(3.238.174.50) 您好!臺灣時間:2021/04/16 16:18
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:劉晉翰
研究生(外文):Jin-Han Liou
論文名稱:以電紡絲製備(CM-ß-CD/PMMA)奈米纖維及其應用
論文名稱(外文):Preparation and Application of (Carboxymethyl-β-cyclodextrin /poly methyl methacrylate) nanofibers by the electrospinning technique
指導教授:粘譽薰
指導教授(外文):Yu-Hsun Nien
口試委員:何志松吳知易粘譽薰
口試委員(外文):Chih-Sung HoTzi-Yi WuYu-Hsun Nien
口試日期:2014-07-01
學位類別:碩士
校院名稱:國立雲林科技大學
系所名稱:化學工程與材料工程系
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2014
畢業學年度:102
語文別:中文
論文頁數:130
中文關鍵詞:靜電紡絲吸附劑環糊精廢水處理
外文關鍵詞:electrospinningadsorbentcyclodextrinWastewater treatment
相關次數:
  • 被引用被引用:0
  • 點閱點閱:422
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:13
  • 收藏至我的研究室書目清單書目收藏:0
本論文主旨為探討以靜電紡絲技術,製備出新穎奈米尺寸的吸附纖維網,利用靜電紡絲高比表面積及似孔洞性結構,進而提升吸附纖維網對於重金屬與染料的吸附能力,找出最佳吸附纖維網的吸附劑含量比例,並且觀察實際纖維網之最大吸附量。
本實驗材料是選用酸化β-環糊精(carboxymethyl-β-cyclodextrin,簡稱CM-β-CD)當作吸附纖維網的吸附劑,此吸附劑本身具有疏水性的孔洞,因此可自發性形成主客作用力(inclusion complextion),可包附廢水中疏水性物質,加上外圍接枝酸官能基團,增加化學吸附的能力,提供了離子間的吸附;搭配穩定化學性質且耐強酸鹼的聚甲基丙烯酸甲(poly (methyl- methacrylate),簡稱PMMA)當作吸附纖維網的基底,藉由PMMA疏水性材料表面,包覆吸附劑(CM-β-CD),增加纖維在水中的穩定性,減少纖維在水中發生溶解的情況。
纖維網的最佳比例(PMMA/CM-β-CD)分別為2 g與1 g,電紡絲參數條件:電壓為15kV、流速為0.015ml/min、距離10cm與溫度25°c時,所製備出的吸附纖維網,對於重金屬與染料有最佳吸附,進一步使用UV觀察纖維在水中情況,推算只有平均約8%的纖維微量溶出,代表成功製備出水中不溶解吸附纖維網。
應用方面,在銅離子吸附實驗中,由Dubinin-Radushkevich model可得知最大吸附量qe max(158.39 mg/g),而吸附實驗過程,觀察到時間在120min後,對於銅離子吸附有些微的下降,這是因為吸附過程如前敘述有約8%的纖維溶出,但時間持續到一天後,吸附量沒有持續下降,代表沒有持續發生溶出的現象,穩定的存在水中。而在染料吸附實驗中,以銅離子最佳吸附量的纖維網,再Dubinin-Radushkevich model可得知最大吸附量qe max(425.81 mg/g)本實驗的吸附結果成功開發出新型的吸附纖維網,且相較於近年來的吸附劑的吸附能力,有較佳的吸附結果,未來可應用在工業廢水處理及水質淨化方面。

The purpose of this thesis is to investigate the electrospinning technique of nano-sized new webs. By using electrostatic spinning, the adsorption capacity of the webs which have high specific surface area and porous structure is enhanced for the applications of removing heavy metal and dyes. In this study, we use two kinds of material which are carboxymethyl-β-cyclodextrin (CM-ß-CD) and poly methylmethacrylate (PMMA) to get nano webs. In copper ion adsorption experiments, the maximum absorbtion is 163.7 mg/g. In dye adsorption experiments, the maximum absorbtion is 308.46 mg/g, when the pH of dye solution is 12. In this paper, the possible adsorption mechanisms are also explored using isotherm equations and kinetic models. The present study shows that the adsorbent has high adsorption activities for waste water.
目錄
中文與英文摘要 I
誌謝 III
目錄 IV
圖目錄 VII
表目錄 XI
第一章、緒論 1
1.1前言 1
1.2 重金屬汙染 3
1.3有機染料廢液 5
1.4研究動機與目的 6
第二章、 文獻回顧 9
2.1靜電紡絲(ELECTRO-SPINNING)技術簡介 9
2.2 影響靜電紡絲技術之參數 11
2.2-1溶液 12
2.2-2針頭 12
2.2-3電壓 13
2.2-4收集板 14
2.2-5濕度 15
2.3吸附纖維網之吸附劑 16
2.3-1環糊精 16
2.3-2甲基丙烯酸甲酯(poly(methyl methacrylate)) 19
2.3-3近年來相關文獻回顧 20
2.3-4上述文獻進行探討 22
第三章、 實驗內容與方法 23
3.1實驗藥品 23
3.2實驗設備 25
3.3溶液配製 28
3.4電紡絲設備及方法 30
3.5染料吸附實驗步驟 32
3.6重金屬吸附實驗步驟 34
3.7觀察吸附變因(TABLE. 5): 36
3.8等溫吸附方程式 37
3.9動力學吸附 41
3.10性質分析 44
3.10.1溶液性質分析 44
3.10.1.1黏度: 44
3.10.1.2導電度檢測: 44
3.10.2纖維基本性質檢測 44
3.10.2.1表面型態分析-SEM: 44
3.10.2.2官能基分析與鑑定-FTIR: 46
3.10.2.4結晶性分析-XRD 48
3.10.2.5接觸角測試 52
3.11實驗流程架構 54
第四章、結果與討論 55
4.1溶液基本性質 55
4.1.1吸附劑與溶液製備之探討 55
4.1.2溶液的黏度與電導度探討 59
4.2 靜電紡絲參數設定 62
4.2.1各配方進行靜電紡絲的結果 62
4.2.2溶劑多寡的影響 64
4.2.3電壓與流速之影響 65
4.2.4溫度的影響 67
4.2.5溶劑揮發控制 68
4.4 XRD圖譜 74
4.5接觸角測定 78
4.6纖維溶解情況分析 79
4.6銅離子吸附 85
4.6.1材料對於重金屬吸附探討 86
4.6.2銅離子動力學吸附 88
擬二階動力學(pseudo-second-order-model) 88
內部擴散模式(Intraparticle diffusion model) 89
4.6.2銅離子恆溫吸附 93
4.7亞甲基藍吸附 95
4.7.1材料對於染料吸附探討 96
4.7.2吸附動力學(亞甲基藍MB) 102
亞甲基藍之擬二階動力學(pseudo-second-order-model) 102
亞甲基藍之內部擴散模式(Intraparticle diffusion model) 104
4.7.3恆溫吸附(亞甲基藍MB) 107
Freundlich model(亞甲基藍恆溫吸附) 107
Dubinin-Radushkevich model(亞甲基藍恆溫吸附) 108
4.8近年來銅離子與亞甲基藍吸附能力統計 110
第五章、 結論及未來方向 112
5.1結論 112
5.2 未來方向 115
參考文獻 116

[1]Zheng MH, Zhang YZ. A review on polymer nanofibers by electrospinning and their applications in nanocomposites. Composites Science and Technology. Volume 63, November 2003, Issue 15
[2]Zhanhua HE .Equilibrium and kinetics studies on the absorption of Cu(II) from the aqueous hase using a β-cyclodextrin-based adsorbent. Carbohydrate Polymers 88 (2012) 609–617
[3]Badruddoza AZM.Carboxymethyl-β-cyclodextrin conjugated magnetic nanoparticles as ano-adsorbents for removal of copper ions: Synthesis and adsorption studies. Volume 185,(2011) Issues 2–3.
[4]Douglas RH. Carboxymethyl-b-cyclodextrin mitigates toxicity of cadmium, cobalt,and copper during naphthalene biodegradation. Volume 101, Issue 8.
[5]Haider S .Preparation of the electrospun chitosan nanofibers and their applications to the adsorption of Cu(II) and Pb(II) ions from an aqueous solution. Journal of Membrane Science. Carbohydrate Polymers (2014).
[6]劉瑞祥、邱泰翔,環糊精-單體包容錯合物自組裝集合體及所形成螺旋高分子之製備及特性研究。
[7]Mohsen KZ.Spectrophotometric thermodynamic study of orientational isomers formed byinclusion of methyl orange into β-cyclodextrin nanocavity. Volume 118, 15 August 2012, Pages 230–238
[8]Szente L. Entrapment of iodine with cyclodextrins: potential application of cyclodextrins in nuclear waste management.
[9]Olah J,Cserhati T,Szejtli J.β-Cyclodextrin enhanced biological detoxification of industrial waste waters. Volume 22, Issue 11, November 1988, Pages 1345–1351
[10]Uyar T,Hunt HS. Crystal Growth & Design, 2006, 6 (5), pp 1113–1119, Cryst. Growth Des. 6 (2006)
[11] Zong X, Kim K, Fang D,Ran S. Structure and process relationship of electrospun bioabsorbable nanofiber membranesPolymer 43,4403(2002)
[12]Tamer U.Electrospinning of cyclodextrin functionalized poly(methyl methacrylate)(PMMA) nanofibers. Volume 50, Issue 2, 16 January 2009, Pages 475–480
[13]Mohsen KZ. Spectrophotometric thermodynamic study of orientational isomers formed byinclusion of methyl orange into β-cyclodextrin nanocavity. Volume 118, 15 August 2012, Pages 230–238
[14]Zhanhua H. Equilibrium and kinetics studies on the absorption of Cu(II) from the aqueous using a β-cyclodextrin-based adsorbent. Carbohydrate Polymers 88 (2012) 609–617.
[15]Furusaki E, Ueno Y, Sakairi N, Nishi N, Tokura S.Facile preparation and inclusion ability of a chitosan derivative bearing carboxymethyl β-cyclodextrin,Carbohydr. Polym. 29 (1996) 29–34
[16]郭昭吟,水中銅、鎘重金屬離子於奈米碳管上之吸附研究。
[17]E. Furusaki, Y. Ueno, N. Sakairi, N. Nishi, S. Tokura, Facile preparation and inclusion ability of a chitosan derivative bearing carboxymethyl-β-cyclodextrin. Volume 29, Issue 1, January 1996, Pages 29–34.
[18] Bhardwaj N, Kundu SC. Electrospinning: a fascinating fiber fabrication technique. Biotechnol. Adv. 2010;28:325-47.
[19]蘇淵源,林書緯,靜電紡絲之操作視窗的建構與分析。
[20]Macossay J, Marruffo A, Rincon R, Eubanks T, Kuang A. Effect of needle diameter on nanofiber diameter and thermal properties of electrospun poly(methyl methacrylate). Polymers for Advanced Technologies.
[21]Simons HL. Process and apparatus for producing patterned non-woven. fabrics. 1966.
[22]Baumgarten PK.Electrostatic spinning of acrylic microfibers Journal of Colloid and Interface Science. 36(1), p. 71-79, 1971.
[23]吳大誠,奈米纖維,五南圖書出版公司,2004
[24]PEO 奈米纖維膜之靜電紡絲製程參數探討逢甲大學 e-Thesys(95 學年度) 106J.M.Deitsel,Polymer, 42, p216~272, 2001
[25]Kim GT, Lee JS, Shin JH, Ahn YC, Jeong KH, SungCM, Microsc Microanal 10, p55 4~555, 2004
[26]Casper CL, Stephems JS, Tassi NG, Chase DB, Rabolt JF. Controlling surface morphology ofelectrospun polystyrene fibers: effect of humidity andmolecular weight in theelectrospinning process. Macromolecules. 2004;37:573–8.
[27]羅聖全,電子顯微鏡介紹 (SEM)。
[28]王照元,李中光,劉新校,楊鈺琥,侯佳蕙, 即時合成層狀複金屬氧化物以去除陰離子染料
[29]蘇淵源,林書緯, 靜電紡絲之操作視窗的建構與分析
[30]Renuka R, Porous and Cross-Linked Cellulose Beads for Toxic Metal Ion Removal: Hg(II) Ions.
[31]Junge Zhi. Self-assembled film based on carboxymethyl-β-cyclodextrin and diazoresin and its binding properties for methylene blue. Volume 319, Issue 1, 1 March 2008, Pages 270–276.
[32]Egyed O. Structure determination of copper(II)-ß-cyclodextrin complex by Fourier transform infrared spectroscopy. Volume 7, Issue 1, May 1994, Pages 73–77.

[33]McKay G. Pseudo-second order model for sorption processes. Volume 34, Issue 5, July 1999, Pages 451–465.
[34]Aleksandra R.Characterization of chitosan/montmorillonite membranes as adsorbents for Bezactiv Orange V-3R dye. Volumes 209–210, 30 March 2012, Pages 256–263.
[35]Mohd SS. Citric acid modified kenaf core fibres for removal of methylene blue from aqueous solution. Volume 102, Issue 15, August 2011, Pages 7237–7243.
[36]Roosta M. Optimization of the ultrasonic assisted removal of methylene blue by gold nanoparticles loaded on activated carbon using experimental design methodology. 2014 Jan;21(1):242-52
[37]Aluigi A. Study of Methylene Blue adsorption on keratin nanofibrous membranes. 2014 Mar 15;268:156-65.
[38]Lin L.The removal of dye from aqueous solution using alginate halloysite nanotube beads. Volume 187, 1 April 2012, Pages 210–216.
[39]Zhanhua H.A novel biodegradable ß -cyclodextrin-based hydrogel for the removal of heavy metal ions. 2013 Sep 12;97(2):496-501.
[40]Yu-Hsun Nien. The studies of green polymer ultrafine fiber for the application to cell barrier membrane and wastewater treatment .June 2011.
[41]Oladoja N. Studies on castor seed shell as a sorbent in basic dye contaminated wastewater remediation. Volume 227, Issues 1–3 Volume 227, Issues 1–3
[42]Hameed B. A novel agricultural waste adsorbent for the removal of cationic dye from aqueous solutions. Volume 162, Issue 1, 15 February 2009, Pages 305–311
[43]Oliveira S. Evaluation of untreated coffee husks as potential biosorbents for treatment of dye contaminated waters. Volume 155, Issue 3, 15 July 2008, Pages 507–512
[44]Gong R. Removal of cationic dyes from aqueous solution by adsorption on peanut hull. Volume 121, Issues 1–3, 20 May 2005, Pages 247–250

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔