|
1. De Jesus, N.H. Epidemics to eradication: the modern history of poliomyelitis. Virol J 4, 70 (2007). 2. Ho, M. et al. An epidemic of enterovirus 71 infection in Taiwan. Taiwan Enterovirus Epidemic Working Group. N Engl J Med 341, 929-35 (1999). 3. Chang, L.Y., Huang, Y.C. & Lin, T.Y. Fulminant neurogenic pulmonary oedema with hand, foot, and mouth disease. Lancet 352, 367-8 (1998). 4. McMinn, P.C. An overview of the evolution of enterovirus 71 and its clinical and public health significance. FEMS Microbiol Rev 26, 91-107 (2002). 5. Rotbart, H.A. Treatment of picornavirus infections. Antiviral Res 53, 83-98 (2002). 6. De Palma, A.M., Vliegen, I., De Clercq, E. & Neyts, J. Selective inhibitors of picornavirus replication. Med Res Rev 28, 823-84 (2008). 7. Bedard, K.M. & Semler, B.L. Regulation of picornavirus gene expression. Microbes Infect 6, 702-13 (2004). 8. Strebel, K. & Beck, E. A second protease of foot-and-mouth disease virus. J Virol 58, 893-9 (1986). 9. Svitkin, Y.V., Gorbalenya, A.E., Kazachkov, Y.A. & Agol, V.I. Encephalomyocarditis virus-specific polypeptide p22 possessing a proteolytic activity: preliminary mapping on the viral genome. FEBS Lett 108, 6-9 (1979). 10. Toyoda, H. et al. A second virus-encoded proteinase involved in proteolytic processing of poliovirus polyprotein. Cell 45, 761-70 (1986). 11. Aldabe, R., Barco, A. & Carrasco, L. Membrane permeabilization by poliovirus proteins 2B and 2BC. J Biol Chem 271, 23134-7 (1996). 12. de Jong, A.S. et al. Determinants for membrane association and permeabilization of the coxsackievirus 2B protein and the identification of the Golgi complex as the target organelle. J Biol Chem 278, 1012-21 (2003). 13. van Kuppeveld, F.J. et al. Coxsackievirus protein 2B modifies endoplasmic reticulum membrane and plasma membrane permeability and facilitates virus release. EMBO J 16, 3519-32 (1997). 14. Choe, S.S., Dodd, D.A. & Kirkegaard, K. Inhibition of cellular protein secretion by picornaviral 3A proteins. Virology 337, 18-29 (2005). 15. Paul, A.V., van Boom, J.H., Filippov, D. & Wimmer, E. Protein-primed RNA synthesis by purified poliovirus RNA polymerase. Nature 393, 280-4 (1998). 16. Svitkin, Y.V. et al. Internal translation initiation on poliovirus RNA: further characterization of La function in poliovirus translation in vitro. J Virol 68, 1544-50 (1994). 17. Thompson, S.R. & Sarnow, P. Enterovirus 71 contains a type I IRES element that functions when eukaryotic initiation factor eIF4G is cleaved. Virology 315, 259-66 (2003). 18. Pelletier, J. & Sonenberg, N. Internal initiation of translation of eukaryotic mRNA directed by a sequence derived from poliovirus RNA. Nature 334, 320-5 (1988). 19. Lu, J. et al. Viral kinetics of enterovirus 71 in human abdomyosarcoma cells. World J Gastroenterol 17, 4135-42 (2011). 20. Schmidt, N.J., Lennette, E.H. & Ho, H.H. An apparently new enterovirus isolated from patients with disease of the central nervous system. J Infect Dis 129, 304-9 (1974). 21. Bible, J.M., Pantelidis, P., Chan, P.K. & Tong, C.Y. Genetic evolution of enterovirus 71: epidemiological and pathological implications. Rev Med Virol 17, 371-9 (2007). 22. Alexander, J.P., Jr., Baden, L., Pallansch, M.A. & Anderson, L.J. Enterovirus 71 infections and neurologic disease--United States, 1977-1991. J Infect Dis 169, 905-8 (1994). 23. Nagy, G., Takatsy, S., Kukan, E., Mihaly, I. & Domok, I. Virological diagnosis of enterovirus type 71 infections: experiences gained during an epidemic of acute CNS diseases in Hungary in 1978. Arch Virol 71, 217-27 (1982). 24. Chumakov, M. et al. Enterovirus 71 isolated from cases of epidemic poliomyelitis-like disease in Bulgaria. Arch Virol 60, 329-40 (1979). 25. Shimizu, H. et al. Enterovirus 71 from fatal and nonfatal cases of hand, foot and mouth disease epidemics in Malaysia, Japan and Taiwan in 1997-1998. Jpn J Infect Dis 52, 12-5 (1999). 26. Ishimaru, Y., Nakano, S., Yamaoka, K. & Takami, S. Outbreaks of hand, foot, and mouth disease by enterovirus 71. High incidence of complication disorders of central nervous system. Arch Dis Child 55, 583-8 (1980). 27. Gilbert, G.L. et al. Outbreak of enterovirus 71 infection in Victoria, Australia, with a high incidence of neurologic involvement. Pediatr Infect Dis J 7, 484-8 (1988). 28. da Silva, E.E., Winkler, M.T. & Pallansch, M.A. Role of enterovirus 71 in acute flaccid paralysis after the eradication of poliovirus in Brazil. Emerg Infect Dis 2, 231-3 (1996). 29. Lum, L.C., Wong, K.T., Lam, S.K., Chua, K.B. & Goh, A.Y. Neurogenic pulmonary oedema and enterovirus 71 encephalomyelitis. Lancet 352, 1391 (1998). 30. Samuda, G.M., Chang, W.K., Yeung, C.Y. & Tang, P.S. Monoplegia caused by Enterovirus 71: an outbreak in Hong Kong. Pediatr Infect Dis J 6, 206-8 (1987). 31. Chen, S.C., Chang, H.L., Yan, T.R., Cheng, Y.T. & Chen, K.T. An eight-year study of epidemiologic features of enterovirus 71 infection in Taiwan. Am J Trop Med Hyg 77, 188-91 (2007). 32. Shimizu, H. et al. Molecular epidemiology of enterovirus 71 infection in the Western Pacific Region. Pediatr Int 46, 231-5 (2004). 33. Lin, T.Y., Twu, S.J., Ho, M.S., Chang, L.Y. & Lee, C.Y. Enterovirus 71 outbreaks, Taiwan: occurrence and recognition. Emerg Infect Dis 9, 291-3 (2003). 34. Lee, P.I., Lee, C.Y. & Wang, T.R. Recommendations for management of severe enterovirus infection in Taiwan. Zhonghua Min Guo Xiao Er Ke Yi Xue Hui Za Zhi 39, 217 (1998). 35. Kuo, R.L. & Shih, S.R. Strategies to develop antivirals against enterovirus 71. Virol J 10, 28 (2013). 36. Nishimura, Y. et al. Human P-selectin glycoprotein ligand-1 is a functional receptor for enterovirus 71. Nat Med 15, 794-7 (2009). 37. Yamayoshi, S. et al. Scavenger receptor B2 is a cellular receptor for enterovirus 71. Nat Med 15, 798-801 (2009). 38. Zhang, G. et al. In vitro and in vivo evaluation of ribavirin and pleconaril antiviral activity against enterovirus 71 infection. Arch Virol 157, 669-79 (2012). 39. Shia, K.S. et al. Design, synthesis, and structure-activity relationship of pyridyl imidazolidinones: a novel class of potent and selective human enterovirus 71 inhibitors. J Med Chem 45, 1644-55 (2002). 40. Senior, K. FDA panel rejects common cold treatment. Lancet Infect Dis 2, 264 (2002). 41. Shih, S.R. et al. Mutation in enterovirus 71 capsid protein VP1 confers resistance to the inhibitory effects of pyridyl imidazolidinone. Antimicrob Agents Chemother 48, 3523-9 (2004). 42. Weng, T.Y. et al. Lactoferrin inhibits enterovirus 71 infection by binding to VP1 protein and host cells. Antiviral Res 67, 31-7 (2005). 43. Yen, M.H., Chiu, C.H., Huang, Y.C. & Lin, T.Y. Effects of lactoferrin-containing formula in the prevention of enterovirus and rotavirus infection and impact on serum cytokine levels: a randomized trial. Chang Gung Med J 34, 395-402 (2011). 44. Matthews, D.A. et al. Structure-assisted design of mechanism-based irreversible inhibitors of human rhinovirus 3C protease with potent antiviral activity against multiple rhinovirus serotypes. Proc Natl Acad Sci U S A 96, 11000-7 (1999). 45. Lee, J.C. et al. A mammalian cell-based reverse two-hybrid system for functional analysis of 3C viral protease of human enterovirus 71. Anal Biochem 375, 115-23 (2008). 46. Lu, G. et al. Enterovirus 71 and coxsackievirus A16 3C proteases: binding to rupintrivir and their substrates and anti-hand, foot, and mouth disease virus drug design. J Virol 85, 10319-31 (2011). 47. Tsai, M.T. et al. Real-time monitoring of human enterovirus (HEV)-infected cells and anti-HEV 3C protease potency by fluorescence resonance energy transfer. Antimicrob Agents Chemother 53, 748-55 (2009). 48. Binford, S.L. et al. Conservation of amino acids in human rhinovirus 3C protease correlates with broad-spectrum antiviral activity of rupintrivir, a novel human rhinovirus 3C protease inhibitor. Antimicrob Agents Chemother 49, 619-26 (2005). 49. Patick, A.K. et al. In vitro antiviral activity of AG7088, a potent inhibitor of human rhinovirus 3C protease. Antimicrob Agents Chemother 43, 2444-50 (1999). 50. Zhang, K.E., Hee, B., Lee, C.A., Liang, B. & Potts, B.C. Liquid chromatography-mass spectrometry and liquid chromatography-NMR characterization of in vitro metabolites of a potent and irreversible peptidomimetic inhibitor of rhinovirus 3C protease. Drug Metab Dispos 29, 729-34 (2001). 51. Patick, A.K. et al. In vitro antiviral activity and single-dose pharmacokinetics in humans of a novel, orally bioavailable inhibitor of human rhinovirus 3C protease. Antimicrob Agents Chemother 49, 2267-75 (2005). 52. Dragovich, P.S. et al. Structure-based design, synthesis, and biological evaluation of irreversible human rhinovirus 3C protease inhibitors. 8. Pharmacological optimization of orally bioavailable 2-pyridone-containing peptidomimetics. J Med Chem 46, 4572-85 (2003). 53. Patick, A.K. Rhinovirus chemotherapy. Antiviral Res 71, 391-6 (2006). 54. Cui, S. et al. Crystal structure of human enterovirus 71 3C protease. J Mol Biol 408, 449-61 (2011). 55. Goris, N. et al. 2'-C-methylcytidine as a potent and selective inhibitor of the replication of foot-and-mouth disease virus. Antiviral Res 73, 161-8 (2007). 56. Harki, D.A. et al. Synthesis and antiviral activity of 5-substituted cytidine analogues: identification of a potent inhibitor of viral RNA-dependent RNA polymerases. J Med Chem 49, 6166-9 (2006). 57. Kishimoto, C., Crumpacker, C.S. & Abelmann, W.H. Ribavirin treatment of murine coxsackievirus B3 myocarditis with analyses of lymphocyte subsets. J Am Coll Cardiol 12, 1334-41 (1988). 58. Graci, J.D. et al. Lethal mutagenesis of picornaviruses with N-6-modified purine nucleoside analogues. Antimicrob Agents Chemother 52, 971-9 (2008). 59. Chen, T.C. et al. Novel antiviral agent DTriP-22 targets RNA-dependent RNA polymerase of enterovirus 71. Antimicrob Agents Chemother 53, 2740-7 (2009). 60. Wikel, J.H. et al. Synthesis of syn and anti isomers of 6-[[(hydroxyimino)phenyl]methyl]-1-[(1-methylethyl)sulfonyl]-1H-benzimidazol-2-am ine. Inhibitors of rhinovirus multiplication. J Med Chem 23, 368-72 (1980). 61. Heinz, B.A. & Vance, L.M. The antiviral compound enviroxime targets the 3A coding region of rhinovirus and poliovirus. J Virol 69, 4189-97 (1995). 62. Hope, D.A., Diamond, S.E. & Kirkegaard, K. Genetic dissection of interaction between poliovirus 3D polymerase and viral protein 3AB. J Virol 71, 9490-8 (1997). 63. Giachetti, C., Hwang, S.S. & Semler, B.L. cis-acting lesions targeted to the hydrophobic domain of a poliovirus membrane protein involved in RNA replication. J Virol 66, 6045-57 (1992). 64. Phillpotts, R.J. et al. The activity of enviroxime against rhinovirus infection in man. Lancet 1, 1342-4 (1981). 65. Arita, M., Takebe, Y., Wakita, T. & Shimizu, H. A bifunctional anti-enterovirus compound that inhibits replication and the early stage of enterovirus 71 infection. J Gen Virol 91, 2734-44 (2010). 66. Novina, C.D. et al. siRNA-directed inhibition of HIV-1 infection. Nat Med 8, 681-6 (2002). 67. Jacque, J.M., Triques, K. & Stevenson, M. Modulation of HIV-1 replication by RNA interference. Nature 418, 435-8 (2002). 68. Gitlin, L., Karelsky, S. & Andino, R. Short interfering RNA confers intracellular antiviral immunity in human cells. Nature 418, 430-4 (2002). 69. Kapadia, S.B., Brideau-Andersen, A. & Chisari, F.V. Interference of hepatitis C virus RNA replication by short interfering RNAs. Proc Natl Acad Sci U S A 100, 2014-8 (2003). 70. Yuan, J., Cheung, P.K., Zhang, H.M., Chau, D. & Yang, D. Inhibition of coxsackievirus B3 replication by small interfering RNAs requires perfect sequence match in the central region of the viral positive strand. J Virol 79, 2151-9 (2005). 71. Merl, S. et al. Targeting 2A protease by RNA interference attenuates coxsackieviral cytopathogenicity and promotes survival in highly susceptible mice. Circulation 111, 1583-92 (2005). 72. Tan, E.L., Wong, A.P. & Poh, C.L. Development of potential antiviral strategy against coxsackievirus B4. Virus Res 150, 85-92 (2010). 73. Sim, A.C., Luhur, A., Tan, T.M., Chow, V.T. & Poh, C.L. RNA interference against enterovirus 71 infection. Virology 341, 72-9 (2005). 74. Lu, W.W., Hsu, Y.Y., Yang, J.Y. & Kung, S.H. Selective inhibition of enterovirus 71 replication by short hairpin RNAs. Biochem Biophys Res Commun 325, 494-9 (2004). 75. Tan, E.L., Tan, T.M., Tak Kwong Chow, V. & Poh, C.L. Inhibition of enterovirus 71 in virus-infected mice by RNA interference. Mol Ther 15, 1931-8 (2007). 76. Merl, S. & Wessely, R. Anti-coxsackieviral efficacy of RNA interference is highly dependent on genomic target selection and emergence of escape mutants. Oligonucleotides 17, 44-53 (2007). 77. Liu, M.L. et al. Type I interferons protect mice against enterovirus 71 infection. J Gen Virol 86, 3263-9 (2005). 78. Yi, L., He, Y., Chen, Y., Kung, H.F. & He, M.L. Potent inhibition of human enterovirus 71 replication by type I interferon subtypes. Antivir Ther 16, 51-8 (2011). 79. Lei, X. et al. Cleavage of the adaptor protein TRIF by enterovirus 71 3C inhibits antiviral responses mediated by Toll-like receptor 3. J Virol 85, 8811-8 (2011). 80. Lei, X. et al. The 3C protein of enterovirus 71 inhibits retinoid acid-inducible gene I-mediated interferon regulatory factor 3 activation and type I interferon responses. J Virol 84, 8051-61 (2010). 81. Lei, X. et al. Cleavage of interferon regulatory factor 7 by enterovirus 71 3C suppresses cellular responses. J Virol 87, 1690-8 (2013). 82. Lu, J. et al. Enterovirus 71 disrupts interferon signaling by reducing the level of interferon receptor 1. J Virol 86, 3767-76 (2012). 83. Eidne, K.A., Kroeger, K.M. & Hanyaloglu, A.C. Applications of novel resonance energy transfer techniques to study dynamic hormone receptor interactions in living cells. Trends Endocrinol Metab 13, 415-21 (2002). 84. Jares-Erijman, E.A. & Jovin, T.M. FRET imaging. Nat Biotechnol 21, 1387-95 (2003). 85. Pollok, B.A. & Heim, R. Using GFP in FRET-based applications. Trends Cell Biol 9, 57-60 (1999). 86. Wu, P. & Brand, L. Resonance energy transfer: methods and applications. Anal Biochem 218, 1-13 (1994). 87. Tsien, R.Y., Bacskai, B.J. & Adams, S.R. FRET for studying intracellular signalling. Trends Cell Biol 3, 242-5 (1993). 88. Demchenko, A.P. The concept of lambda-ratiometry in fluorescence sensing and imaging. J Fluoresc 20, 1099-128 (2010). 89. Srikun, D., Miller, E.W., Domaille, D.W. & Chang, C.J. An ICT-based approach to ratiometric fluorescence imaging of hydrogen peroxide produced in living cells. J Am Chem Soc 130, 4596-7 (2008). 90. Hsu, Y.Y., Liu, Y.N., Wang, W., Kao, F.J. & Kung, S.H. In vivo dynamics of enterovirus protease revealed by fluorescence resonance emission transfer (FRET) based on a novel FRET pair. Biochem Biophys Res Commun 353, 939-45 (2007). 91. Niepmann, M. Internal translation initiation of picornaviruses and hepatitis C virus. Biochimica et Biophysica Acta (2009). 92. Jang, S.K. Internal initiation: IRES elements of picornaviruses and hepatitis c virus. Virus Research 119, 2-15 (2006). 93. Martinez-Salas, E., Ramos, R., Lafuente, E. & Lopez de Quinto, S. Functional interactions in internal translation initiation directed by viral and cellular IRES elements. Journal of General Virology 82, 973-84 (2001). 94. Costa-Mattioli, M., Svitkin, Y. & Sonenberg, N. La autoantigen is necessary for optimal function of the poliovirus and hepatitis C virus internal ribosome entry site in vivo and in vitro. Molecular and Cellular Biology 24, 6861-70 (2004). 95. Meerovitch, K. et al. La autoantigen enhances and corrects aberrant translation of poliovirus RNA in reticulocyte lysate. Journal of Virology 67, 3798-807 (1993). 96. Florez, P.M., Sessions, O.M., Wagner, E.J., Gromeier, M. & Garcia-Blanco, M.A. The polypyrimidine tract binding protein is required for efficient picornavirus gene expression and propagation. Journal of Virology 79, 6172-9 (2005). 97. Hunt, S.L. & Jackson, R.J. Polypyrimidine-tract binding protein (PTB) is necessary, but not sufficient, for efficient internal initiation of translation of human rhinovirus-2 RNA. RNA 5, 344-59 (1999). 98. Hellen, C.U. et al. A cytoplasmic 57-kDa protein that is required for translation of picornavirus RNA by internal ribosomal entry is identical to the nuclear pyrimidine tract-binding protein. Proceedings of the National Academy of Sciences of the United States of America 90, 7642-6 (1993). 99. Walter, B.L., Nguyen, J.H., Ehrenfeld, E. & Semler, B.L. Differential utilization of poly(rC) binding protein 2 in translation directed by picornavirus IRES elements. RNA 5, 1570-85 (1999). 100. Blyn, L.B. et al. Poly(rC) binding protein 2 binds to stem-loop IV of the poliovirus RNA 5' noncoding region: identification by automated liquid chromatography-tandem mass spectrometry. Proceedings of the National Academy of Sciences of the United States of America 93, 11115-20 (1996). 101. Boussadia, O. et al. Unr is required in vivo for efficient initiation of translation from the internal ribosome entry sites of both rhinovirus and poliovirus. Journal of Virology 77, 3353-9 (2003). 102. Hunt, S.L., Hsuan, J.J., Totty, N. & Jackson, R.J. unr, a cellular cytoplasmic RNA-binding protein with five cold-shock domains, is required for internal initiation of translation of human rhinovirus RNA. Genes and Development 13, 437-48 (1999). 103. Kaminski, A. & Jackson, R.J. The polypyrimidine tract binding protein (PTB) requirement for internal initiation of translation of cardiovirus RNAs is conditional rather than absolute. RNA 4, 626-38 (1998). 104. Niepmann, M., Petersen, A., Meyer, K. & Beck, E. Functional involvement of polypyrimidine tract-binding protein in translation initiation complexes with the internal ribosome entry site of foot-and-mouth disease virus. Journal of Virology 71, 8330-9 (1997). 105. Ali, N. & Siddiqui, A. Interaction of polypyrimidine tract-binding protein with the 5' noncoding region of the hepatitis C virus RNA genome and its functional requirement in internal initiation of translation. Journal of Virology 69, 6367-75 (1995). 106. Walter, B.L., Parsley, T.B., Ehrenfeld, E. & Semler, B.L. Distinct poly(rC) binding protein KH domain determinants for poliovirus translation initiation and viral RNA replication. Journal of Virology 76, 12008-22 (2002). 107. Gamarnik, A.V. & Andino, R. Interactions of viral protein 3CD and poly(rC) binding protein with the 5' untranslated region of the poliovirus genome. Journal of Virology 74, 2219-26 (2000). 108. Pilipenko, E.V. et al. A cell cycle-dependent protein serves as a template-specific translation initiation factor. Genes and Development 14, 2028-45 (2000). 109. Shih, S.R., Stollar, V. & Li, M.L. Host factors in enterovirus 71 replication. J Virol 85, 9658-66 (2011). 110. Lin, J.Y. et al. Heterogeneous nuclear ribonuclear protein K interacts with the enterovirus 71 5' untranslated region and participates in virus replication. J Gen Virol 89, 2540-9 (2008). 111. Lin, J.Y. et al. hnRNP A1 interacts with the 5' untranslated regions of enterovirus 71 and Sindbis virus RNA and is required for viral replication. J Virol 83, 6106-14 (2009). 112. Chien, H.L., Liao, C.L. & Lin, Y.L. FUSE binding protein 1 interacts with untranslated regions of Japanese encephalitis virus RNA and negatively regulates viral replication. J Virol 85, 4698-706 (2011). 113. Lin, J.Y., Li, M.L. & Shih, S.R. Far upstream element binding protein 2 interacts with enterovirus 71 internal ribosomal entry site and negatively regulates viral translation. Nucleic Acids Res 37, 47-59 (2009). 114. Ragazzon, P.A., Garbett, N.C. & Chaires, J.B. Competition dialysis: a method for the study of structural selective nucleic acid binding. Methods 42, 173-82 (2007). 115. Gasparian, A.V. et al. Inhibition of encephalomyocarditis virus and poliovirus replication by quinacrine: implications for the design and discovery of novel antiviral drugs. J Virol 84, 9390-7 (2010). 116. Tyleckova, J. et al. Cancer cell response to anthracyclines effects: mysteries of the hidden proteins associated with these drugs. Int J Mol Sci 13, 15536-64 (2012). 117. Charak, S. & Mehrotra, R. Structural investigation of idarubicin-DNA interaction: spectroscopic and molecular docking study. Int J Biol Macromol 60, 213-8 (2013). 118. Gianni, L., Zweier, J.L., Levy, A. & Myers, C.E. Characterization of the cycle of iron-mediated electron transfer from Adriamycin to molecular oxygen. J Biol Chem 260, 6820-6 (1985). 119. Olson, R.D. & Mushlin, P.S. Doxorubicin cardiotoxicity: analysis of prevailing hypotheses. FASEB J 4, 3076-86 (1990). 120. Doroshow, J.H., Locker, G.Y. & Myers, C.E. Enzymatic defenses of the mouse heart against reactive oxygen metabolites: alterations produced by doxorubicin. J Clin Invest 65, 128-35 (1980). 121. Wouters, K.A., Kremer, L.C., Miller, T.L., Herman, E.H. & Lipshultz, S.E. Protecting against anthracycline-induced myocardial damage: a review of the most promising strategies. Br J Haematol 131, 561-78 (2005). 122. Krischer, J.P. et al. Clinical cardiotoxicity following anthracycline treatment for childhood cancer: the Pediatric Oncology Group experience. J Clin Oncol 15, 1544-52 (1997). 123. Ryberg, M. et al. Epirubicin cardiotoxicity: an analysis of 469 patients with metastatic breast cancer. J Clin Oncol 16, 3502-8 (1998). 124. Money-Kyrle, J.F. et al. Liposomal daunorubicin in advanced Kaposi's sarcoma: a phase II study. Clin Oncol (R Coll Radiol) 5, 367-71 (1993). 125. Hasinoff, B.B. The interaction of the cardioprotective agent ICRF-187 [+)-1,2-bis(3,5-dioxopiperazinyl-1-yL)propane); its hydrolysis product (ICRF-198); and other chelating agents with the Fe(III) and Cu(II) complexes of adriamycin. Agents Actions 26, 378-85 (1989). 126. Herman, E.H., Zhang, J., Hasinoff, B.B., Clark, J.R., Jr. & Ferrans, V.J. Comparison of the structural changes induced by doxorubicin and mitoxantrone in the heart, kidney and intestine and characterization of the Fe(III)-mitoxantrone complex. J Mol Cell Cardiol 29, 2415-30 (1997). 127. Solomon, T. et al. Virology, epidemiology, pathogenesis, and control of enterovirus 71. Lancet Infect Dis 10, 778-90 (2010). 128. Lin, J.Y. et al. Viral and host proteins involved in picornavirus life cycle. J Biomed Sci 16, 103 (2009). 129. Minor, P.D. Polio eradication, cessation of vaccination and re-emergence of disease. Nat Rev Microbiol 2, 473-82 (2004). 130. de Fougerolles, A., Vornlocher, H.P., Maraganore, J. & Lieberman, J. Interfering with disease: a progress report on siRNA-based therapeutics. Nat Rev Drug Discov 6, 443-53 (2007). 131. Tan, C.W., Lai, J.K., Sam, I.C. & Chan, Y.F. Recent developments in antiviral agents against enterovirus 71 infection. J Biomed Sci 21, 14 (2014).
|