跳到主要內容

臺灣博碩士論文加值系統

(34.204.169.230) 您好!臺灣時間:2024/02/28 06:25
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:蔡昌儒
研究生(外文):Chang-Ju Tsai
論文名稱:水滴輔助雷射於玻璃之次微米鑽孔技術開發
論文名稱(外文):Study of Droplet-assisted Submircon Laser Direct Writing on Glass
指導教授:張元震
指導教授(外文):Yuan-Jen Chang
口試委員:王永成王可文
口試委員(外文):Yung-Cheng WangKo-Wen Wang
口試日期:2014-07-30
學位類別:碩士
校院名稱:國立雲林科技大學
系所名稱:機械工程系
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2014
畢業學年度:102
語文別:中文
論文頁數:97
中文關鍵詞:雷射玻璃次微米結構
外文關鍵詞:LaserGlassSubmicron structuresWater
相關次數:
  • 被引用被引用:0
  • 點閱點閱:203
  • 評分評分:
  • 下載下載:19
  • 收藏至我的研究室書目清單書目收藏:0
利用近場光學製作次微米結構應用於工業上具有非常大的潛力。本文提出兩種技術,將液滴加入實驗中,透由水滴當作透鏡將雷射聚焦於液滴之底部,藉此來增加雷射強度。其一為利用玻璃基板上蒸鍍之疏水層與控制玻璃基板上的溫度,這些具有高接觸角之液滴隨機地散布於玻璃基板上來進行奈秒雷射之燒蝕。當玻璃基板表面溫度至10°C時,透由離焦改變平均功率密度在6.483 × 109 W/cm2時可製造出孔徑約900nm之孔洞。運用此參數進行液滴大小對孔洞之影響,當液滴大小約3
Using near-field optics to produce sub-micron scale structures has many potential applications in industry. In this thesis, we propose two techniques to form water droplets on glasses as lenses for submicron structure fabrication by laser direct writing on them. One is to obtain water droplets in atmospheric environment by condensation on glasses. A hydrophobic layer is coated on glass substrates and the temperature of the substrates is controlled to lower than environment temperature. These droplets with a high contact angle are randomly distributed on the substrate and one shot of pulsed nanosecond laser is applied to drill on it. With the substrate temperature of 10 ° C and the average laser power density of 6.483 × 109 W/cm2 , we have successfully fabricated holes with 900 nm in diameter. We also discuss the effect of droplet size on hole- fabrication and find that high quality holes with less broken edge can be obtained with droplet size of 3 μm in diameter. The other technique is to dispense a micro-droplet by a needle. The size of the droplet is controlled by applied pressure and the diameter of 630 μm is achieved. A picosecond laser passing through the droplet drills the glass substrate. The effect of defocusing distances on glass drilling is discuss in the study. The results indicate a 5 μm in diameter hole can be obtained with the defocusing distance of 400 μm. The hole diameter increases with the defocusing distance while the hole roundness decreases with the distance.
中文摘要 ........................................................................................................................ i
英文摘要 ........................................................................................................................ ii
誌謝 ................................................................................................................................ iii
目錄 ................................................................................................................................ iv
表目錄 ............................................................................................................................ vi
圖目錄 ............................................................................................................................ vii
第一章 緒論 .................................................................................................................. 1
1-1 前言 ......................................................................................................... 1
1-2 文獻回顧 ................................................................................................. 1
1-2.1 疏水性結構製備文獻 ................................................................... 2
1-2.2 微粒透鏡輔助雷射於玻璃基板製備次微米級盲孔文獻 ........... 5
1-2.3 超快雷射於玻璃基板產生週期性結構文獻 ............................... 12
1-3 研究動機與目的 ..................................................................................... 16
1-4 論文架構 ................................................................................................. 17
第二章 實驗基礎原理與加工機制 .............................................................................. 18
2-1 雷射加工原理 ............................................................................................ 18
2-1.1 雷射發生機制 ........................................................................ 18
2-1.2 Nd:YAG 雷射的加工原理 .................................................. 19
2-1.3 Nd:YAG 雷射的特性 .......................................................... 20
2-1.4 雷射倍頻技術 ........................................................................ 21
2-1.5 雷射移除玻璃材料機制 ........................................................ 22
2-2 近場光學輔助雷射製造次微米級結構 .................................................... 23
2-3 雷射功率密度計算 .................................................................................... 25
第三章 藥品及實驗設備與配置 .................................................................................. 28
3-1 藥品 ............................................................................................................ 28
3-2 儀器設備介紹 ............................................................................................ 30
3-2.1 LOTIS ND:YAG 脈衝倍頻式雷射機 ................................. 30
3-2.2 Sodick AP1L 雕模放電加工機 .............................................. 31
3-2.3 KD ScientificKDS210 注射幫浦 ........................................... 32
3-2.4 TektronixPWS4205 可編程直流電源供應器 ....................... 33
3-2.5 Musashi ML-808FX 壓力吐出器 .......................................... 34
3-2.6 電致冷晶片 ............................................................................ 34
v
3-2.7 Atlantic HR 皮秒級高重複頻率雷射機 ................................ 35
3-2.8 其他儀器設備 ........................................................................ 35
3-3 實驗配置 .................................................................................................... 38
3-3.1 奈秒雷射之實驗配置 ............................................................ 38
3-3.2 皮秒雷射之實驗配置 ............................................................ 41
第四章 玻璃基板表面疏水性製備 .............................................................................. 44
4-1 玻璃基板表面疏水性製備 ........................................................................ 44
4-1.1 玻璃基板的前置清洗流程 .................................................... 44
4-1.2 食人魚(Piranha)洗液清洗玻璃基板 ..................................... 45
4-1.3 玻璃基板表面蒸鍍抗沾黏 .................................................... 46
4-1.4 接觸角量測 ............................................................................ 48
4-2 在玻璃基板上凝結液滴輔助奈秒雷射製作微米級孔洞 ........................ 49
4-2.1 雷射於玻璃基板的燒蝕能量密度閥值測試 ........................ 49
4-2.2 水滴凝結控制其穩定性實驗 ................................................ 53
4-2.3 水滴於不同凝結時間下大小之變化 .................................... 55
4-3 在玻璃基板上使用液滴輔助皮秒雷射製作次微米級孔洞 .................... 58
第五章 結果與討論 ...................................................................................................... 61
5-1 奈秒雷射於玻璃基板上製作次微米級孔洞 ............................................ 61
5-1.1 奈秒雷射於玻璃基板加工時離焦距離對孔洞影響結果 .... 61
5-1.2 奈秒雷射於玻璃基板加工時水滴大小對孔洞影響結果 .... 70
5-2 皮秒雷射於玻璃基板上製作次微米級孔洞 ............................................ 75
第六章 結論與未來展望 .............................................................................................. 81
6-1 結論 ......................................................................................................... 81
6-2 未來展望 ................................................................................................. 82
參考文獻 ........................................................................................................................ 83
[1] 張國順,2006,現代雷射製造技術,新文京開發出版股份有限公司。
[2] Barthlott,W., Neinhuis,C., “Purity of the Sacred Lotus, or Escape from Contamination in Biological Surfaces,” Planta, 202, 1-8, 1997.
[3] http://nano.nchc.org.tw/v1/dictionary/lotus_effect.html
[4] 林彥宏,”透明二氧化矽奈米粒子薄膜表面的超疏水/超親水圖案化及超疏水-超親水梯度化研究”,國立成功大學化學工程學系碩士論文
[5] Y. Kawaguchi, M.L. Dawes, S.C. Langford, J.T. Dickinson, J. Appl.Phys. 89 (2001) 2370.
[6] T.Y. Choi, C.P. Grigoropoulos, J. Appl. Phys. 92 (2002) 4918.
[7] D. Ashkenasi, G. Mqller, A. Rosenfeld, R. Stoian, I.V. Hertel, N.M. Bulgakova, E.E.B. Campbell, Appl. Phys., A 77 (2003) 223.
[8] S. Nikumba,*, Q. Chena, C. Lia, H. Reshefa, H.Y. Zhengb, H. Qiub, D. Lowb“Precision glass machining, drilling and profile cutting by short pulse lasers”, Proceedings of the International Conference on Materials and Advanced Technologies; Symposium B: Polymers and Organic Materials for Electronic, Optoelectronic and Photonic Devices
[9] http://www.macdermid.com/
[10] Yukun Han , Cheng-Hsiang Lin , Hai Xiao , Hai-Lung Tsai,“Femtosecond laser-induced silicon surface morphology in water confinement”, Microsyst Technol (2009) 15:1045–1049
[11] Chengde Li and Suwas Nikumb,“Optical quality micromachining of glass with focused laser-produced metal plasma etching in the atmosphere”, Vol. 42, No. 13 APPLIED OPTICS
[12] Z. B. Wang, Wei Guo, A. Pena, D. J. Whitehead, B. S. Luk'yanchuk , Lin.Li ,Z. Liu, Y. Zhou and M. H. Hong,”Laser micro/nano fabrication in glass with tunable-focus particle lens array,” Optics Express, Vol. 16, Issue 24, pp. 19706-19711 (2008)

[13] Y. Zhou, M.H. Hong, J.Y.H. Fuh, L. Lu, B.S. Lukyanchuk , Z.B. Wang ,“Near-field enhanced femtosecond laser nano-drilling of glass substrate”,Journal of Alloys and Compounds 449 (2008) 246–249
[14] Y. Li, W. Watanabe, K. Yamada, T. Shinagawa, K. Itoh, J. Nishii, Y. Jiang, Appl. Phys. Lett., 80 (2002), pp. 1508–1510
[15] R. An, Y. Li, Y. Dou, H. Yang, Q. Gong, Opt. Express, 13 (2005), pp. 1855–1859
[16] G. Seifert , M. Kaempfe, F. Syrowatka, C. Harnagea, D. Hesse, H. Graener,“Self-organized structure formation on the bottom of femtosecond laser ablation craters in glass”, Applied Physics A
[17] Md. Shamim Ahsan, Yeong Kyu Kim, Man Seop Lee, Md. Mahbub Hossain,“Nanostructure Covered Micro Holes Fabrication by Femtosecond Laser on Fused Silica Glass Surface”, Optics Express, Vol. 18, Issue 7, pp. 6885-6890 (2010)
[18] Md. Shamim Ahsan ,Yeong Gyu Kim, Man Seop Lee“Formation mechanism of nanostructures in soda–lime glass using femtosecond laser”, Journal of Non-Crystalline Solids, Volume 357, Issue 3, 1 February 2011, Pages 851–857
[19] Qiming Zhang, Han Lin, Baohua Jia, Lei Xu and Min Gu1,”Nanogratings and nanoholes fabricated by direct femtosecond laser writing in chalcogenide glasses,” Optics Express, Vol. 18, Issue 7, pp. 6885-6890 (2010)
[20] 陳彥辰,”微米與奈米尺度金屬玻璃之製備與特性分析:機械與物理性質評估,”國立臺灣科技大學材料科學與工程系博士論文
[21] A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, “A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor,” Nature, Vol. 427, 2004, pp.615-618.
[22]https://www.itri.org.tw/chi/news/detail.asp?RootNodeId=060&NodeId=061&News
ID=683
[23] http://patentog.tipo.gov.tw/tipo/miscmain1.htm
[24] Liming He, Yoshiharu Namba, Yuji Narita, 2000,“Wavelength optimization for machining metals with the harmonic generations of a short pulsed Nd:YAG laser”, Journal of the International Societies for Precision Engineering and Nanotechnology ,
[25] R.C.P. Wong, A.P. Hoult, J.K. Kim and T.X. Yu,”Improvement of adhesive bonding in aluminium alloys using a laser surface texturing process”,Journal of Materials Processing Technology, 63(1997), 579-584
[26] 賴耿陽,1994,雷射光工學,台灣復文興業股份有限公司。
[27] L. He, Y. Namba, and Y. Narita, "Wavelength optimization for machining metals with the harmonic generations of a short pulsed Nd: YAG laser," Precision engineering, vol. 24, pp. 245-250, 2000
[28]Yasuhiko Shimotsuma and Kazuyuki Hirao, “Nanofabrication in transparentmaterials with a femtosecond pulse laser”, Journal of Non-Crystalline Solids,Vol. 352, pp. 646–656, (2006)
[29] http://zh.wikipedia.org/wiki/%E6%8A%98%E5%B0%84%E7%8E%87
[30] Y. J. Chang, C. H. Chang, C. C. Ho, J. C. Hsu, C. L. Kuo, ”Nanostructure Fabricated by Laser Direct Writing with Water Droplets,” IEEE-NEMS 2013
[31] http://11104.cn.all.biz/
[32] http://www.douyee.com/en/products/item/626/ml-808-fx-com-ce

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top