(3.215.77.193) 您好!臺灣時間:2021/04/17 02:23
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:杜志昇
研究生(外文):Chih-Sheng Tu
論文名稱:產油酵母菌之分離與利用工業廢棄物進行油脂累積 之研究
論文名稱(外文):Isolation of oleaginous yeasts and their lipid accumulation using various industrial wastes as substrates
指導教授:楊茱芳
指導教授(外文):Chu-Fang Yang
口試委員:李季眉王俊欽楊茱芳
口試委員(外文):Chi-Mei LeeChun-Chin WangChu-Fang Yang
口試日期:2014-05-16
學位類別:碩士
校院名稱:國立雲林科技大學
系所名稱:環境與安全衛生工程系
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2014
畢業學年度:102
語文別:中文
論文頁數:126
中文關鍵詞:假絲酵母菌黏紅酵母菌超音波凍融循環粗甘油糖蜜生乳廢液碳源氮源碳/氮比
外文關鍵詞:Candida rugosaRhodotorula mucilaginosaultrasonicationfreeze-thaw cyclecrude glycerolmolasseswaste milkcarbon sourcenitrogen sourcecarbon/nitrogen ratio
相關次數:
  • 被引用被引用:4
  • 點閱點閱:466
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:5
  • 收藏至我的研究室書目清單書目收藏:0
微生物油脂具快速合成和積累、無需農業土地、不受天候影響、易大規模生產與性質相似於植物油等諸多優點,近幾十年來,被認定為具生產生物柴油潛力的非糧食類原料。油脂性微生物中酵母菌因具備高生長速率、無須光照且能更快速累積油脂等特點,使得以酵母菌作為替代能源生產者之研究比重逐漸攀升。粗甘油為生質柴油之主要副產物,隨著生質柴油的需求趨勢日益增加,勢必產生大量轉酯化後的廢棄物—粗甘油,因此本研究從生質柴油廠活性污泥槽篩選油脂性酵母菌,藉由酵母菌將廢棄甘油轉化成油脂累積於菌體內,累積的油脂可再進一步作為生質柴油的油料來源,以達到處理廢棄甘油與降低油料成本之雙贏目標。
影響酵母菌生長與油脂累積的培養因子有碳源種類、氮源種類、溫度、pH值與碳/氮比等。本研究探討酵母菌在各種不同培養條件下的菌體生長與油脂累積情形,以求得酵母菌生長與油脂生產的最佳條件。此外,為避免使用過量的有機溶劑進行油脂萃取進而增加環境污染風險與經濟上的損失,故本研究亦針對不同油脂萃取條件進行油脂萃取的最佳化,使有機溶劑達最大萃取效益。
結果顯示從生質柴油廠活性污泥槽中分離四株酵母菌,其中LP-1與LP-2在經18S rDNA序列比對下,得知菌名分別為Candida rugosa與Rhodotorula mucilaginosa。於油脂萃取試驗中,不同生質物含量顯著影響油脂萃取效率,兩株菌的萃取效率皆隨生質物含量降低而提升,所得最適萃取生質物含量為30 mg。輔助超音波震盪可提升油脂萃取效率,但時間過長反而使萃取效率下滑,所得最適震盪時間為30 min;其中酵母菌Candida rugosa LP-1可提升1倍以上油脂含量,酵母菌Rhodotorula mucilaginosa LP-2則可提升約65%。而凍融法的次數多寡對菌株Candida rugosa LP-1與Rhodotorula mucilaginosa LP-2油脂萃取並無顯著影響。
將所得油脂萃取最佳條件進一步應用於批次實驗中,可得知同時考慮細胞產量與油脂含量,菌株Candida rugosa LP-1最適溫度為27℃,菌株Rhodotorula mucilaginosa LP-2為33℃;脂肪酸組成含量受到溫度影響,其中又以Rhodotorula mucilaginosa LP-2所受之影響較為顯著。碳源試驗中最適Candida rugosa LP-1生長碳源為Crude glycerol,最適累積油脂為Pure glycerol,而以Crude glycerol為碳源可得最高油脂產量;最適Rhodotorula mucilaginosa LP-2生長與累積油脂碳源皆為Pure glycerol,因此能得最高油脂產量之碳源亦為Pure glycerol。另外,兩株菌之最適生長與累積油脂氮源皆為Yeast extract,(NH4)2SO4雖可降低油料所需成本,但因於消耗氮源的過程中釋出SO42-,使得pH驟降,進而影響菌體生長與油脂累積。碳/氮比試驗中則可得知兩株菌之細胞產量皆隨碳/氮比升高而降低,所得最適菌體生長碳/氮比為25,然油脂含量隨碳/氮比升高而增加,但過高的碳氮比不僅無法使菌體生長,同時也抑制油脂累積。其中碳/氮比45適合菌株Candida rugosa LP-1累積油脂,最適菌株Rhodotorula mucilaginosa LP-2的碳/氮比則為65,碳/氮比對Rhodotorula mucilaginosa LP-2脂肪酸的去飽和造成顯著的影響。
Microbial lipid has many advantages, such as short life cycle, no demand of large farm land, no influence by weather, easily large-scale production and similar fatty acids compositions with vegetable oils. Oleaginous yeast with high growth rate, no need of illumination and fast lipid accumulation has attracted much interest in recent decades. Crude glycerol is a major byproduct in the biodiesel manufacturing process. Along with increasing demand for biofuels,it consequentially produces the massive quantity of crude glycerol needed to be treated. To deal with crude glycerol and transform it into useful oil feed for biodiesel,in this study, oleaginous yeasts were isolated from activated sludge tank of a biodiesel plant, and the bioconversion of crude glycerol into cellular oil using isolated yeasts was investigated.
The factors affecting yeast growth and lipid accumulation include carbon source, nitrogen source, temperature, pH, and carbon/nitrogen ratio. This study used different incubation parameters to realize the cell growth and lipid accumulation. In addition, to avoid excess use of organic solvent to extract lipid, this study also established optimum lipid extraction conditions to receive efficient lipid yield.
The results showed that 4 yeast strains were isolated from the biodiesel plant. Strain LP-1 and LP-2 were identified as Candida rugosa and Rhodotorula mucilaginosa,respectively. Different biomass weight significantly influenced lipid extraction efficiency. Higher biomass amount caused lower extraction efficiency. The optimal biomass weight for lipid extraction was 30 mg. The lipid contents of strain Candida rugosa LP-1 and strain Rhodotorula mucilaginosa LP-2 could be improved more than 1 time and 65%, respectively, by ultrasonication when extracting lipid. However, long ultrasonication duration obtained decline of extraction efficiency. The optimal ultrasonication duration for lipid extraction was 30 min. The numbers of freeze-thaw cycles had no significant impact on lipid extraction.
The optimum temperatures of strain Candida rugosa LP-1 and strain Rhodotorula mucilaginosa LP-2 for maximum lipid productivity were 27oC and 33oC, respectively. The most suitable carbon sources for strain Candida rugosa LP-1 and strain Rhodotorula mucilaginosa LP-2 to accumulate lipid were crude glycerol and pure glycerol, respectively. Yeast extract was the most suitable nitrogen source for both strains. Although, (NH4)2SO4 was a cheap nitrogen source, it caused pH decrease so that cell growth and lipid accumulation were both influenced. Low carbon/nitrogen ratio was beneficial to biomass growth. In contrast, the cellular lipid content increased with the increase of the carbon/nitrogen ratio. Higher carbon/nitrogen ratio not only inhibited cell growth, but also oil accumulation. The most suitable carbon/nitrogen ratios for strain Candida rugosa LP-1 and strain Rhodotorula mucilaginosa LP-2 were 45 and 65, respectively. Carbon/nitrogen ratio caused a significant impact on the fatty acid desaturation, especially to strain Rhodotorula mucilaginosa LP-2.
摘要 i
Abstract iii
目錄 v
表目錄 viii
圖目錄 ix
第一章 緒論 1
1.1 研究緣起 1
1.2 研究目的及內容 2
1.3 研究架構 3
第二章 文獻回顧 4
2.1 能源現況 4
2.2 生質柴油 5
2.2.1 生質柴油簡介 5
2.2.2 生質柴油發展 5
2.2.2.1 第一代生質柴油 7
2.2.2.2 第二代生質柴油 7
2.2.2.3 第三代生質柴油 8
2.2.3 轉酯化反應 8
2.2.4 生質柴油使用現況 9
2.3 產油微生物 11
2.3.1 微藻 13
2.3.2 細菌 13
2.3.3 真菌和酵母菌 14
2.4 酵母菌產油機制 14
2.5 影響酵母菌油脂產量的因素 16
2.5.1 溫度 16
2.5.2 pH值 17
2.5.3 碳源 17
2.5.4 氮源 19
2.5.5 碳/氮比 20
2.6 再利用廢棄物特性介紹 21
2.6.1 粗甘油 21
2.6.2 糖蜜 23
2.6.3 生乳廢液 24
2.7 超音波輔助油脂萃取 25
2.7.1 超音波作用原理 25
2.7.2 超音波應用 26
2.8 聚合酶連鎖反應-變性梯度膠體電泳原理與應用 27
2.8.1 聚合酶連鎖反應 27
2.8.2 變性梯度膠體電泳 28
第三章 材料與方法 29
3.1實驗架構 29
3.2污泥來源 31
3.3 廢棄物特性 31
3.4培養基配製 32
3.4.1 篩選菌株培養基 32
3.4.2 油脂累積培養基 33
3.5實驗藥品與儀器設備 34
3.6 油脂性酵母菌之分離與篩選 38
3.6.1 菌株分離與保存 38
3.6.2 Nile red螢光染劑快篩與菌種鑑定 40
3.7生質柴油廠活性污泥槽之菌相分析 40
3.7.1 Total Genomic DNA之萃取 40
3.7.2 聚合酶連鎖反應-變性梯度膠體電泳(PCR-DGGE)法 41
3.7.2.1 聚合酶連鎖反應(PCR) 41
3.7.2.2瓊脂糖凝膠電泳分析分析 43
3.7.2.3變性梯度膠體電泳(DGGE) 43
3.8油脂萃取最佳化 44
3.8.1 不同生質物含量萃取試驗 44
3.8.2 不同超音波震盪時間試驗 46
3.8.3 不同凍融次數試驗 46
3.9油脂累積之批次實驗 47
3.9.1 不同培養溫度試驗 48
3.9.2 酵母菌累積油脂-不同碳源種類試驗 48
3.9.3 酵母菌累積油脂-不同氮源種類試驗 48
3.9.4 酵母菌累積油脂-不同碳/氮比試驗 48
3.10分析方法 49
3.10.1 細胞量分析 49
3.10.1.1 O.D.與細胞乾重檢量線 49
3.10.1.2 O.D.值與菌數檢量線 49
3.10.1.3 細胞量 50
3.10.2 單細胞油脂分析 50
3.10.2.1 油脂含量分析 50
3.10.2.2 油脂組成分析 51
3.10.3 水質分析 52
3.10.3.1 pH值 52
3.10.3.2 化學需氧量(COD)分析 52
3.10.3.3 總氮含量分析 53
3.10.3.4 甘油濃度 54
第四章 結果與討論 55
4.1 Nile red螢光染劑快篩生質柴油廠活性污泥槽中之油脂性酵母菌 55
4.1.1 油脂性酵母菌之分離 55
4.1.2 Nile red螢光染劑快篩與菌種鑑定 57
4.2生質柴油廠活性污泥槽之菌相結構 59
4.2.1 活性污泥槽菌相分析結果 59
4.3酵母菌於不同生質物含量、超音波震盪時間、凍融次數下進行油脂萃取之效率 59
4.3.1 最適油脂萃取之生質物量 61
4.3.2 最適油脂萃取之超音波震盪時間 63
4.3.3 最適油脂萃取之凍融次數 65
4.4酵母菌於不同溫度、碳源種類、氮源種類、碳/氮比等環境條件下之菌體生長與油脂累積之變化情形 67
4.4.1 溫度對油脂累積與菌株生長之影響 67
4.4.2 碳源種類對油脂累積與菌株生長之影響 73
4.4.3 氮源種類對油脂累積與菌株生長之影響 84
4.4.4 碳/氮比對油脂累積與菌株生長之影響 94
第五章 結論與建議 100
5.1 結論 100
5.2 建議 102
參考文獻 103
全球生質柴油年產量。Web site: http://www.indexmundi.com/. 於2014年2月27日 藉網路瀏覽。
行政院農業委員會,2013,台灣乳業產能統計表。
汪碧涵、王嬿婷,2005,臺灣酵母菌多樣性調查,海峽兩岸真菌學學術研討會論文集,第七屆,第63–78頁。
沈鳳堯,2006,培養條件對毛黴Mucorrouxii生產多元不飽和脂肪酸之影響,碩士論文,東海大學化學工程與材料工程研究所。
余依嬛,2012,業廢棄物粗甘油與酒糟水作為培養基探討 Rhodotorula glutinis的生長影響,碩士論文,東海大學化學工程與材料工程研究所。
陳維新,2012,能源概論,高立圖書出版。
陳鴻易,2003,以16s rDNA 分析法監測石油污染土中微生物菌相之變化,碩士論文,國立中山大學生物科學研究所。
國際能源總署,2011,全球能源供應分析。
國際能源總署,2012,國際能源供需現況與發展情勢。
經濟部能源局,2012,能源統計手冊。
蔡介中,2011,探討光品質和漁業廢棄物對Chlorella sp.和Saccharomyces cerevisiae共培養生產油脂之影響,博士論文,國立中央大學化學工程與材料工程研究所。
蔡明達,2009,微藻養殖生產油脂並利用微藻油脂產製生質柴油之研究,碩士論文,國立交通大學生物科技學系。
賴耿陽,超音波工學,復文書局,2005。
謝志強,2007a,全球生物能源發展概況,生物應用工程產業年鑑,第82-87頁。
謝志誠,2007b,生質柴油與石化柴油之比較,臺灣大學生物產業機電工程學系。
謝志誠,2007c,生質柴油之技術與文獻碳討,臺灣大學生物產業機電工程學系。
謝昶毅,2003,以 PCR-DGGE 技術分析石油碳氫化合物污染地下水之微生物相,碩士論文,國立中山大學生物科學研究所。
謝誌鴻,2009,微藻培養與微藻油脂生產之研究,博士論文,國立成功大學化學工程學系。
Abdullah S., Abdul Mudalip S.K. , Shaarani S. M., Che Pi N.A., 2010. Ultrasonic extraction of oil from monopterus albus: effects of different ultrasonic power, solvent volume and sonication time. Journal of Applied Sciences, 10, 2713-2716.
Adam F., Abert-Vian M., Peltier G., Chemat F., 2012. ‘‘Solvent-free’’ ultrasound-assisted extraction of lipids from fresh microalgae cells: a green, clean and scalable process. Bioresource Technology, 114, 457-465.
Ageitos J.M., Vallejo J.A., Veiga-Crespo P., Villa T.G., 2011. Oily yeasts as oleaginous cell factories, Applied Microbiology and Biotechnology, 90, 1219-1227.
Ahmad A.L., Mat Yasin N.H., Derek C.J.C., Lim J.K., 2011. Microalgae as a sustainable energy source for biodiesel production: A review. Renewable and Sustainable Energy Reviews, 15, 584-593.
Alvarez H.M., Kalscheuer R., Steinbuchel A., 1997. Accumulation of storage lipids in species of Rhodococcus and Nocardia and effect of inhibitors and polyethylene glycol. European Journal of Lipid Science and Technology, 99, 239-246.
Alvarez R.M., Rodríguez B., Romano J.M., Díaz A.O., Gómez E., Miró D., Navarro L., Saura G., García J.L., 1992. Lipid accumulation in Rhodotorula glutinis on sugar cane molasses in single-stage continuous culture. World Journal of Microbiology and Biotechnology, 8, 214-215.
Amaretti A., Raimondi S., Sala M., Roncaglia L., De Lucia M., Leonardi A., Rossi M., 2010. Single cell oils of the cold-adapted oleaginous yeast Rhodotorula glacialis DBVPG 4785. Microbial Cell Factorie, 9, 73-79.
Amaretti A., Raimondi S., Leonardi A., Sala M., 2012. Candida Freyschussii: an Oleaginous Yeast Producing Lipids from Glycerol. Chemical Engineering, 27, 139-144.
Applied Microbiology and Biotechnology, 78, 29-36.
Arnheim N., Erlich H., 1992. Polymerase chain reaction strategy. Annual Review of Biochemistry, 61, 131-156.
Ayoub M., Abdullah A.Z., 2012. Critical review on the current scenario and significance of crude glycerol resulting from biodiesel industry towards more sustainable renewable energy industry. Renewable and Sustainable Energy Reviews, 16, 2671-2686.
Barbara T., Wonerow K., Paschke K., 1999. DGGE is More Sensitive for The Detection of Somatic Point Mutations than Direct Sequencing. Biotechniques, 27, 266-268.
Barksdale L, Kim K.S., 1977. Mycobacterium. Bacteriol Reviews, 41, 217-372.
Beopoulos A., Cescut J., Haddouche R., Uribelarrea J.L., Molina-Jouve C., Nicaud J.M., 2009. Yarrowia lipolytica as a model for bio-oil production. Progress in Lipid Research, 48, 375-387.
Beopoulos A., Desfougeres T., Sabirova J., Nicaud J.M., 2010. Yarrowia lipolytica as a cell factory for oleochemical biotechnology. In: Timmis, K. (Ed.), Handbook of Hydrocarbon and Lipid Microbiology. Springer-Verlag, Berlin, Heidelberg, 3004-3010.
Billore S.K., Singh N., Ram H.K., Sharma J.K., Singh V.P., Nelson R.M., Dass P., 2001. Treatment of molasses based distillery effluent in a constructed wetland in central India. Water Science and Technology, 44, 441-448.
Bligh E.G., Dyer W.J., 1959. A rapid method of total lipid extraction and purification. Canadian journal of Biochemistry and Physiology, 37, 911-917.
Brennan L, Owende P., 2010. Biofuels from microalgae- review of technologies for production, processing, and extractions of biofuels and co-products. Renewable and Sustainable Energy Reviews, 14, 557-577.
Burns B.P., Mendz G.L., Hazell S.L., 1997. In situ properties of Helicobacter pylori aspartate carbamoyltransferase. Archives of Biochemistry and Biophysics, 347, 119-125.
Canakci M., 2007. The potential of restaurant waste lipids as biodiesel feedstocks. Bioresource Technology, 98, 183-190.
Celikten I, Koca A, Arslan M.A., 2010. Comparison of performance and emissions of diesel fuel, rapeseed and soybean oil methyl esters injected at different pressures. Renewable Energy, 35, 814-820.
Chatzifragkou A., Makri A., Belka A., Bellou S., Mavrou M., Mastoridou M., Mystrioti P., Onjaro G., Aggelis G., Papanikolaou S., 2011. Biotechnological conversions of biodiesel derived waste glycerol by yeast and fungal species. Energy, 36, 1097-1108.
Chavalparit O., Ongwandee M., 2009. Optimizing electrocoagulation process for the treatment of biodiesel wastewater using response surface methodology. Journal of Environmental Sciences, 21, 1491-1496.
Chisti Y, Moo-Young M., 1986. Review: disruption of microbial cells for intracellular products. Enzyme and Microbial Technology, 8, 194-204.
Cocolin L., Aggio D., Manzano M., Cantoni C., Comi G., 2002. An application of PCR-DGGE analysis to profile the yeast populations in raw milk. International Dairy Journal, 12, 407-411.
Damiani M.C., Popovich C.A., Constenla D., Leonardi P.I., 2010. Lipid analysis in Haematococcus pluvialis to assess its potential use as a biodiesel feedstock. Bioresource Technology, 101, 3801-3807.
Demirbas A. , 2002. Biodiesel from vegetable oils via transesterification in supercritical methanol. Energy Conversion and Management, 43, 2349-2356.
Demirbas A., 2003. Biodiesel fuels from vegetable oils via catalytic and non-catalytic supercritical alcohol transesterifications and other methods: a survey. Energy onversion and Management, 44, 2093-2109.
Dey P., Maiti M.K., 2013. Molecular characterization of a novel isolate of Candida tropicalis for enhanced lipid production. Journal of Applied Microbiology, 114, 1357-1368.
Diaz G., Melis M., Batetta B., Angius F., Falchi A.M., 2008. Hydrophobic characterization of intracellular lipids in situ by Nile Red red/yellow emission ratio. Micron, 39, 819-824.
D'Ovidio R., 1992. Nucleotide sequence of a 5.8S rDNA gene and of the internal transcribed spacers from Populus deltoides. Plant Molecular Biology, 19, 1069-1072.
Drapcho C.M., Nghiem N.P., Walker T.H., 2008. Biofuels Engineering Process Technology. McGraw-Hill Companies, New York.
Duarte S.H., Ghiselli G., Maugeri F., 2013. Influence of culture conditions on lipid production by Candida sp. LEB-M3 using glycerol from biodiesel synthesis. Biocatalysis and Agricultural Biotechnology, 2, 339-343.
Enshaeieh M., Abdoli A., Nahvi I., Madani M., 2012. Bioconversion of different carbon sources in to microbial oil and biodiesel using oleaginous yeasts. Journal of Biology and today's world, 1, 82-92.
Evans .C.T., Ratledge C., 1984. Effect of nitrogen source on lipid accumulation in oleaginous yeasts. Journal of General Microbiology, 130, 1693-1704.
Ferris M.J., Ward D.M., 1997. Seasonal Distributions of Dominant 16S rRNA-Defined Populations in a Hot Spring Microbial Mat Examined by Denaturing Gradient Gel Electrophoresis. Applied and Environmental Microbiology, 63, 1375-1381.
Franco D., Pinelo M., Sineiro J., Núñez M.J., 2007. Processing of Rosa rubiginosa: extraction of oil and antioxidant substances. Bioresource Technology, 98, 3506-3512.
Ghadge S.V, Raheman H., 2006. Process optimization for biodiesel production from mahua (Madhuca indica) oil using response surface methodology. Bioresource Technology, 97, 379-384.
Gouda M.K., Omar S.H., Aouad L.M., 2008. Single cell oil production by Gordonia sp. DG using agro-industrial wastes. World Journal of Microbiology and Biotechnology, 24, 1703-1711.
Greenberg A., Trussel R.R., Cleseeri L.S., 1985. Standard Methods for the Examinationof Waste and Wastewater,16thed., Am. Public Health Assoc., Washington,pp.1268.
Greenspan P., Fowler S.D., 1985. Spectrofluorometric studies of the lipid probe, Nile red. Journal of Lipid Research, 26, 781-789.
Gu N., Lin Q., L, G., Qin G., Lin J.D., Huang L.M., 2012. Effect of salinity change on biomass and biochemical composition of Nannochloropsis oculata. Journal of the World Aquaculture Society, 43, 97-106.
Halim R., Gladman B., Danquah M.K., Webley P.A., 2011. Oil extraction from microalgae for biodiesel production. Bioresource Technology, 102, 178-185.
Hsu C.L., Chang Y.H., Chang K.S., Jang H.D., 2011. Effect of carbon source and high C/N ratio in the cellulosic hydrolysate- based media on the crude lipid contents and unsaturated fatty acid compositions of yeasts. 11th International Congress on Engineering and Food, Kolonaki, Athens, Greece, 2011, 5, 22-2011, 5, 26.
Huang X., Wang Y., Liu W., Bao J., 2011. Biological removal of inhibitors leads to the improved lipid production in the lipid fermentation of corn stover hydrolysate by Trichosporon cutaneum. Bioresource Technology, 102, 9705-9709.
Jayakar S.S., Singhal R.S., 2012. Development of an efficient cell disruption method for release of lipoic acid from Saccharomyces cerevisiae. Global Journal of Biotechnology & Biochemistry, 7, 90-99.
Johnson V., Singh M., Saini V.S., Sista V.R., Yadav N.K., 1992. Effect of pH on lipid accumulation by an oleaginous yeast:Rhodotorula glutinis IIP-30. World Journal of Microbiology and Biotechnology, 8, 382-384.
Johnson V., Singh M., Saini V.S., Adhikari D.K., Sista V., 1995. Utilization of molasses for the production of fat by an oleaginous yeast, Rhodotorula glutinis IIP-30. Journal of Industrial Microbiology, 14, 1-4.
Kalscheuer R., Stolting T., Steinbuchel A., 2006. Microdiesel: Escherichia coli engineered for fuel production. Microbiology, 152, 2529-2536.
Kaneko H., Hosohara M., Tanaka M., Itoh T., 1976. Lipid composition of 30 species of yeast. Lipids 11, 837–844.
Kansedo J., Lee K.T., Bhatia S., 2009. Biodiesel production from palm oil via heterogeneous transesterification. Biomass and Bioenergy, 33, 271-276.
Karatay S.E., Dönmez G., 2010. Improving the lipid accumulation properties of the yeast cells for biodiesel production using molasses. Bioresource Technology, 101, 7988-7990.
Kates M., 1986. Lipid extraction procedures. Techniques of lipidology isolation, analysis, and identification of lipids. Amsterdam: Elsevier Science Publisher.
Kato A., Nakajima T., Yamashita J., Yakura K., Tanifuji S., 1990. The structure of the large spacer region of the rDNA in Vicia faba and Pisum sativum. Plant Molecular Biology, 14, 983-993.
Keris-Sen U.K., Sen U., Soydemir G., Gurol M. D., 2014. An investigation of ultrasound effect on microalgal cell integrity and lipid extraction efficiency. Bioresource Technology, 152, 407-413.
Kimura K., Yamaoka M., Kamisaka Y., 2004. Rapid estimation of lipids in oleaginous fungi and yeasts using Nile red fluorescence. Journal of Microbiological Methods, 56, 331-338.
Kitcha S., Cheirsilp B., 2013. Enhancing lipid production from crude glycerol by newly isolated oleaginous yeasts:strain selection, process pptimization, and fed-batch strategy. Bioenergy Research, 6, 300-310.
Kitcha S., Cheirsilp B., 2011. Screening of oleaginous yeasts and optimization for lipid production using crude glycerol as a carbon source. Energy Procedia, 9, 274-282.
Kong W., Liu N., Zhang J., Yang Q., Hua S., Song H., Xia C., 2012. Optimization of ultrasound-assisted extraction parameters of chlorophyll from Chlorella vulgaris residue after lipid separation using response surface methodology. Journal of Food Science and Technology, 1-8.
Kraisintu P., Yongmanitchai W., Limtong S., 2010. Selection and optimization for lipid production of a newly isolated oleaginous yeast, Rhodosporidium toruloides DMKU3-TK16. Kasetsart Journal - Natural Science, 44, 436-445.
Kumari P., Reddy C.R.K., Jha B., 2011. Comparative evaluation and selection of a method for lipid and fatty acid extraction from macroalgae. Analytical Biochemistry, 415, 134-144.
Larson R. A., 1992. Cut chrysanthemum. In Floriculture 2nd. p.3-42. Academic Press. San Diego California.
Lee J.Y., Yoo C., Jun S.Y., Ahn C.Y., Oh H.M., 2010. Comparison of several methods for effective lipid extraction from microalgae. Bioresource Technology, 101, 75-77.
Lee S.J., Yoon B.D., Oh H.M., 1998. Rapid method for the determination of lipid from the green alga Botryococcus braunii. Biotechnology Techniques, 12, 553-556.
Li M., Liu G.L., Chi Z., Chi Z.M., 2010. Single cell oil production from hydrolysate of cassava starch by marine-derived yeast Rhodotorula mucilaginosa TJY15a. Biomass and Bioenergy, 34, 101-107.
Li Q., Du W., Liu D., 2008. Perspectives of microbial oils for biodiesel production. Applied Microbiology and Biotechnology, 80, 749-756.
Li Y., Zhao Z., Bai F., 2007. High-density cultivation of oleaginous yeast Rhodosporidium toruloides Y4 in fed-batch culture. Enzyme and Microbial Technology 41, 312-317.
Liang H.M., Jiang G.j., 2013. Advancing oleaginous microorganisms to produce lipid via metabolic engineering technology. Progress in Lipid Research, 52, 395-408.
Liang Y., Cui Y., Trushenski J., Blackburn J.W., 2010. Converting crude glycerol derived from yellow grease to lipids through yeast fermentation. Bioresource Technology, 101, 7581-7586.
Lin Q., Gu N., Lin J.D., Huang L.M., 2012. Effects of inorganic carbon concentration on carbon formation, nitrate utilization, biomass, and oil accumulation of Nannochloropsis oculata CS 179. Bioresource Technology, 111, 353-359.
Ma F., Hanna M.A., 1999. Biodiesel production: a review. Bioresource Technology, 70, 1-15.
Ma Y.L., 2006. Microbial oils and its research advance. Chinese Journal of Bioprocess Engineering, 4, 7-11.
Malisorn C., Suntornsuk W., 2008. Optimization of b-carotene production by Rhodotorula glutinis DM28 in fermented radish brine. Bioresource Technology, 99, 2281-2287.
Marco A.D.S.B., 2011. Biofuel's Engineering Process Technology. Petra Zobic.
Maskow T., Rollich A., Fetzer I., Harms H., Ackermann J., 2008. On-line monitoring of lipid storage in yeasts using impedance spectroscopy, Journal of Biotechnology, 135, 64-70.
Mayerhoff Z.D.V.L., Franco T.T., Roberto I.C., 2008. A study of cell disruption of Candida mogii by glass bead mill for the recovery of xylose reductase. Separation and Purification Technology, 63, 706-709.
Mecozzi M., Amici M., Romanelli G., Pietrantonio E., Deluca A., 2002. Ultrasound extraction and thin layer chromatography–flame ionization detection analysis of the lipid fraction in marine mucilage samples. Journal of Chromatography A, 963, 363-373.
Medina A.R., Grima E.M., Gimenez A.G., Ibanez M.J., 1998. Downstream processing of algal polyunsaturated fatty acids. Biotechnology Advances, 16, 517-580.
Meng X., Yang J., Xu X., Zhang L., Nie Q., Xian M., 2009. Biodiesel production from oleaginous microorganisms. Renewable Energy, 34, 1-5.
Metting F.B., 1996. Biodiversity and application of microalgae. Journal of Industrial Microbiology, 17, 477-489.
Miao X., Wu Q., 2006. Biodiesel production from heterotrophic microalgal oil. Bioresource Technology, 97, 841-846.
Miao X., Wu Q., 2004. High yield bio-oil production from fast pyrolysis by metabolic controlling of Chlorella protothecoides. Journal of Biotechnology, 110, 85-93.
Muyzer G., De Waal E.C., Uitterlinden A.G., 1993. Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. Applied and Environmental Microbiology, 59, 695-700. National Council on Radiation Protection, 2002. Exposure criteria for medical diagnostic ultrasound. II. Criteria based on all known mechanisms, National Council on Radiation Protection and Measurements Report No.140, NCRP Publications, Bethesda MD.
Olukoshi E.R., Packter N.M., 1994. Importance of stored triacylglycerols in Streptomyces: possible carbon source for antibiotics. Microbiology, 140, 931-943.
Ong H.C., Mahlia T.M.I., Masjuki H.H., Norhasyima R.S., 2011. Comparison of palm oil,Jatropha curcas and Calophyllum inophyllum for biodiesel:A review. Renewable and Sustainable Energy Reviews, 15, 3501-3515.
Pramanik K., 2003. Properties and use of Jatropha curcas oil and diesel fuel blends in compression ignition engine. Renewable Energy, 28, 239-248.
Ranjan A., Patil C., Moholkar V.S., 2010. Mechanistic assessment of microalgal lipid extraction. Industrial and Engineering Chemistry Research, 49, 2979-2985.
Ratledge C., Wynn J.P., 2002. The biochemistry and molecular biology of lipid accumulation in oleaginous microorganisms. Advances in Applied Microbiology, 51, 1–51.
Rattanaphra D, Srinophakun P., 2010. Biodiesel production from crude sunflower oil and crude jatropha oil using immobilized lipase. Journal of Chemical Engineering of Japan, 43, 104-108.
Rattray J., 1988. Yeast. In: Ratledge, C., Wilkinson, S. (Eds.), Microbial Lipids, 1. Academic Press, London, 555-697.
Rodrigues F., Ludovico P., Leão C., 2006. Sugar metabolism in yeasts:an overview of aerobic and anaerobic glucose catabolism. Biodiversity and Ecophysiology of Yeasts. The Yeast Handbook. 101-121.
Rossi M., Amaretti A., Raimondi S., Leonardi A., 2011. Getting lipids for biodiesel production from oleaginous fungi, Ch. 4, 71-92, In:Biodiesel-Feedstocks and Processing Technologies, Eds.Stoytcheva M., Montero G., InTech, Rijeka, Croatia. Rywińska A., Juszczyk P., Wojtatowicz M., Robak M., Lazar Z., 2013. Glycerol as a promising substrate for Yarrowia lipolytica biotechnological applications. Biomass and Bioenergy, 48, 148-166.
Saenge C., Cheirsilp B., 2011. Potential use of oleaginous red yeast Rhodotorula glutinis for the bioconversion of crude glycerol from biodiesel plant to lipids and carotenoids. Process Biochemistry, 46, 210-218.
Sander K., Murthy G., 2009. Enzymatic Degradation of Microalgal Cell Walls, in:ASABE Annual International Meeting. p. 096054.
Santegoeds C. M., Nold S.C., De-Beer D., 1996. Denaturing gradient gel electrophoresis used to monitor the enrichment culture of aerobic chemoorganotrophic bacteria from a hot spring cyanobacterial mat. Applied and Environmental Microbiology, 62, 3922-3928.
Saptarshi S.D., Lele S.S., 2010. Application of evolutionary optimization technique in maximizing recovery of L-asparginase from Erwinia caratovora MTCC 1428. Global Journal of Biotechnology and Biochemistry, 5, 97-105.
Shen J., Shao X., 2005. A comparison of accelerated solvent extraction, Soxhlet extraction, and ultrasonic-assisted extraction for analysis of terpenoids and sterols in tobacco. Analytical and Bioanalytical Chemistry, 383, 1003-1008.
Sitepu I. R., Ignatia L., German B., Sestric R., Levin D., Gillies L. A., 2013. Manipulation of culture conditions alters lipid content and fatty acid profiles of a wide variety of known and new oleaginous yeast species. Bioresource Technology, 144, 360-369.
Sostaric M., Klinar D., Bricelj M., Golob J., Berovic M., Likozar B., 2012. Growth,lipid extraction and thermal degradation of the microalga Chlorella vulgaris. New Biotechnology, 29, 325-331.
Souza K.S., Schwan R.F., Dias D.R., 2014. Lipid and citric acid production by wild yeasts grown in glycerol. Journal of Microbiology and Biotechnology, 24, 497-506.
Spolaore P., Joannis-Cassan C., Duran E., Isambert A., 2006. Commercial applications of microalgae. Journal of Bioscience and Bioengineering, 101, 87-96.
Sriwongchai S., Pokethitiyook P., Pokethitiyook M., Bajwa P.K., Lee H., 2013. Screening of selected oleaginous yeasts for lipid production from glycerol and some factors which affect lipid production by Yarrowia lipolytica strains. Journal of Microbiology, Biotechnology and Food Sciences, 2, 2344-2348.
Suslick K.S., Cline R.E., Hammerton D.A., 1986. Sonochemical hot spot. Journal of the American Chemical Society, 108, 5641-5642.
Suutar M., Rintamäki A., Laakso S., 1997. Membrane phospholipids in temperature adaptation of Candida utilis:alterations in fatty acid chain length and unsaturation. Journal of Lipid Research, 38, 790-794.
Terpen J.V., 2005. Biodiesel processing and production. Fuel Processing Technology, 86, 1097-1107.
Tian Y., Xu Z., Zheng B., Lo Y.M., 2013. Optimization of ultrasonic-assisted extraction of pomegranate (Punica granatum L.) seed oil. Ultrasonics Sonochemistry, 20, 202-208.
Toma M., Vinatoru M., Paniwnyk L., Mason T.J., 2001. Investigation of the effects of ultrasound on vegetal tissues during solvent extraction. Ultrasonics Sonochemistry, 8, 137-142.
Vinatoru M., Toma M., Radu O., Filip P.I., Lazurca D., Mason T.J., 1997. The use of ultrasound for the extraction of bioactive principles from plant materials. Ultrasonics Sonochemistry, 4, 135-139.
Wiebe M. G., Koivuranta K., Penttilä M., Ruohonen L., 2012. Lipid production in batch and fed-batch cultures of Rhodosporidium toruloides from 5 and 6 carbon carbohydrates. BMC Biotechnology, 12, 26-35.
Wild R., Patil S., Popovic M., Zappi M., Zappi S., Bajpai R., 2010. Lipids from Lipomyces starkeyi. Food Technology and Biotechnology, 48, 329-335.
Willke T., Vorlop K.D., 2004. Industrial bioconversion of renewable resources as an alternative to conventional chemistry. Applied Microbiology and Biotechnology, 66, 131-142.
Wiyarno B., Yunus R.M., Mel M., 2011. Extraction of algae oil from Nannocloropsis sp.:a study of soxhlet and ultrasonic-assisted extractions. Journal of Applied Sciences, 11, 3607-3612.
Xiong W., Li X.F., Xiang J.Y., Wu Q.Y., 2008. High-density fermentation of microalga Chlorella protothecoides in bioreactor for microbio-diesel production. Applied Microbiology and Biotechnology, 78, 29-36.
Xu J., Zhao X., Wang W., Du W., Liu D., 2011. Microbial conversion of biodiesel byproduct glycerol totriacylglycerols by oleaginous yeast Rhodosporidium toruloides and the individual effect of someimpurities on lipid production. Biochemical Engineering Journal, 65, 30-36.
Xu J., Zhao X., Wang W., Du W., Liu D., 2012. Microbial conversion of biodiesel byproduct glycerol to triacylglycerols by oleaginous yeast Rhodosporidium toruloides and the individual effect of some impurities on lipid production. Biochemical Engineering Journal, 65, 30-36.
Yen H.W., Yang Y.C., Yu Y.H., 2012. Using crude glycerol and thin stillage for the production of microbial lipids through the cultivation of Rhodotorula glutinis. Journal of Bioscience and Bioengineering, 114, 453-456.
Yi S.J., Zheng Y.P., 2006. Research and application of oleaginous microorganism. China Foreign Energy, 11, 90-94.
Young F.R., 1989. Cavitation. McGraw-Hill, London, 1-418.
Zhang G., French W.T., Hernandez R., Alley E., 2011. Effects of furfural and acetic acid on growth and lipid production from glucose and xylose by Rhodotorula glutinis. Biomass and Bioenergy, 35, 734-740.
Zhao C.H., Zhang T., Zhang M., Chi Z.M., 2010. Single cell oil production from hydrolysates of inulin and extract of tubers of Jerusalem artichoke by Rhodotorula mucilaginosa TJY15a. Process Biochemistry, 45, 1121-1126.
Zhou C.H., Beltramini J.N., Fan Y.X., Lu G.Q., 2008. Chemoselective catalytic conversion of glycerol as a biorenewable source to valuable commodity chemicals. Chemical Society Reviews, 37, 527-549.
Zhu L.Y., Zong M.H., Wu H., 2008. Efficient lipid production with Trichosporon fermentans and its use for biodiesel preparation. Bioresource Technology, 99, 7881-7885.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊
 
系統版面圖檔 系統版面圖檔