini, et al., Precise determination of the hydrophobic/hydrophilic junction in polymeric vesicles. Langmuir, 2003. 19(11): p. 4852-4855. 37. A. Napoli, et al., Oxidation-responsive polymeric vesicles. Nat Mater, 2004. 3(3): p. 183-9. 38. V.V. Khutoryanskiy and N. Tirelli, Oxidation-responsiveness of nanomaterials for targeting inflammatory reactions. Pure and Applied Chemistry, 2008. 80(8): p. 1703-1718. 39. M.K. Gupta, et al., Poly(PS-b-DMA) micelles for reactive oxygen species triggered drug release. Journal of Controlled Release, 2012. 162(3): p. 591-598. 40. P. Hu and N. Tirelli, Scavenging ROS: Superoxide Dismutase/Catalase Mimetics by the Use of an Oxidation-Sensitive Nanocarrier/Enzyme Conjugate. Bioconjugate Chemistry, 2012. 23(3): p. 438-449. 41. C.-C. Song, et al., Oxidation-Responsive Polymers for Biomedical Applications. J. Mater. Chem. B,, 2014. 42. H. Sun, et al., Biodegradable micelles with sheddable poly(ethylene glycol) shells for triggered intracellular release of doxorubicin. Biomaterials, 2009. 30(31): p. 6358-66. 43. H. Sun, et al., Shell-sheddable micelles based on dextran-SS-poly(epsilon-caprolactone) diblock copolymer for efficient intracellular release of doxorubicin. Biomacromolecules, 2010. 11(4): p. 848-54. 44. J. Liu, et al., Bioreducible micelles self-assembled from amphiphilic hyperbranched multiarm copolymer for glutathione-mediated intracellular drug delivery. Biomacromolecules, 2011. 12(5): p. 1567-77. 45. T. Thambi, et al., Bioreducible block copolymers based on poly(ethylene glycol) and poly(gamma-benzyl L-glutamate) for intracellular delivery of camptothecin. Bioconjug Chem, 2011. 22(10): p. 1924-31. 46. C. Cui, et al., Cellular uptake, intracellular trafficking, and antitumor efficacy of doxorubicin-loaded reduction-sensitive micelles. Biomaterials, 2013. 34(15): p. 3858-69. 47. G.T. Zugates, et al., Synthesis of poly(beta-amino ester)s with thiol-reactive side chains for DNA delivery. J Am Chem Soc, 2006. 128(39): p. 12726-34. 48. S. Takae, et al., PEG-detachable polyplex micelles based on disulfide-linked block catiomers as bioresponsive nonviral gene vectors. J Am Chem Soc, 2008. 130(18): p. 6001-9. 49. S. Matsumoto, et al., Environment-responsive block copolymer micelles with a disulfide cross-linked core for enhanced siRNA delivery. Biomacromolecules, 2009. 10(1): p. 119-27. 50. C.Y. Lai, et al., A mesoporous silica nanosphere-based carrier system with chemically removable CdS nanoparticle caps for stimuli-responsive controlled release of neurotransmitters and drug molecules. J Am Chem Soc, 2003. 125(15): p. 4451-9. 51. L.-P. Lv, et al., Disulfide-crosslinked biomimetic micelles : formation, thiol reactivity and cytotoxicity behavior. Macromol. Chem. Phys., 2010. 211: p. 2292-2300. 52. N. Kamaly, et al., Targeted polymeric therapeutic nanoparticles: design, development and clinical translation. Chem Soc Rev, 2012. 41(7): p. 2971-3010. 53. L.Y. Tang, et al., Shell-Detachable Micelles Based on Disulfide-Linked Block Copolymer As Potential Carrier for Intracellular Drug Delivery. Bioconjugate Chemistry, 2009. 20(6): p. 1095-1099. 54. S.X. Li, et al., Synthesis and properties of monocleavable amphiphilic comblike copolymers with alternating PEG and PCL grafts. Journal of Polymer Science Part a-Polymer Chemistry, 2012. 50(15): p. 3135-3148. 55. Y. Sun, et al., Disassemblable micelles based on reduction-degradable amphiphilic graft copolymers for intracellular delivery of doxorubicin. Biomaterials, 2010. 31(27): p. 7124-7131. 56. J. Li, et al., Redox-sensitive micelles self-assembled from amphiphilic hyaluronic acid-deoxycholic acid conjugates for targeted intracellular delivery of paclitaxel. Biomaterials, 2012. 33(7): p. 2310-20. 57. J.A. Cook, et al., Cellular glutathione and thiol measurements from surgically resected human lung tumor and normal lung tissue. Cancer Res, 1991. 51(16): p. 4287-94. 58. G.Y. Liou and P. Storz, Reactive oxygen species in cancer. Free Radic Res, 2010. 44(5): p. 479-96. 59. N. Ma, et al., Dual redox responsive assemblies formed from diselenide block copolymers. J Am Chem Soc, 2010. 132(2): p. 442-3. 60. Y.S. Liu, et al., Preparation of Chondroitin Sulfate-g-Poly(epsilon-Caprolactone) Copolymers as a CD44-Targeted Vehicle for Enhanced Intracellular Uptake. Mol Pharm, 2014. 61. H.S. Zhao, et al., Preparation and Characterization of PEG/PLA Multiblock and Triblock Copolymer. Bulletin of the Korean Chemical Society, 2012. 33(5): p. 1638-1642. 62. X. Shuai, et al., Micellar carriers based on block copolymers of poly(epsilon-caprolactone) and poly(ethylene glycol) for doxorubicin delivery. J Control Release, 2004. 98(3): p. 415-26. 63. E.A. Mahmoud, et al., Inflammation responsive logic gate nanoparticles for the delivery of proteins. Bioconjug Chem, 2011. 22(7): p. 1416-21. 64. T.-B. Ren, et al., Shell-sheddable micelles based on star-shaped poly(ε-caprolactone)-SS-poly(ethyl glycol) copolymer for intracellular drug release. Sofe matter, 2011. 7(6): p. 2329-2331. 65. P. Opanasopit, et al., Block copolymer design for camptothecin incorporation into polymeric micelles for passive tumor targeting. Pharm Res, 2004. 21(11): p. 2001-8. 66. Y. Zu, et al., A Novel Preparation Method for Camptothecin (CPT) Loaded Folic Acid Conjugated Dextran Tumor-Targeted Nanoparticles. Int J Mol Sci, 2011. 12(7): p. 4237-49. 67. D.L. Tang, et al., A pH-responsive chitosan-b-poly(p-dioxanone) nanocarrier: formation and efficient antitumor drug delivery. Nanotechnology, 2013. 24(14): p. 145101. 68. F. Du, et al., CPT loaded nanoparticles based on beta-cyclodextrin-grafted poly(ethylene glycol)/poly (L-glutamic acid) diblock copolymer and their inclusion complexes with CPT. Colloids Surf B Biointerfaces, 2014. 113: p. 230-6. 69. Z.M. Prijovich, et al., Effect of pH and human serum albumin on the cytotoxicity of a glucuronide prodrug of 9-aminocamptothecin. Cancer Chemother Pharmacol, 2007. 60(1): p. 7-17. 70. S. Kim, et al., Overcoming the barriers in micellar drug delivery: loading efficiency, in vivo stability, and micelle-cell interaction. Expert Opin Drug Deliv, 2010. 7(1): p. 49-62. 71. F. Meng, et al., Reduction-sensitive polymers and bioconjugates for biomedical applications. Biomaterials, 2009. 30(12): p. 2180-98. 72. R. Kreisberg, et al., Paired natural cysteine mutation mapping: aid to constraining models of protein tertiary structure. Protein Sci, 1995. 4(11): p. 2405-10. 73. M. Yokoyama, Clinical Applications of Polymeric Micelle Carrier Systems in Chemotherapy and Image Diagnosis of Solid Tumors. J Exp Clin Med 2011. 3(4): p. 151-158. 74. Y.P. Tsao, et al., The involvement of active DNA synthesis in camptothecin-induced G2 arrest: altered regulation of p34cdc2/cyclin B. Cancer Res, 1992. 52(7): p. 1823-9. 75. K. Mross, et al., A phase I clinical and pharmacokinetic study of the camptothecin glycoconjugate, BAY 38-3441, as a daily infusion in patients with advanced solid tumors. Ann Oncol, 2004. 15(8): p. 1284-94. 76. O. Rojas-Espinosa, et al., Serum enzymatic changes following infection of mice with Mycobacterium lepraemurium. Int J Lepr Other Mycobact Dis, 1985. 53(2): p. 258-61. 77. P.L. Lu, et al., Multifunctional hollow nanoparticles based on graft-diblock copolymers for doxorubicin delivery. Biomaterials, 2011. 32(8): p. 2213-21.
|