跳到主要內容

臺灣博碩士論文加值系統

(44.220.62.183) 您好!臺灣時間:2024/02/27 20:50
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:林哲先
研究生(外文):Che-Hsien Lin
論文名稱:光學相位擷取技術應用於影像加密與全像顯示
論文名稱(外文):Optical phase retrieval technology used in image encryption and hologram display
指導教授:張軒庭張軒庭引用關係
指導教授(外文):Hsuan-Ting Chang
口試委員:陳建宇蘇威佳黃宏彥
口試委員(外文):Chien-Yue ChenWei-Chia SuHone-Ene Hwang
口試日期:2014-06-30
學位類別:碩士
校院名稱:國立雲林科技大學
系所名稱:電機工程系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2014
畢業學年度:102
語文別:中文
論文頁數:90
中文關鍵詞:菲涅爾轉換相位擷取多重影像加密光學加密系統電腦全像技術零級光
外文關鍵詞:Fresnel transformphase retrievalmultiple images encryptionoptical encryption systemcomputer generated hologramzero-order light
相關次數:
  • 被引用被引用:3
  • 點閱點閱:326
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文主要探討光學相位擷取演算法的技術與應用,使用菲涅爾轉換對光學相位我想要中路擷取演算法進行修改,利用菲涅爾轉換參數特性提升相位擷取演算法在加密電腦全像時的安全性與應用性。在過去的許多研究中,在光學多重影像多工加密技術方面,在獲得高品質的重建影像時有許多的限制。我們提出另一種光學影像多工加密方法,使用雙相位擷取演算法對影像分別加密以得到對應不同影像的兩張純相位信號(Phase-only function, POF),並透過相位合成以達成多工處理。還原影像需要正確合成相位、正確的相位遮罩與正確的反菲涅爾轉換參數,因此在加密與驗證上都有很高的安全性。影像還原時會因為許多不同因素而影響影像品質,實驗模擬證明提出的光學多重影像波長與位置多工方法在重建影像品質上,對於SLM像素間距改變、繞射距離z改變、波長改變與平面位移改變都有很好的強健性。而在光學重建時使用雷射光與SLM,會產生零級光干擾重建品質,為了改善零級光干擾,我們提出另一種光學相位擷取演算法,用旋轉型菲涅爾轉換作為修改型GS演算法中的影像處理運算方式以產生傾斜式純相位遮罩(Phase-only mask, POM),並可透過光學儀器在設定的旋轉成像平面上重建清晰的影像。影像在旋轉的成像平面上重建,將會偏離零級光光軸而達到閃避零級光的目的。此方法在密碼系統安全性方面,可以在加密過程中增加旋轉角度做為加密參數,當解密的角度參數產生誤差時,將會嚴重影響解密影像的品質,因此密碼系統的安全性可以被有效的提升。
This thesis focuses on the applications of optical phase retrieval algorithms based on the Fresnel transform. With the parameters used in the Fresnel transformation, the security and applicability of the computer holography systems can be enhanced. In previous studies, the optical image multiplexing and encryption methods have many limitations in obtaining high-quality reconstructed images. We propose an alternative method, using the double phase retrieval algorithm to encrypt an image as a pair of phase-only functions (POFs). Through the phase summarize method, the image multiplexing can be achieved. In decryption, all the correct phase keys, POF and the parameters in the inverse Fresnel transform are needed. Thus a high security level can be obtained. Many factors can affect the quality of reconstructed images. The simulation results show that the proposed method can successfully perform both the wavelength and position multiplexing schemes with a high security level and similar quality of reconstructed images. In addition, the system also shows good robustness for different pitch sizes of the phase function device, diffraction distance, wavelength and planar shifting. Using a laser and SLMs in optical image reconstruction will produce the zero-order light which greatly interfere the reconstructed image. In order to reduce the interference of zero-order light, we propose another optical phase retrieval algorithm, which uses a rotary-type Fresnel transform as the image processing method in the modified GS algorithm. The plain image can be encrypted into a tilted Phase-only mask (POM) and can be reconstructed on a rotated hologram plane. The optical axis of the zero-order light will be shifted from that of the reconstructed target image so that the interference of zero-order light can be significantly decreased.
摘要
Abstract
目錄
圖目錄
符號說明
第一章、 緒論
1.1 研究動機與目的
1.2 研究方法
1.3 章節提要
第二章、 雙相位擷取演算法與光學架構
2.1 簡介
2.2 雙相位擷取演算法
2.3 電腦模擬
2.4 討論
第三章、 雙相位多重影像波長與位置多工參數分析
3.1 簡介
3.2 雙相位多重影像波長多工
3.2.1 演算法與系統架構
3.2.2 電腦模擬
3.2.3 系統參數分析
3.3 雙相位多重影像位置多工
3.3.1 演算法與系統架構
3.3.2 電腦模擬
3.3.3 系統參數分析
3.4 討論
第四章、 傾斜式純相位遮罩
4.1 簡介
4.2 修改型GS演算法
4.3 使用修改型GS演算法產生傾斜相位
4.3.1 繞x軸旋轉的傾斜相位
4.3.2 電腦模擬產生繞x軸旋轉相位
4.3.3 繞y軸旋轉的傾斜相位
4.3.4 電腦模擬產生繞y軸旋轉相位
4.4 光學重建
4.5 討論
第五章、 傾斜式相位遮罩閃避零級光
5.1 簡介
5.2 演算法與系統架構
5.3 光學重建
5.4 討論
第六章、 結論與未來發展
參考文獻

[1]A. Alfalou and A. Mansour, “Double random phase encryption scheme to multiplex and simultaneous encode multiple images,” Applied Optics, vol. 48, pp. 5933-5947, 2009.
[2]B. R. Brown and A. W. Lohmann, “Computer-generated binary holograms,” IBM Journal of Research and Development, vol. 13, pp. 160–168, 1969.
[3]B. Javidi and J. L. Horner, “Optical pattern recognition for validation and security verification,” Optical Engineering, vol. 33, pp. 1752-1756, 1994.
[4]B. Javidi, G. Zhang, and J. Li, “Encrypted optical memory using double-random phase encoding,” Applied Optics, vol. 36, pp. 1054-1058, 1997.
[5]B. Javidi and E. Ahouzi, “Optical security system with Fourier plane encoding,” Applied Optics, vol. 37, pp. 6247–6255, 1998.
[6]B. Javidi, A. Sergent, and E. Ahouzi, “Performance of double phase encoding encryption technique using binarized encrypted images,” Optical Engineering, vol. 37, pp. 565–569, 1998.
[7]B. Hennelly and J. T. Sheridan, “Optical image encryption by random shifting in fractional Fourier domains,” Optics Letters, vol. 28, pp. 269-271, 2003.
[8]B. M. Hennelly, T. J. Naughton, J. McDonald, J. T. Sheridan, G. Unnikrishnan, D. P. Kelly, and B. Javidi, “Spread-space spread-spectrum technique for secure multiplexing,” Optics Letters, vol. 32, pp. 1060–1066, 2007.
[9]C. Frère, “Reconstruction in inclined planes of curved computer generated holograms,” Applied Optics, vol. 29, pp. 4761-4765, 1990.
[10]C. H. Yeh, H. T. Chang, H. C. Chien, and C. J. Kuo, “Design of cascaded phase keys for a hierarchical security system,” Applied Optics, vol. 41, pp. 6128–6134, 2002.
[11]D. Gabor, “A new microscopic principle,” Nature, vol. 161, pp. 777–778, 1948.
[12]D. Leseberg and C. Frère, “Computer-generated holograms of 3-D objects composed of tilted planar segments,” Applied Optics, vol. 27, pp. 3020–3024, 1988.
[13]D. Amaya, M. Tebaldi, R. Torroba, and N. Bolognini, “Multi-channeled encryption via a joint transform correlator architecture,” Applied Optics, vol. 47, pp. 5903–5907, 2008.
[14]D. Abookasis and J. Rosen, “Three types of computer-generated hologram synthesized from multiple angular viewpoints of a three-dimensional scene,” Applied Optics, vol. 45, pp. 6533–6538, 2006.
[15]Da-Qing Chen, Ji-Hua Gu and Hao Zhou, “Computer-generated hologram with phase retrieval algorithm and nonlinear amplitude limiting,”, 4th International Congress on Image and Signal Processing, vol. 2, pp. 611-614, 2011.
[16]E. Rueda, C. Rios, J. F. Barrera, R. Henao, and R. Torroba, “Experimental multiplexing approach via code key rotations under a joint transform correlator scheme,” Optics Communications, vol. 284, pp. 2500-2504, 2011.
[17]G. Unnikrishnan, J. Joseph, and K. Singh, “Optical encryption by double-random phase encoding in the fractional Fourier domain,” Optics Letters, vol. 25, pp. 887–889, 2000.
[18]G. H. Lin, H. T. Chang, W. N. Lai, and C. H. Chuang, “Public-key-based optical image cryptosystem with data embedding techniques,” Optical Engineering, vol. 42, pp. 2331–2339, 2003.
[19]G. Situ and J. Zhang, “A cascaded iterative Fourier transform algorithm for optical security applications,” Optik, vol. 114, pp. 473–477, 2003.
[20]G. Situ and J. Zhang, “A lensless optical security system based on computer-generated phase only masks,” Optics Communications, vol. 232, pp. 115–122, 2004.
[21]G. Situ and J. Zhang, “Double random-phase encoding in the Fresnel domain,” Optics Letters, vol. 29, pp. 1584-1586, 2004.
[22]G. Situ and J. Zhang, “Multiple-image encryption by wavelength multiplexing,” Optics Letters, vol. 30, pp. 1306-1308, 2005.
[23]G. Situ and J. Zhang, “Position multiplexing for multiple-image encryption,” Journal of Optics A: Pure and Applied Optics, vol. 8, pp. 391-397, 2006.
[24]H. T. Chang, “Image encryption using separate amplitude based virtual image and iteratively retrieved phase information,” Optical Engineering, vol. 40, pp. 2165–2171, 2001.
[25]H.T. Chang, W.C. Lu, and C.J. Kuo, “Multiple-phase retrieval for optical security systems using random phase encoding,” Applied Optics, vol. 41, pp. 4825-4834 ,2002.
[26]H. E. Hwang and P. Han, “Signal reconstruction algorithm based on a single intensity in the Fresnel domain,” Optics Express, vol. 15, pp. 3766–3776, 2007.
[27]H.-E. Hwang, H.T. Chang, and W.-N. Lai, “Fast double-phase retrieval in Fresnel domain using modified Gerchberg-Saxton algorithm for lensless optical security systems,” Optics Express, vol. 17, pp. 13700-13710, 2009.
[28]H.-E. Hwang, H.T. Chang, & W.-N. Lai, “Multiple-image encryption and multiplexing using modified Gerchberg-Saxton algorithm and phase modulation in Fresnel transform domain,” Optics Letters, vol. 34, pp. 3917-3919, 2009.
[29]H. Sakata and Y. Sakamoto, “Fast computation method for a Fresnel hologram using three-dimensional affine transformations in real space,” Applied Optics, vol. 48, pp. 212-221, 2009.
[30]H. Tashima, M. Takeda, H. Suzuki, T. Obi, M. Yamaguchi, and N. Ohyama, “Known plaintext attack on double random phase encoding using fingerprint as key and a method for avoiding the attack,” Optics Express, vol. 18, pp. 13772-13781, 2010.
[31]H.T. Chang, H.-E. Hwang, and C.L. Lee, “Position multiplexing multiple-image encryption using cascaded phase-only masks in Fresnel transform domain,” Optics Communications, vol. 284, pp. 4146-4151 ,2011.
[32]H.T. Chang, H.-E. Hwang, C.L. Lee, and Mn-Ta Lee, “Wavelength multiplexing multiple-image encryption using cascaded phase-only masks in Fresnel transform domain,” Applied Optics, vol. 50, pp. 710-716, 2011.
[33]H.-E. Hwang, “Optical color image encryption based on the wavelength multiplexing using cascaded phase-only masks in Fresnel transform domain,” Optics Communications, vol. 285, pp. 567-573, 2012.
[34]H.T. Chang, H.-E. Hwang, and M.-D. Wu, “Analysis of system parameters in double-phase wavelength and position multiplexing for multiple image encryption,” Proceedings of 2012 National Symposium on Telecommunications, Changhua Taiwan, Nov. 16-17, 2012
[35]H. T. Chang and C. H. Lin, “Optical Image Multiplexing and Encryption Schemesbased on Double-Phase Encoding in Fresnel Transform Domain,” The 6th International Conference on Three Dimensional Systems and Applications, Seoul South Korea, May 28-30, 2014.
[36]J. R. Fienup, “Iterative Method Applied To Image Reconstruction And To Computer-Generated Holograms,” Optical Engineering, vol. 19, 19800.
[37]J. R. Fienup, “Phase retrieval algorithm: a comparison,” Applied Optics, vol. 22, pp. 2758–2769, 1982.
[38]J. Rosen, “Learning in correlators based on projections onto constraint sets,” Optics Letters, vol. 18, pp. 1183-1185, 1993.
[39]J. W. Goodman, “Introduction to Fourier Optics,” Second Edition, McGraw-Hill, Singapore, 1996.
[40]J.-W. Han, C.-S. Park, D.-H. Ryu, and E.-S. Kim, “Optical image encryption based on XOR operations,” Optical Engineering, vol. 37, pp. 47–54, 1999.
[41]J. F. Barrera, M. Tebaldi, C. Ríos, E. Rueda, N. Bolognini, and R. Torroba, “Experimental multiplexing of encrypted movies using a JTC architecture,” Optics Express, vol. 20, pp. 3388-3393, 2012.
[42]J.-J. Huang, H.-E. Hwang, C.-Y. Chen, and C.-M. Chen, “Lensless multiple-image optical encryption based on improved phase retrieval algorithm,” Applied Optics, vol. 51, pp. 2388-2394, 2012.
[43]J. Weng, T. Shimobaba, N. Okada, H. Nakayama, M. Oikawa, N. Masuda, and T. Ito, “Generation of real-time large computer generated hologram using wavefront recording method,” Optics Express, Vol. 20, pp. 4018-4023, 2012.
[44]K. Yamamoto, Y. Ichihashi, T. Senoh, R. Oi, and T. Kurita, “Calculating the Fresnel diffraction of light from a shifted and tilted plane,” Optics Express, vol. 20, pp. 12949–12958, 2012.
[45]L. G. Neto and Y. Sheng, “Optical implementation of image encryption using random phase encoding,” Optical Engineering, vol. 35, pp. 2459-2463, 1996.
[46]L. Chen and D. Zhao, “Optical color image encryption by wavelength multiplexing and lensless Fresnel transform holograms,” Optics Express, vol. 14, pp. 8552-8560, 2006.
[47]M. Lucente and T. A. Galyean, “Rendering interactive holographic images,” Proc. ACM SIGGRAPH, vol. 95, pp. 387–394, 1995.
[48]M. Paturzo, P. Memmolo, L. Miccio, A. Finizio, P. Ferrarro, A. Tulino, and B. Javidi, “Numerical multiplexing and demultiplexing of digital holographic information for remote reconstruction in amplitude and phase,” Optics Letters, vol. 33, pp. 2629–2631, 2008.
[49]M. Z. He, L. Z. Cai, Q. Liu, X. C.Wang, and X. F. Meng, “Multiple image encryption and watermarking by random phase matching,” Optics Communications, vol. 247, 29–37, 2005.
[50]M. Joshi, C. Shakher, and K. Singh, “Fractional Fourier transform based image multiplexing and encryption technique for four-color images using input images as keys,” Optics Communications, vol. 283, pp. 2496-2505, 2010.
[51]M. Bayraktar and M. Özcan, “Method to calculate the far field of three-dimensional objects for computer-generated holography,” Applied Optics, vol. 49, pp. 4647–4654, 2010.
[52]N. Hashimoto, S. Morokawa, and K. Kitamura, “Real-time holography using the high-resolution LCTV-SLM,” Proc. SPIE, vol. 1461, pp. 291–302, 1991.
[53]N. R. Heckenberg, R. McDuff, C. P. Smith, and A. G. White, “Generation of optical phase singularities by computer-generated holograms,” Optics Letters, vol. 17, pp. 221-223, 1992.
[54]N. Towghi, B. Javidi, and Z. Luo, “Fully phase encrypted image processor,” Journal of the Optical Society of America A, vol. 16, pp. 1915–1927, 1999.
[55]N. Kumar Nishchal, J. Joseph, and K. Singh, “Securing information using fractional Fourier transform in digital holography,” Optics Communications, vol. 235, pp. 253-259, 2004.
[56]N. K. Nishchal and T. J. Naughton, “Flexible optical encryption with multiple users and multiple security levels,” Optics Communications, vol. 284, pp. 735–739, 2011.
[57]O. Matoba and B. Javidi,”Encrypted optical storage with wavelength-key and random phase codes,” Applied Optics, vol. 38, pp. 6785-6790, 1999.
[58]O. Matoba and B. Javidi, “Secure Holographic Memory by Double-Random Polarization Encryption,” Applied Optics, vol. 43, pp. 2915-2919, 2004.
[59]P. Refregier and B. Javidi, “Optical image encryption based on input plane and Fourier plane random encoding,” Optics Letters, vol. 20, pp. 767-769, 1995.
[60]Q. L. Deng, B. S. Lin, H. T. Chang, G. S. Huang, and C. Y. Chen, “MGSA-Type Computer-Generated Holography for Vision Training With Head-Mounted Display,” Journal of Display Technology, Vol. 10, pp. 433 – 437, 2014.
[61]R. W. Gerchberg and W. O. Saxton, “A practical algorithm for the determination of the phase from image and diffraction plane pictures,” Optik, vol. 35, 1972.
[62]R. K. Wang, I. A. Watson, and C. Chatwin, “Random phase encoding for optical security,” Optical Engineering, vol. 35, pp. 2464–2469, 1996.
[63]R. P. Muffoletto, J. M. Tyler, and J. E. Tohline, “Shifted Fresnel diffraction for computational holography,” Optics Express, vol. 15, pp. 5631-5640, 2007.
[64]S. Zhang and M. A. Karim, “Color image encryption using double random phase encoding,” Microwave and Optical Technology Letters, vol. 21, pp. 318-323, 1999.
[65]S. Liu, Q. Mi, and B. Zhu, “Optical image encryption with multistage and multichannel fractional Fourier-domain filtering,“ Optics Letters, vol. 26, pp. 1242-1244, 2001.
[66]T. Nomura and B. Javidi, “Optical encryption using a joint transform correlator architecture,” Optical Engineering, vol. 39, pp. 2031–2035, 2000.
[67]T.-C. Poon, “Digital Holography and Three-Dimensional Display: Principles and Application,” Springer, 2006.
[68]U. Mahlab, J. Rosen, and J. Shamir, “Iterative generation of holograms on spatial light modulators,” Optics Letters, vol. 15, pp. 556–558, 1990.
[69]X. F. Meng, L. Z. Cai, Y. R. Wang, X. L. Yang, X. F. Xu, G. Y. Dong, X. X. Shen, H. Zhang, and X. C. Cheng, “Hierarchical image encryption based on cascaded iterative phase retrieval algorithm in the Fresnel domain,” Journal of Optics A: Pure and Applied Optics, vol. 9, pp. 1070–1075, 2007.
[70]Xiang Peng, Peng Zhang, Hengzheng Wei, and Bin Yu, “Known-plaintext attack on optical encryption based on double random phase keys,” Optics Letters, vol. 31, pp. 1044-1046, 2006.
[71]X. Yong-Liang, Z. Xin, Y. Sheng, and C. Yao-Yao, “Multiple-image parallel optical encryption,” Optics Communications, vol. 283, pp. 2789-2793, 2010.
[72]Y. Li, K. Kreske, and J. Rosen, “Security and encryption optical systems based on a correlator with significant output images,” Applied Optics, vol. 39, pp. 5295–5301, 2000.
[73]Y. C. Chang, H. T. Chang, and C. J. Kuo, “Hybrid image cryptosystem based on dyadic phase displacement in the frequency domain,” Optics Communications, vol. 236, pp. 245–257, 2004.
[74]Y. Zhang, C. H. Zheng, and N. Tanno, “Optical encryption based on iterative fractional Fourier transform,” Optics Communications, vol. 202, pp. 277–285, 2002.
[75]Y. Takaki and N. Okada, “Hologram generation by horizontal scanning of a high-speed spatial light modulator,” Applied Optics, vol. 48, pp. 3255–3260, 2009.
[76]Z. Zalevsky, D. Mendlovic, and R. G. Dorsch, “Gerchberg-Saxton algorithm applied in the fractional Fourier or the Fresnel domain,” Optics Letters, vol. 21, pp. 842-844, 1996.
[77]Z. Liu and S. Liu, “Double image encryption based on iterative fractional Fourier transform,” Optics Communications, vol. 275, pp. 324-329, 2007.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top