(3.234.221.162) 您好!臺灣時間:2021/04/14 16:06
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:葉治安
研究生(外文):Chin-An Yeh
論文名稱:兆赫波管狀波導可用頻寬之研究
論文名稱(外文):Study of Available Bandwidth for Terahertz Pipe Waveguides
指導教授:賴志賢
指導教授(外文):Chih-Hsien Lai
口試委員:吳正文江柏叡
口試委員(外文):Cheng-Wen WuPo-Jui Chiang
口試日期:2014/06/26
學位類別:碩士
校院名稱:國立雲林科技大學
系所名稱:電子工程系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2014
畢業學年度:102
語文別:中文
論文頁數:95
中文關鍵詞:兆赫波波導中空波導頻寬
外文關鍵詞:Terahertz waveguidesHollow waveguidesBandwidth
相關次數:
  • 被引用被引用:0
  • 點閱點閱:135
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:9
  • 收藏至我的研究室書目清單書目收藏:0
波導之研究是關於兆赫波傳輸的一項重要問題。最近所提出的管狀波導是一種用來解決兆赫波傳輸問題的空心波導,它的結構相當簡單,由空氣核芯與介電值包覆層所包圍而成,因此稱之為兆赫波管狀波導。此種波導是洩漏式中空波導結構,利用抗共振反射的方式讓兆赫波有效地在空氣核芯中傳播。本篇論文主要是以有限差分頻域數值方法分析兆赫波管狀波導之可用頻寬。
我們先藉由一維結構檢驗頻寬特性。數值結果顯示,不論管壁厚度變薄或管壁折射率變小都能使通帶變寬,但折射率變小時衰減常數會明顯增加。接下來,在假設核芯直徑與管壁厚度的比率固定為10與20的條件下對二維結構進行分析。發現隨著管壁厚度的持續減少,頻寬變化並不會持續增大,而是會呈現出一個最佳化的可用頻寬區域。我們進一步考慮實際波導在製作上,厚度不均勻對於頻寬的影響。研究發現,管狀波導的頻寬會以管壁厚度所占比例較高的厚度為主。再來,當管壁外側不均勻凸出與管壁內側不均勻凹陷結構對於頻寬影響皆相同,且管壁外側不均勻凹陷與管壁內側不均勻凸出結構對於頻寬影響皆相同。本篇論文之研究結果有助於未來應用管狀波導管時找出最佳化頻寬。

To facilitate THz technology, it is essential to develop low-loss and low-cost THz waveguides. Pipe waveguide is one recently proposed hollow waveguide for THz transmission. It is a simple pipe with an air core surrounded by a dielectric cladding layer. The structure is leaky and the THz wave is confined in the air-core region by the mechanism of antiresonant reflection. One of the important properties of waveguide is the bandwidth. In this work, we numerically analyze the bandwidth of the THz pipe waveguide by examining the effects of cladding thickness and cladding refractive index. The numerical approach used for this analysis is the finite-difference frequency-domain (FDFD) method.
For the convenience of discussion, we first study the general characteristics of bandwidth by examining the one-dimensional (1D) case. Numerical results indicate that, either the cladding refractive index or the cladding thickness decreases, the pass band is broader but the attenuation constant increases significantly for the former situation. Then the two-dimensional (2D) case is examined with the assumption that the ratio of the core diameter to the cladding thickness is fixed to 10 and 20. Moreover, we further consider the problem of nonuniform cladding thickness and discuss its influence on bandwidth. In general, this research can help users to choose a proper cladding thickness to have a broader bandwidth for future applications of THz pipe waveguides.

摘要 i
ABSTRACT ii
誌謝 iii
目錄 iv
表目錄 vi
圖目錄 vii
第一章 兆赫波波導簡介 1
1.1 兆赫波 1
1.2 兆赫波波導發展 2
1.2.1 金屬波導 2
1.2.2 次波長光纖 3
1.2.3 多孔波導 3
1.2.4 懸掛波導 4
1.2.5 管狀波導 5
1.3 波導管頻寬之研究 6
1.3.1 光纖中之頻寬變化 6
1.3.2 兆赫波波導中之頻寬與損耗 9
1.3.3 兆赫波管狀波導之頻寬與損耗 9
第二章 數值模擬結構與方法 11
2.1 模擬結構簡介 11
2.1.1 兆赫波抗共振波導傳輸特性 11
2.2 數值方法與設計 15
2.2.1 Yee網格 15
2.2.2 有限差分頻域(FDFD) 15
2.2.3 完美匹配層(PML) 17
第三章 結果與討論 21
3.1 一維與二維結構分析 21
3.1.1 一維管狀波導頻寬的影響 21
3.1.2 二維管壁折射率變化對頻寬的影響 23
3.2 固定核芯直徑與管壁厚度的有效頻寬影響 30
3.3 不均勻管壁對頻寬的影響 39
3.3.1 管壁外側不均勻對頻寬的影響 39
3.3.2 管壁內側不均勻對頻寬的影響 62
3.3.3 管壁內外側不均勻厚度對頻寬的影響 69
3.3.4 管壁不均勻的厚度變化對頻寬的影響 74
第四章 結論 81
參考文獻 82

http://www.lob.polytechnique.fr/home/research/advanced-microscopies-and -tissue-physiology/terahertz-imaging-and-spectroscopy/
R. Mendis and D. Grischkowsky, ''THz interconnect with low loss and low group velocity dispersion,'' IEEE Microwave & Wireless Components Letters, vol. 11, pp. 444–446, 2001.
S. P. Jamison, R. W. McGowan, and D. Grischkowsky, ''Single-mode waveguide propagation and reshaping of sub-ps terahertz pulses in sapphire fibers,'' Applied Physics Letters, vol . 76, pp. 1987–1989, 2000.
K. D. Laakmann and W. H. Steier, "Waveguides: characteristic modes of hollow rectangular dielectric waveguides," Applied Optics, vol. 15, pp. 1334–1340, 1976.
J. T. Lu, C. H. Lai, T. F. Tseng, H. Chen, Y. F. Tsai, I. J. Chen, Y. J. Hwang, H. c. Chang, and C. K. Sun, "Terahertz polarization-sensitive rectangular pipe waveguides," Optics express, vol. 19, pp. 21532–21539, 2011.
H. W. Chen, Y. T. Li, C. L. Pan, J. L. Kuo, J. Y. Lu, L. J. Chen, and C. K. Sun, "Investigation on spectral loss characteristics of subwavelength terahertz fibers," Optics letters, vol. 32, pp. 1017–1019, 2007.
L. J. Chen, H. W. Chen, T. F. Kao, J. Y. Lu, and C. K. Sun, "Low-loss subwavelength plastic fiber for terahertz waveguiding," Optics Letters, vol. 31, pp. 308–310, 2006.
C. H. Lai, Y. C. Hsueh, H. W. Chen, Y. j. Huang, H. C. Chang, and C. K. Sun, "Low-index terahertz pipe waveguides," Optics letters, vol. 34, pp. 3457–3459, 2009.
C. H. Lai, B. You, J. Y. Lu, T. A. Liu, J. L. Peng, C. K. Sun, and H. C Chang, "Modal characteristics of antiresonant reflecting pipe waveguides for terahertz waveguiding," Optics express, vol. 18, pp. 309–322, 2010.
A. Hassani, A. Dupuis, and M. Skorobogatiy, "Porous polymer fibers for low-loss Terahertz guiding," Optics express, vol. 16, pp. 6340–6351, 2008.
J. Liang, L. Ren, N. Chen, and C. Zhou, "Broadband, low-loss, dispersion flattened porous-core photonic bandgap fiber for terahertz (THz)-wave propagation," Optics Communications, vol. 295, pp. 257–261, 2013.
A. Novitsky, R. Malureanu, M. Zalkovskij, P. Uhd Jepsen, and A. Lavrinenko, "Optimization design of optical waveguide control by nanoslit-enhanced THz field," Photonics and Nanostructures-Fundamentals and Applications, vol. 11, pp. 310–322, 2013.
H. Park, M. Cho, J. Kim, and H. Han, "Terahertz pulse transmission in plastic photonic crystal fibres," Physics in medicine and biology, vol. 47, p. 3765, 2002.
S. Coleman and D. Grischkowsky, "A THz transverse electromagnetic mode two-dimensional interconnect layer incorporating quasi-optics," Applied physics letters, vol. 83, pp. 3656–3658, 2003.
J. Harrington, R. George, P. Pedersen, and E. Mueller, "Hollow polycarbonate waveguides with inner Cu coatings for delivery of terahertz radiation," Optics Express, vol. 12, pp. 5263–5268, 2004.
R. McGowan, G. Gallot, and D. Grischkowsky, "Propagation of ultrawideband short pulses of terahertz radiation through submillimeter-diameter circular waveguides," Optics letters, vol. 24, pp. 1431–1433, 1999.
R. Mendis and D. Grischkowsky, "Undistorted guided-wave propagation of subpicosecond terahertz pulses," Optics letters, vol. 26, pp. 846–848, 2001.
H. Cao and A. Nahata, "Coupling of terahertz pulses onto a single metal wire waveguide using milled grooves," Optics express, vol. 13, pp. 7028–7034, 2005.
D. Martin and E. Puplett, "Polarised interferometric spectrometry for the millimetre and submillimetre spectrum," Infrared Physics, vol. 10, pp. 105–109, 1970.
R. j. Yu, Y. q. Zhang, B. Zhang, C. r. Wang, and C. q. Wu, "New cobweb-structure hollow Bragg optical fibers," Optoelectronics Letters, vol. 3, pp. 10–13, 2007.
M. Goto, A. Quema, H. Takahashi, S. Ono, and N. Sarukura, "Teflon photonic crystal fiber as terahertz waveguide," Japanese Journal of Applied Physics, vol. 43, p. L317, 2004.
K. Nielsen, H. K. Rasmussen, A. J. Adam, P. C. Planken, O. Bang, and P. U. Jepsen, "Bendable, low-loss Topas fibers for the terahertz frequency range," Optics express, vol. 17, pp. 8592–8601, 2009.
M. Rozé, B. Ung, A. Mazhorova, M. Walther, and M. Skorobogatiy, "Suspended core subwavelength fibers: towards practical designs for low-loss terahertz guidance," Optics express, vol. 19, pp. 9127–9138, 2011.
X. Jiang, D. Chen, and G. Hu, "Suspended hollow core fiber for terahertz wave guiding," Applied optics, vol. 52, pp. 770–774, 2013.
廖顯奎、鄭旭志、江家慶與林淑娟,光纖原理與應用技術,五南圖書出版股份有限公司,2012
A.H. Cherin, 1991, ''AN INTRODUCTION TO OPTICAL FIBERS''
B. Bowden, J.A. Harrington, and O. Mitrofanov. "Silver/polystyrene-coated hollow glass waveguides for the transmission of terahertz radiation." Optics Letters, vol. 32, pp. 2945–2947, 2007.
K. Nielsen, H. K. Rasmussen, P. U. Jepsen, and O. Bang, "Broadband terahertz fiber directional coupler," Optics letters, vol. 35, pp. 2879–2881, 2010.
E. Nguema, D. Férachou, G. Humbert, J. L. Auguste, and J. M. Blondy, "Broadband terahertz transmission within the air channel of thin-wall pipe," Optics letters, vol. 36, pp. 1782–1784, 2011.
M. Xiao, J. Liu, W. Zhang, J. Shen, and Y. Huang, "THz wave transmission in thin-wall PMMA pipes fabricated by fiber drawing technique," Optics Communications, vol. 298, pp. 101–105, 2013.
C. J. Large, Leon Poladian, W. Barton, A. van Eijkelenborg, Microstructured Polymer Optical Fibres, Springer Science+Business Media, LLC, New York, USA, 2008.
M. A. Duguay, Y. Kokubun, T. L. Koch, and L. Pfeiffer, “Antiresonant reflecting optical waveguides in SiO2 –Si multilayer structures,” Appl. Phys. Lett. 49(1), pp. 13–15, 1986.
N. Litchinitser, S. Dunn, P. Steinvurzel, B. Eggleton, T. White, R. McPhedran, C. Martijn de Sterke, "Application of an ARROW model for designing tunable photonic devices," Optics express, vol. 12, pp. 1540–1550, 2004.
H. A. Haus, Waves and Fields in Optoelectronics (Prentice-Hall, 1984).
K. S. Yee, "Numerical solution of initial boundary value problems involving Maxwell’s equations," IEEE Trans. Antennas Propag, vol. 14, pp. 302–307, 1966.
Z. Zhu and T. Brown, "Full-vectorial finite-difference analysis of microstructured optical fibers," Optics Express, vol. 10, pp. 853–864, 2002.
C. P. Yu and H. C. Chang, "Yee-mesh-based finite difference eigenmode solver with PML absorbing boundary conditions for optical waveguides and photonic crystal fibers," Optics Express, vol. 12, pp. 6165–6177, 2004.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔