(44.192.66.171) 您好!臺灣時間:2021/05/18 23:28
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:王寶立
研究生(外文):Pao-Li Wang
論文名稱:建築工程模板支撐結構系統之失敗機制及非線性分析與設計之研究
論文名稱(外文):Failure Mechanism and Nonlinear Analysis Together with Design of Structural Systems of Falsework Used in Building Construction
指導教授:彭瑞麟彭瑞麟引用關係
指導教授(外文):Jui-Lin Peng
學位類別:博士
校院名稱:國立雲林科技大學
系所名稱:工程科技研究所博士班
學門:工程學門
學類:綜合工程學類
論文種類:學術論文
論文出版年:2014
畢業學年度:102
語文別:中文
論文頁數:599
中文關鍵詞:支撐倒塌靠桿效應非線性分析接頭勁度模板支撐
外文關鍵詞:leaning column effectfalsework collapsefalseworknonlinear analysisjoint stiffness
相關次數:
  • 被引用被引用:0
  • 點閱點閱:252
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
建築工程模板支撐倒塌常發生在混凝土澆置過程中,表示在模板支撐上方之新澆置混凝土等載重未達設計載重即發生倒塌,主要原因在於工地無法確實掌握模板支撐系統的臨界載重,致使外載重超過模板支撐所能承受的承載力而發生模板支撐的倒塌。

首先針對國內外模板支撐結構研究回顧及收集研析國內倒塌案例,以國內倒塌案例作為模板支撐結構研究之依據,從倒塌案例中規劃同類型模板支撐進行室內全尺寸試驗,並進行二階彈性半剛性接頭分析,直到分析數據與實際試驗載重相近為止,將修正後初步分析模式作為後續分析之依據。之後再進行室外全尺寸試驗瞭解其力學行為,根據初步分析模式進行二階分析並修正,將修正後分析模式作為倒塌案例分析依據。重建國內模板支撐倒塌案例之組搭型式及載重模式,依據修正後分析模式進行二階分析,找出模板支撐失敗機制,最後提出各類型建築工程模板支撐結構安全分析與設計之建議。

研究結果顯示,模板支撐結構系統使用底座可提升承載力,使用U型座雖對提升承載力效果不彰,但可未避免工人直接將貫材設置在最頂層鋼管鷹架的上方而損及支撐系統的承載能力。工地現場模板支撐常以新舊品混雜使用,而全新與使用多次舊品之模板支撐結構承載力差異甚大,模板支撐在設計時應將承載力折減。單層或雙層模板支撐應在適當高度內設置足夠強度水平繫條,並應將水平繫條及水平貫材牢固於側牆,若工地裡無法將水平繫條及水平貫材穩固支撐,可採用『V』形斜撐進行補強。鋼管鷹架與它種支撐聯合組搭支撐系統,鋼管鷹架上方它種支撐可視為靠桿,承受混凝土載重時可能會受靠桿效應而發生倒塌,建議採用單一鋼管鷹架構材一次撐到底,避免鋼管鷹架與它種支撐混合組搭。目前國內建築工程模板支撐既有設計方式,一為單根柱曲線計算,另一為單組試驗值推估支撐強度,兩者均高估支撐結構承載力,建議採用幾何非線性半剛性接頭進行分析,參考美國分析最新規範AISC-2010版相關規定,以直接分析法(非線性分析法)取代傳統以構件及線性分析為依據的設計,較能準確地掌握模板支撐承載力及結構整體的穩定性情況。
On the construction site, falsework collapse often occurs during the process of concrete grouting, indicating that the falsework collapses before the weight of fresh concrete on it reaches its design load. The main reason of this phenomenon lies in lack of accurate knowledge of the critical load of the falsework system, which leads to the collapse of falsework due to the overweight of the external load to the critical load of the falsework.

In this study, we first collect and review researches on falsework structures home and abroad and analyze the falsework collapse incidents occurred in our country. The analysis of domestic falsework collapse incidents is based on those researches on falsework structures. Then we conduct indoor full-scale tests on the same type of falsework structures as those of the collapse incidents. We also conduct second-order geometrically nonlinear analysis with semi-rigid joint on those falsework structures until the analytical data are close to the actual test loads. The revised preliminary analytical model is used as the basis for follow-up analysis. Afterwards, outdoor full-scale tests are conducted to understand the mechanical behaviors of the falsework structures. And again, the preliminarily obtained analytical model is used for second order analysis and revision and the revised analytical model is used as the basis for collapse incidents analysis. This study aims to reestablish the assembly forms and loading models of the falsework collapse incidents in our country and conduct second-order analysis based on the revised analytical model in order to identify the failure mode of falsework and ultimately propose recommendations on safety analysis and design of various falsework structures used in construction.

The results show that the base screw jack is conducive to enhancing the load capacity of the falsework structure. While using the U-shaped base does not help much with the enhancement of load capacity, it helps to avoid from having to place stringers directly on top of the top-story of steel scaffolds lest the load capacity of the falsework should be reduced. On the construction site, new and reusable materials are often mixed up to set up falsework. Since the load capacities of new materials and reusable ones are largely different, when designing a falsework structure using both new and reusable materials, strength reduction should be properly considered. When designing single or double-story falsework, horizontal bracing with adequate strength should be used at proper height and the horizontal braces and stringers should be firmly fixed to the wall. In case that it is not possible to properly fix the horizontal braces and stringers on the construction site, V-shaped slant bracing can be used as reinforcement. When steel scaffolds are combined with other type of scaffolds to form falsework, the other type of scaffolds above the steel ones can be considered as leaning columns. When bearing concrete load, the falsework might collapse due to the leaning column effect. Therefore, it is recommended that pure steel scaffolds be used to form falsework, instead of a combined setup with other type of scaffolds. Currently, two design methods are often used to design falsework on the construction site in our country: isolated pole curve calculation and supporting strength estimation based on single-group test values. Since both these design methods tend to overestimate the load capacity of the falsework, it is recommended that the geometrically nonlinear analysis with semi-rigid joint be used to design falsework, while making reference to the related regulations specified in the latest US analysis standard: AISC-2010. In a word, replacing these traditional design methods, which are based on component and linear analysis, with direct analysis (nonlinear analysis) might provide a better knowledge of the load capacity of the falsework and the overall stability of the falsework structure.
中文摘要

英文摘要

誌謝

目錄

表目錄

圖目錄

第一章 緒論

1.1 前言

1.2 研究目的

1.3 研究步驟

1.4 章節架構

第二章 模板支撐使用現況與文獻回顧

2.1 工地使用情形

2.1.1 支撐種類

2.1.1.1 木支撐

2.1.1.2 可調鋼管支柱

2.1.1.3 門型鋼管鷹架

2.1.2 組搭型式

2.1.2.1 單層組搭

2.1.2.2 雙層組搭

2.1.2.3 鷹架聯合組搭

2.2設計案例說明

2.2.1 木支撐

2.2.2 可調鋼管支柱

2.2.3 鷹架聯合組搭

2.3 設計規範

2.3.1 大英國協鋼結構設計規範

2.3.2 歐盟鋼結構設計規範

2.3.3 AISC(2005&2010)

2.3.4 鋼構造建築物鋼結構設計技術規範

2.3.5 鋼結構設計規範比較

2.4 國內外模板支撐相關法規

2.4.1 國內模板支撐法規

2.4.1.1 營造安全衛生設施標準

3.4.1.2 勞動檢查法

2.4.1.3 加強公共工程勞工安全衛生管理作業要點

2.4.2 國外模板支撐法規

2.4.2.1 美國

2.4.2.2 加拿大

2.4.2.3 英國

2.4.2.4 日本

2.5 國內外模板支撐參考文獻

2.5.1承載力

2.5.2載重

2.5.3承載力與載重

2.6小結

第三章 非線性理論與模板支撐破壞機制探討

3.1 幾何非線性說明

3.2 不完美大長細比結構之行為

3.2.1 構件不完美

3.2.2 偏心不完美

3.2.3 AISC規定

3.3靠桿效應

3.4 模板支撐破壞機制探討

3.4.1 單層組搭

3.4.2 雙層組搭

3.4.3 聯合組搭

第四章 模板支撐結構力學行為試驗探討

4.1 鋼管鷹架支撐結構室內試驗

4.1.1試驗儀器

4.1.2材料試驗

4.1.3試驗規劃

4.1.3.1. 單跨鋼管鷹架試驗

4.1.3.2. 多跨鋼管鷹架試驗

4.1.3.3. 單組鋼管鷹架與木支撐聯合組搭試驗

4.1.3.4. 多跨鋼管鷹架與木支撐聯合組搭試驗

4.1.4試驗結果討論

4.1.4.1 單跨鋼管鷹架

4.1.4.2 多跨鋼管鷹架

4.1.4.3 單跨鋼管鷹架與木支撐聯合組搭

4.1.4.4 多跨鋼管鷹架與木支撐聯合組搭

4.1.4.5 堪用舊品下限承載力

4.2 鋼管鷹架結構數值分析

4.2.1 分析模式

4.2.2 材料參數

4.2.3數值分析結果討論

4.2.3.1 單跨鋼管鷹架

4.2.3.2 多跨鋼管鷹架

4.2.3.3 單跨鋼管鷹架與木支撐聯合組搭試驗

4.2.3.4 多跨鋼管鷹架與木支撐聯合組搭試驗

4.3鋼管鷹架系統破壞模式探討

4.3.1鋼管鷹架

4.3.2鋼管鷹架與木支撐聯合組搭

4.4 可調鋼管支柱圍束探討

4.4.1材料性質

4.4.2 可調鋼管支柱群組試驗結果討論

4.4.3 可調鋼管支柱群組分析結果討論

4.5 小結

第五章 模板支撐結構室外載重試驗之破壞行為驗核

5.1 鋼管鷹架支撐結構室外試驗

5.1.1 試驗儀器

5.1.2 材料性質

5.1.3 試驗規劃

5.1.3.1 試驗場地

5.1.3.2 模板支撐組搭配置

5.1.3.3 試驗載重方式

5.1.3.4 應變計量測方法

5.1.4 試驗流程

5.1.4.1 試驗場地整理及載重物準備

5.1.4.2 單純之鋼管鷹架組搭及試驗過程

5.1.4.3 鋼管鷹架與木支撐複合式組搭及試驗過程

5.1.5 試驗結果

5.2 鋼管鷹架支撐結構數值分析

5.2.1 分析模式

5.2.2 分析材料參數

5.2.3 數值分析結果

5.3 鋼管鷹架支撐結構失敗行為之確認

5.4 小結

第六章、模板支撐結構倒塌案例分析

6.1 分析方法

6.2 單層組搭

6.2.1 高雄南二高燕巢段

6.2.1.1 案例說明

6.2.1.2 組搭型式重建

6.2.1.3 載重模式重建

6.2.1.4 承載力分析

6.2.1.5 破壞機制探討

6.2.2 台北萬華青年公園

6.2.2.1 案例說明

6.2.2.2 組搭型式重建

6.2.2.3 載重模式重建

6.2.2.4 承載力分析

6.2.2.5 破壞機制探討

6.3 雙層組搭

6.3.1 台北遠雄住商大樓新建工程

6.3.1.1 案例說明

6.3.1.2 組搭型式重建

6.3.1.3 載重模式重建

6.3.1.4 承載力分析

6.3.1.5 破壞機制探討

6.3.2 基隆八斗子巴塞隆納

6.3.2.1 案例說明

6.3.2.2 組搭型式重建

6.3.2.3 載重模式重建

6.3.2.4 承載力分析

6.3.3 新竹化工倉儲量販店

6.3.3.1 案例說明

6.3.3.2 組搭型式重建

6.3.3.3 載重模式重建

6.3.3.4 承載力分析

6.3.3.5 破壞機制探討

6.3.4 台北美樺興業內湖廠房

6.3.4.1 案例說明

6.3.4.2 組搭型式重建

6.3.4.3 載重模式重建

6.3.4.4 承載力分析

6.3.4.5 破壞機制探討

6.3.5 桃園市大桐汽車公司

6.3.5.1 案例說明

6.3.5.2 組搭型式重建

6.3.5.3 載重模式重建

6.3.5.4 承載力分析

6.3.5.5 破壞機制探討

6.3.6 桃園龜山行政大樓

6.3.6.1 案例說明

6.3.6.2 組搭型式重建

6.3.6.3 載重模式重建

6.3.6.4 承載力分析

6.3.6.5 破壞機制探討

6.4 聯合組搭

6.4.1 高雄中鋼第四高爐

6.4.1.1 案例說明

6.4.1.2 組搭型式重建

6.4.1.3 載重模式重建

6.4.1.4 承載力分析

6.4.1.5 破壞機制探討

6.4.2 嘉義大林慈濟醫院

6.4.2.1 案例說明

6.4.2.2 組搭型式重建

6.4.2.3 載重模式重建

6.4.2.4 數值分析

6.4.2.5 破壞機制探討

6.5 小結

第七章、模板支撐結構安全組搭及設計上建議

7.1 模板支撐材料

7.2 模板支撐載重

7.3 組搭方式

7.4 計算方法

7.4.1 設計概念

7.4.2 設計案例

7.4.2.1 木支撐

9.4.2.2 可調管鋼支柱

9.4.2.3 木支撐加門型鷹架聯合組搭

第十章 結論與建議

10.1 結論

10.1.1 模板支撐試驗部分

10.1.2 模板支撐承載力數值分析

10.1.3 模板支撐倒塌案例

10.1.4 室外全尺寸試驗

10.2 建議

參考文獻
【1】ACI COMMITTEE 347, “Guide to Formwork for Concrete (ACI 347R-88),” ACI Manual of Concrete Practice, Part 2, American Concrete Institute, Detroit, 1990.

【2】AMERICAN NATIONAL STANDARDS INSTITUTE, “American National Standard for Construction and Demolition Operations: Concrete and Masonry Work-Safety Require-ments (ANSI 10.9~1983),” American National Standards Institute, New York,1983.

【3】Alvarado, Y.A., Calderon, P.A., Adama, J.M., Paya-Zaforteza, I.J., Pellicer, T.M., Pallares, F.J. and Moragues, J.J., 2009, “An experimental study into the evolution of loads on shores and slabs during construction of multistory buildings using partial striking,” Engineering Structures, Vol.31, No.9, pp.2132-2140.

【4】Alvarado, Y.A., Calderon, P.A., Gasch, I.J. and Adam, M., 2010, “A numerical study into the evolution of loads on shores and slabs during construction of multistorey buildings. Comparison of partial striking with other techniques,” Engineering Structures, Vol.32, No.10, pp.3093-3102.

【5】Azkune, M., Puente, I., and Insausti, A., 2007, “Effect of ambient temperature on the redistribution of loads during construction of multi-storey concrete structures,” Engineering Structures, Vol.29, No.6, pp.933-941.

【6】BRITISH STANDARDS INSTITUTION, “Code of Practice for Falsework (BS 5975:1982),” British Standard Institution, London, 1982.

【7】BRITISH STANDARDS INSTITUTION, “Metal Scaffolding, Part 1. Specification for Tubes for Use in Scaffolding (BS 1139: Part 1: 1982),” British Standard Institution, London, 1982.

【8】BRITISH STANDARDS INSTITUTION, “Metal Scaffolding, Part 2. Specification for Coupler and Fittings for Use in Tubular Scaffolding (BS 1139: Part 2: 1982),” British Standard Institution, London, 1982.

【9】Calderon, P.A., Alvarado, Y.A., and Adam, J.M., 2011, “A new simplified procedure to estimate loads on slabs and shoring during the construction of multistorey buildings,” Engineering Structures, Vol. 33, No. 5, pp. 1565-1575.

【10】Cho, S.H., and Chan, S.L., 2008, “Second-order analysis and design of angle trusses Part II: Plastic analysis and design,” Engineering Structures, Vol.30, No.3, pp.626-631.

【11】Chan, S.L., and Cho, S.H., 2008, “Second-order analysis and design of angle trusses Part I: Elastic analysis and design,” Engineering Structures, Vol.30, No.3, pp.616-625.

【12】Chandrangsu, T. and Rasmussen, K.J.R., 2011, “Structural modelling of support scaffold systems,” Journal of Constructional Steel Research, Vol.67, pp.866-875.

【13】Chandrangsu, T. and Rasmussen, K.J.R. 2011, “Investigation of geometric imperfections and joint stiffness of support scaffold systems,” Journal of Constructional Steel Research, Vol.67, pp.576-584.

【14】Chung, K.F., and Yu, W.K., 2002, “Mechanical properties of structural bamboo for bamboo scaffoldings,” Engineering Structures, Vol.24, No.4, pp.429-442.

【15】Chen, S.L., Zhou, Z.H., Chen, W.F., Peng, J.L., and Pan, A.D., 1995, “Stability Analysis of Semirigid steel Scaffolding,” Engineering Structures, Vol.17, No.8, pp.568-574.

【16】Duan, M.Z., and Chen, W.F., 1996, “Design Guidelines for Safe Concrete Construction,” Concrete International, pp.44-49.

【17】Eldukair, Z.A., and Ayyub, B.M., 1991, “Analysis of Recent U.S. Structural and Construction Failures,” Journal of Performance of Constructed Facilities, Vol.5, No.1, pp.57-73.

【18】EI-Shahhat , A.M. and Chen, W.F., 1992, “Improved analysis of shore-slab interaction.” ACI Structural Journal, Vol.89, No.5, pp.528-537.

【19】Enright, J., Harriss, R., and Hancock, G.J., 2000, “Structural stability of braced scaffolding and formwork with spigot joints,” Fifteenh International Specialty Conference on Cold-Formed Steel Structures St. Louis, Missouri U.S.A., pp.357-376.

【20】El-Shahhat, A.M., Rosowsky, D. V. and Chen,W. F. 1993, “Construction safety of multistory concrete building,” ACI Structural Journal, 91(4), 475-485.

【21】Gromala, D.S., 1984, “Calculating Apparent Reliability of Wood Scaffold Planks,” Structural Safe, Vol.2, No.1, pp.47-57.

【22】Hadipriono, F. C., and Wang, H. C. 1986, “Analysis of causes of formwork ailures in concrete structures,” Journal Constr. Engrg. and Mgmt., ASCE, 112(1), 112-121.

【23】Hadipriono, F.C. and Wang, H.K., 1985, “Analysis of Events in Recent Structural Failures,” Vol.111, No.7, pp.1468-1481.

【24】Huang, Y.L., Chen,W.F., Chen, H.J. Yen, T., Kao, Y.G. and Lin, C.Q., 2000, “A monitoring method for scaffold-frame shoring systems for elevated concrete formwork,” Computers and Structures, Vol.78, No.5, pp.681-690.

【25】Huang, Y.L., Chen, H.J., Rosowsky, D.V., and Kao, Y.G., 2000, “Load-carrying Capacities and Failure Modes of Scaffolding Shoring Systems, Part I: Modeling and Experiments,” Structural Engineering and Mechanics, Vol.10, No.1, pp.53-66.

【26】Huang, Y.L., Kao, Y.G., and Rosowsky, D.V., 2000, “Load-carrying Capacities and Failure Modes of Scaffolding Shoring Systems, Part II: Analytical model and its closed-form Solution,” Structural Engineering and Mechanics, Vol.10, No.1, pp.67-79.

【27】Huang, Y.L., Lin, Y.C., Lee, C.F., Chen, H.J., and Yen, T., 2004, “Design load-carrying capacity estimates and an improved wooden shore setup,” Structural Engineering and Mechanics, Vol.17, No.2, pp.167-186.

【28】Harung, H.S. Lightfoot, E., and Duggan, D.M., 1975, “The Strength of Scaffold Towers under Vertical Loading,” The Structural Engineer.

【29】Harik, I.E., Shaaban, A.M., Gesund, H., Valli, G.Y.S., and Wang, S.T., 1990, “United States Bridge Failures, 1951-1988,” Journal of Performance of Constructed Facilities, Vol.4, No.4, pp.272-277.

【30】JAPAN SOCIETY OF CIVIL ENGINEERS, “Standard Specification for Design and Construction of Concrete Structures-Part 2 (Construction),” Japan Society of Civil Engineers, Tokyo, 1986.

【31】Jiang, X.M., Chen, H., and Liew, J.Y.R., 2002, “Spread-of-plasticity analysis of three-dimensional steel frames,” Journal of Constructional Steel Research, Vol.58, No.2, pp.193-212.

【32】Jukka lkaheimonen, 1997, “Construction Loads on Shores and Stability of Horizontal Formworks,” Royal Institute of Technology Department of Sructural Engineering, S – 100 44 Stockholm, SWEDEN, Doctoral Thesis.

【33】Kuo, C.C., Peng, J.L., Yen, T., and Chan, S.L., 2008, “Experimental Study of Modular Falsework System with Wooden Shores under Various Path Loads,” Advances in Structural Engineering, Vol.11, No.4, pp.369-382.

【34】Liu, X.L. and Chan, W.F., 1987, “Probability distribution of maximum wooden shore loads in multistory R.C. buildings,” Structural Safety, Vol.4, pp.197-215.

【35】Liew, J.Y.R., Chen, H., Shanmugam, N.E., and Chen, W.F., 2000, “Improved nonlinear plastic hinge analysis of space frame structures,” Engineering Structures, Vol.22, No.10, pp.1324-1338.

【36】Liu, H., Chen, Z., Wang, X. and Zhou, T., (2010a) “Theoretical Analysis and Experimental Research on Stability Behavior of Structural Steel Tube and Coupler Falsework with X-Bracing,” Advanced Steel Construction Vol. 6, No. 4, pp. 949-962.

【37】Liew, J. Y. R., Punniyakotty, N. M., and Shanmugam, N.E., 1997, “Advanced Analysis and Design of Spatial Structures,” Journal of Constructional Steel Research, Vol.42, No.1, pp.21-48.

【38】Liew, J.Y.R., and Tang, L.K., 2000, “Advanced plastic hinge analysis for the design of tubular space frames,” Engineering Structures, Vol.22, No.7, pp.769-783.

【39】Liu, H., Zhao, Q., Wang, X., Zhou, T., Wang, D., Liu, J. and Chen, Z. (2010b), “Experimental and Analytical Studies on the Stability of Structural Steel Tube and Couple Scaffolds without X-bracing,” Engineering Structures, (32), pp.1003-1015.

【40】Mosallam, K.H., and Chen, W.F., 1991, “Determining shoring loads for reinforced concrete construction,” ACI Structural Journal, Vol.88, No.3, pp.340-350.

【41】Mosallam, K., and Chen, W. F. 1990, “Design consideration for formwork in multistory concrete buildings,” Engineering Structures, Vol. 12, No. 7, 163-172.

【42】Nethercot, D.A., 2000, “Frame structures: global performance, static andstability behavior General Report,” Journal of Constructional Steel Research, Vol. 55, pp. 109-124.

【43】Peng, J.L., 2004, “Structural Modeling and Design Considerations for Double-layer Shoring Systems,” Journal of Construction Engineering and Management, ASCE, Vol. 130, No. 3, pp. 368-377.

【44】Peng, J.L., 2002, “Stability Analyses and Design Recommendations for Practical Shoring Systems during Construction,” Journal of Construction Engineering and Management, ASCE, Vol. 128, No. 6, pp. 536-544.

【45】Puente, I., Azkune, M., and Insausti, A., 2007, “Shore–slab interaction in multistory reinforced concrete buildings during construction: An experimental approach,” Engineering Structures, Vol. 29, No. 5, pp. 731-741.

【46】Peng, J.L., Chen, K.H., Chan, S.L., and Chen, W.T., 2009, “Experimental and Analytical Investigations of Scaffolds with Anchor Rod and Plank,” International Journal of Structural Stability and Dynamics, Vol. 9, Issue 2, pp.307-332.

【47】Peng, J.L., Chen, K.H., Chan, S.L., and Chen, W.T., 2009, “Experimental and Analytical Studies on Steel Scaffolds under Eccentric Loads,” Journal of Constructional Steel Research, Vol.65, Issue.2, pp.422-435.

【48】Peng, J.L., Chan, S.L., and Wu, C.L., 2007, “Effects of GeometricalShape and Incremental Loads on Scaffold Systems,” Journal of Constructional Steel Research, Vol.63, pp.448-459.

【49】Park, H.G., Hwang, H.J., Hong, G.H., Kim, Y.N., and Kim, J.Y., 2011, “Slab Construction Load Affected by Shore Stiffness and Concrete Cracking,” ACI Structural Journal, Vol.108, No.6, pp.679-688.

【50】Peng, J.L., Pan, A.D.E., and Chen, W.F., 2001, “Approximate Analysis Method for Modular Tubular Falsework,” Journal of Construction Engineering and Management, ASCE, Vol. 127, No. 3, pp.256-263.

【51】Peng, J.L., Pan, A.D.E., and Chan, S.L., 1998, “Simplified Models for Analysis and Design of Modular Falsework, ” Journal of Constructional Steel Research, Vol. 48, No. 2/3, pp. 189-209.

【52】Peng, J.L., Pan, A.D.E., Chen, W.F., Yen, T., and Chan, S.L., 1997, “Structural Modeling and Analysis of Modular Falsework Systems,” Journal of Structural Engineering, ASCE, Vol. 123, No. 9, pp. 1245-1251.

【53】Peng, J.L., Pan, A.D., Rosowsky, D.V., Chen, W.F., Yen, T., and Chan, S.L., 1996, “High Clearance Scaffold Systems during Construction – I. Structural Modelling and Modes of Failure,” Engineering Structures, Vol. 18, No. 3, pp. 247-257.

【54】Peng, J.L., Rosowsky, D.V., Pan, A.D.E., Chen, W.F., and Chan, S.L., 1998, “Simplified Modeling and Analysis of Pattern Loading Effects on Shoring Systems During Construction,” Advances in Structural Engineering, Vol. 1, No. 3, pp. 203-218.

【55】Peng, J.L., Rosowsky, D.V., Pan, A.D., Chen, W.F., Yen, T., and Yen, T., 1996, “High Clearance Scaffold Systems during Construction – II. Structural Analysis and Development of Design Guidelines,” Engineering Structures, Vol. 18, No. 3, pp. 258-267.

【56】Peng, J.L., Rosowsky, D.V., Pan, A.D., Chen, W.F., and Yen, T., 1996, “Analysis of Concrete Placement Load Effects Using Influence Surfaces,” ACI Structural Journal, Vol.93, No.2, pp.180-186.

【57】Peng, J.L., Wu, C.L., and Chan,S.L., 2003, “Sequential Pattern Load Modeling and Warning-System Plan in Modular Falsework,” Structural Engineering and Mechanics, Vol.16, No.4, pp.441-468.

【58】Peng, J.L., Wang, P.L., Chan, S.L., and Huang, C.H., 2012, “Load Capacities of Single-Layer Shoring Systems -an Experimental Study,” Advances in Structural Engineering, Vol.15, No.8, pp.1389-1410.

【59】Peng, J.L., Wang, P.L., Huang, Y.H., and Tsai, T.C., 2010, “Experimental Studies of Load Capacities of Double-Layer Shoring Systems,” Journal of Advanced Steel Constrution, Vol.6, No.2, pp.698-721.

【60】Peng, J.L., Yen, T., Kuo, C.C., and Chan, S.L., 2009, “Analytical and Experimental Bearing Capacities of System Scaffolds,” Journal of Zhejiang University SCIENCE A, Vol.10, No.1, pp.82-92.

【61】Peng, J.L., Yen, T., Lin, I., Wu, K.L., and Chen, W.F., 1997, “Performance of Scaffold Frame Shoring Under Pattern Loads and Load Paths,” Vol.123, No.2, pp.138-145.

【62】Rosowsky D., Huston D., Fuhr P., and Chen W.F., 1994, “Measuring Formwork Loads During Construction,” Concrete International, pp.21-25.

【63】Shapira, A., 2004, “Work Inputs and Related Economic Aspects of Multitier Shoring Towers,” Journal of Construction Engineering and Management, ASCE, Vol. 130, No. 1, pp. 134-142.

【64】Shapira, A., and Raz, Y., 2005, “Comparative Analysis of Shoring Towers for High-Clearance Construction,” Journal of Construction Engineering and Management, ASCE, Vol. 131, No. 3, pp. 293-301.

【65】Shapira, A., Shahar, Y., and Raz, Y., 2001, “Design and Construction of High Multitier Shoring Towers: Case Study,” Journal of Construction Engineering and Management, ASCE, Vol. 127, No. 2, pp. 108-115.

【66】Stivaros, P.C., and Halvorsen, G.T., 1990, “Shoring/reshoring operations for multistory buildings,” ACI Structural Journal, Vol.87, No.5, pp.589-596.

【67】Wardhana, K., Hadiprino, F. C., and F.ASCE, P. E. 2003, “Study of Recent Building Failures in the United States,” Journal of Performance of Constructed Facilities, ASCE, 17, 151-158.

【68】Wardhana, K., and Hadipriono, F.C.and F.ASCE, P.E., 2003, “Analysis of Recent Bridge Failures in the United States,” Journal of Performance of Constructed Facilities, Vol. 17, No. 3, pp.144-150.

【69】Weesner, L.B. and Jones, H.L., 2001, “Experimental and Analytical Capacity of Frame Scaffolding,” Engineering Structures, Vol. 23, No. 6, pp.592-599.

【70】Yu, W.K., 2004, “An Investigation into Structural Behaviour of Modular Steel Scaffolds,” Steel and Composite Structures, Vol. 4, No. 3, pp.211-226.

【71】Yu, W.K. and Chung K.F., 2004a, “Prediction on Load Carrying Capacities of Multi-storey Door-type Modular Steel Scaffolds,” Steel and Composite Structures, Vol. 4, No. 6, pp. 471-487.

【72】Yu, W.K., Chung, K.F., and Chan, S.L., 2005, “Axial buckling of bamboo columns in bamboo scaffolds,” Engineering Structures, Vol. 27, pp.61-73.

【73】Yu, W.K., Chung, K.F. and Chan, S.L., 2004b, “Structural Instability of Multi-storeyDoor-type Modular Steel Scaffolds,” Engineering Structures, Vol. 26, pp.867-881.

【74】Yue, F., Yuan, Y., Li, G. Q., Ye, K.M., Chen, Zh.M., and Wang, Zh.P., 2005, “Wind Load on Integral-Lift Scaffolds for Tall Building,” Journal of Structural Engineering, ASCE, Vol. 131, No. 5, pp.816-824.

【75】Zhang, H., Chandrangsu, T. and Rasmussen, K.J.R., 2010, “Probabilistic study of the strength of steel scaffold systems,” Structural Safety, Vol. 32,pp.393-401.

【76】Zhang, H., Rasmussen, K.J.R., and Ellingwood, B.R., 2012, “Reliability assessment of steel scaffold shoring structure for concrete formwork,” Engineering Structures, Vol. 36, pp.81-89.

【77】張智奇, 問世賢, 2010, 模板支撐失效模式與倒崩塌相關性研究, 行政院勞工委員會, IOSH99-S307.

【78】林宜清, 彭瑞麟, 何崇銘, 林宏坤, 2007, 鋼索補強對鋼管鷹架系統承載力影響之試驗研究, 建築學報, Vol. 59, pp. 25-43.

【79】行政院勞工委員會,“營造安全衛生設施標準”,臺北,2007。

【80】行政院勞工委員會,“加強公共工程勞工安全衛生管理作業要點”,臺北,2004。

【81】彭瑞麟, 潘吉齡, 黃培松, 2004, “營建工程鋼管施工架結構承載力之探討,” 中國土木水利工程學刊, Vol. 16, No. 3, pp. 425-435.

【82】顏聰, 彭瑞麟, 林宜清, 黃玉麟, 陳豪吉, 施一鳴, 2002, “我國框式鋼管施工架檢定制度之研究,” 勞工安全衛生研究季刊, Vol. 10, No. 2, pp. 127-139.

【83】彭瑞麟, 顏聰, 郭清吉, 2002, “由大岡山北嶺加壓站配水池工程模板支撐倒塌檢討棚架式模板支撐之安全性,” 勞工安全衛生研究季刊, Vol. 10, No. 3, pp. 252-271.

【84】行政院勞工委員會,“勞動檢查法”,臺北,2002。

【85】彭瑞麟, 顏聰, 施一鳴, 2001, “營造鋼管施工架用途及破壞之初步探討,” 勞工安全衛生研究季刊, Vol. 10, No. 2, pp. 127-139.

【86】陳豪吉, 2000, 木支撐之承載強度與設計概念, 土木技術, Vol. 26, pp. 53-66.

【87】黃玉麟, 顏聰, 陳豪吉, 高鈺鈉, 2000, 鋼管鷹架模板支撐之分析與設計建議, 土木技術, Vol. 26, pp. 77-87.

【88】林宜清, 巫昆霖, 耿彥偉, 2000, 鋼管鷹架與木支撐聯合支撐系統之承載力分析, 土木技術, Vol. 26, pp. 88-96.

【89】彭瑞麟, 吳正隆, 何崇銘, 2000, 混凝土澆置路徑對鷹架支撐力學行為之影響, 土木技術, Vol. 26, pp. 112-126.

【90】林宜清, 2000, 鋼管架模板支撐之施工安全及預警規劃建議, 土木技術, Vol. 26, pp. 140-151.

【91】呂良正, 楊永斌, 高健章, 2000, 模板支撐系統承載力之動力預測法, 土木技術, Vol. 26, pp. 127-139.

【92】顏聰, 彭瑞麟, 林宜清, 陳豪吉, 耿彥偉, 1999, “鷹架模板支撐系統使用木支撐之承載力,” 中國土木水利工程學刊. Vol. 11, No. 1, pp. 55-65.

【93】顏聰, 林宜清, 黃玉麟, 彭瑞麟, 蔡慰龍, 1997, “鋼管鷹架模板支撐在偏心載重作用下之承載力,” 中國土木水利工程學刊, Vol. 9, No. 4, pp. 655-663.

【94】楊永斌,高健章,呂良正,張國緯,吳世雄,杜偉民, 1995 “模板倒塌預警系統研究-模板支撐縮小模型之自然頻率量測及理論分析,” 行政院勞工委員會勞工安全衛生研究季刊.

【95】顏聰,1994,“營造工程各種木材模板支撐材質強度及施工自動檢查技術研究”,行政院勞委會研究報告.

【96】“加拿大安大略省營造安全衛生設施標準”,行政院勞工委員會,勞工安全衛生叢書02-02-01,1993。
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. 萬幼筠(2004),「企業實施委外作業注意要點」,《會計研究月刊》,11月,22-24。
2. 黃金印(1998),「海外直接投資之計量分析」,《經濟情勢暨評論》,4(3),105-130。
3. 莊世杰、賴志松、孫衙聰、龔昶元、葉穎蓉、許秉瑜(2005),「一個ERP系統之建構決定因素的理論探索:整合制度理論、資源依賴理論、資源基礎理論及交易成本理論之理論模型」,《資訊管理學報》,12(1),149-170。
4. 唐震、劉奕萱(2012),「資訊安全委外決策類型之初探」,《企業管理學報 》,92, 2 -39。
5. 林雅燕(1995),「市場結構與委外」,《國立虎尾科技大學學報 》, 28(4)。
6. 吳閔鈺(2010),「全球服務外包產業的發展現況」,《臺灣經濟研究月刊》,33(2),123 -128。
7. 吳長生、洪順慶(2005),「公司特性、地主國特性、標準化策略與國際行銷績效之關係」,《中山管理評論》,14(2),451-486。
8. 任慶宗、方顯光與羅兆淯(2010),「產品屬性;供應商能力依賴因素;委外風險關係之研究」,華人經濟研究 ,8(2),23 -45。
9. 【94】 楊永斌,高健章,呂良正,張國緯,吳世雄,杜偉民, 1995 “模板倒塌預警系統研究-模板支撐縮小模型之自然頻率量測及理論分析,” 行政院勞工委員會勞工安全衛生研究季刊.
10. 【93】 顏聰, 林宜清, 黃玉麟, 彭瑞麟, 蔡慰龍, 1997, “鋼管鷹架模板支撐在偏心載重作用下之承載力,” 中國土木水利工程學刊, Vol. 9, No. 4, pp. 655-663.
11. 【92】 顏聰, 彭瑞麟, 林宜清, 陳豪吉, 耿彥偉, 1999, “鷹架模板支撐系統使用木支撐之承載力,” 中國土木水利工程學刊. Vol. 11, No. 1, pp. 55-65.
12. 【91】 呂良正, 楊永斌, 高健章, 2000, 模板支撐系統承載力之動力預測法, 土木技術, Vol. 26, pp. 127-139.
13. 【90】 林宜清, 2000, 鋼管架模板支撐之施工安全及預警規劃建議, 土木技術, Vol. 26, pp. 140-151.
14. 【89】 彭瑞麟, 吳正隆, 何崇銘, 2000, 混凝土澆置路徑對鷹架支撐力學行為之影響, 土木技術, Vol. 26, pp. 112-126.
15. 【88】 林宜清, 巫昆霖, 耿彥偉, 2000, 鋼管鷹架與木支撐聯合支撐系統之承載力分析, 土木技術, Vol. 26, pp. 88-96.