(3.227.0.150) 您好!臺灣時間:2021/05/06 12:49
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:張耀元
研究生(外文):Yao-Yuan Chang
論文名稱:聚苯胺/石墨烯氧化物奈米複合材料做為觸媒載體及其於直接甲醇燃料電池應用之研究
論文名稱(外文):An investigation on polyaniline/graphene oxide nanocomposites as catalyst supporters for DMFC applications
指導教授:林智汶
指導教授(外文):Chi-Wen Lin
學位類別:碩士
校院名稱:國立雲林科技大學
系所名稱:化學工程與材料工程系碩士班
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2013
畢業學年度:102
語文別:中文
論文頁數:100
中文關鍵詞:直接甲醇燃料電池觸媒載體石墨烯氧化物聚苯胺
外文關鍵詞:DMFCCatalyst supportGraphene oxidePolyaniline
相關次數:
  • 被引用被引用:0
  • 點閱點閱:247
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:27
  • 收藏至我的研究室書目清單書目收藏:0
本研究主旨在藉由調整不同合成參數以控制出不同的聚苯胺/石墨烯氧化物複合物(PG)型態,藉此探討不同複合物型態對觸媒載體電化學特性之影響,又因石墨烯氧化物(GO)不導電,固本研究亦嘗試還原PG內之GO,使其具有接近石墨烯(graphene)之高導電性及高比表面積,以利PG作為燃料電池觸媒載體。

最初藉由SEM觀察還原程序對PG型態的變化,結果發現球狀材料(sPG)經還原後型態有明顯改變,且在管狀材料(tPG)及梳狀材料(aPG)中也發現有類似的現象。接著進一步藉由循環伏安法掃描發現,PG複合物之電化學活性面積會隨著形貌改變而變化。此外,我們藉由調整還原參數來控制PG中GO的含氧量,並利用TGA分析其還原程度,可知硼酸氫鈉還原劑濃度10mM時能使PG保有部分含氧官能基,而控制在50mM則可將GO還原得較完全。在導電度方面,雖然GO的還原可以提升導電度,但藉由UV-vis可發現PG經還原後會導致聚苯胺摻雜度降低的問題,促使導電度下降,因此GO與聚苯胺之間導電度的競爭關係會造成PG導電度有先下降後上升的趨勢。

本研究繼而探討白金於各類PG上之沉積狀況,利用TEM觀察可發現白金除了在sPG50表面有團簇現象外,於其他PG表面皆能均勻的分散,進一步利用XRD掃描計算各PG/Pt之白金平均粒徑,可發現除sPG50外,sPG及tPG系列材料具有較小的白金粒徑,在白金催化甲醇分析上可發現三類PG/Pt之白金粒徑與甲醇催化值(If)有反比關係,而觸媒毒化抗性值(If/Ib)會隨還原度的上升而提高。

經比較,擁有最高催化能力(If)及優異導電性的sPG可期望作為具有較好的甲醇催化及電池放電功率之觸媒載體,而If值高且有較大毒化抗性(If/Ib)的tPG50則可期望擁有較佳的電池長時間操作穩定性。
The aim of this study is adjusting the manufacturing parameters to control the synthesis of different polyaniline/graphene oxide composites (PG) morphologies and investigate how it influences the electrochemical properties as catalyst supporters. Because graphene oxide (GO) is not conductive, GO was modified to be similar to grapheme which has high conductivity and high specific surface area for a catalyst supporters in fuel cell application. So this study also attempt to reduce the GO in PG.

Initially, we used SEM to observe the reduction procedure effect the PG morphology changes. The results showed that the spherical material (sPG), the tubular material (tPG) and the comb-like material (aPG) morphology changed significantly after the reduction procedures. Furthermore, cyclic voltammetry observed that the electrochemical activity surface area of the PG composite changed when the morphology changed.

In addition, we adjusted the reducing parameters to control the oxygen content of GO in PG, and TGA was used to analyze the degree of reduction. It showed that when the concentration of sodium borates reducing agent is at 10 mM, PG can maintain some parts of the oxygen-containing functional groups. And GO can be fully reduced when the reducing agent is at 50 mM. In the conductivity study, although the reduction of GO can improve conductivity, the UV-vis showed that the polyaniline doping degree is reduced after reduction procedure. Thus, the conductivity competition between GO and polyaniline causes the conductivity trend of PG.

Furthermore, this study also investigated the deposition of platinum on various morphologies of PG. From TEM observation, except clusters phenomenon on the surface of sPG50, platinum can uniformly dispersed on the surface of the other PGs. The calculation of the average particle size of each PG/Pt from XRD results can be found that except for sPG50, sPG and tPG based material had small platinum average particle size. The platinum catalyzed methanol analysis showed that catalytic ability of methanol (If) had the inverse relationship with platinum average particle size of PG/Pt, and the catalyst poison resistance (If/Ib) increased when the degree of reduction increased.

From the comparisons of all the morphologies of PG. sPG has the highest catalytic ability (If) and the most excellent conductivity, which can be expected as a catalyst supporter which has the best catalytic ability of methanol and cell discharge power. tPG50 has high If value and better poison resistance (If/Ib), which can be expected to have a better long operation cell stability.
中文摘要 i

ABSTRACT ii

目錄 iv

表目錄 vii

圖目錄 ix

第一章 緒論 1

1.1前言 1

1.2燃料電池膜電極組 1

1.3直接甲醇燃料電池 3

1.4燃料電池觸媒層 4

1.5觸媒層的改善方法 5

第二章 文獻回顧 6

2.1聚苯胺 6

2.1.1聚苯胺簡介 6

2.1.2聚苯胺的結構 7

2.1.3聚苯胺的摻雜 8

2.1.4聚苯胺的型態 10

2.2聚苯胺應用於觸媒載體 14

2.2.1觸媒毒化抗性 14

2.2.2機械安定性 21

2.2.3催化甲醇能力 21

2.3石墨烯與石墨烯氧化物簡介 24

2.4石墨烯與石墨烯氧化物應用於觸媒載體 28

2.4.1白金分散性 28

2.4.2催化甲醇能力 28

2.4.3白金沉積量之影響 35

2.4.4 GO含氧量之影響 36

2.5石墨烯與導電高分子複合物應用於觸媒載體 38

2.6聚苯胺/石墨烯氧化物複合物 40

2.7研究動機 48

第三章 原理 49

3.1掃描式電子顯微鏡(Scanning Electron Microscopy, SEM) 49

3.2穿透式電子顯微鏡(Transmission Electron Microscopy, TEM) 49

3.3紫外光-可見光光譜儀(Ultraviolet-visible spectroscopy, UV-vis) 49

3.4熱重量分析(Themogravimetric Analysis,TGA) 50

3.5四點探針(Four point probe) 50

3.6循環伏安法(Cyclic voltammetry, CV) 51

第四章 實驗方法 52

4.1實驗藥品 52

4.2實驗儀器 53

4.3石墨烯氧化物的製備 54

4.4聚苯胺/(還原)石墨烯氧化物複合材料製備 54

4.5循環伏安分析 55

4.6載體材料性質分析 55

4.6.1表面型態分析 55

4.6.2紫外光-可見光光譜 55

4.6.3熱重量分析 55

4.6.4導電度分析 56

4.7電極材料製備與分析 56

4.7.1白金粒子沉積 56

4.7.2白金分散性(TEM觀察) 56

4.7.3白金粒徑分析(XRD) 56

4.7.4甲醇催化氧化反應(MOR)能力分析 57

第五章 結果與討論 58

5.1聚苯胺/石墨烯氧化物(PG)型態鑑定 58

5.1.1 sPG型態鑑定 58

5.1.2 sPG10、50型態鑑定 59

5.1.3 tPG型態鑑定 62

5.1.4 tPG10、50型態鑑定 64

5.1.5 aPG型態鑑定 66

5.1.6 aPG10、50型態鑑定 68

5.2 PG之電化學活性面積分析 71

5.2.1 sPG之電化學活性面積分析 71

5.2.2 tPG之電化學活性面積分析 72

5.2.3 aPG之電化學活性面積分析 73

5.3 PG中GO之還原程度分析 74

5.4 PG導電度檢測及還原程序對聚苯胺之影響 77

5.5 PG/Pt表面白金分布狀況分析 80

5.5.1 PG/Pt之白金分散性 80

5.5.2 PG/Pt之白金顆粒大小 86

5.6 PG/Pt之甲醇催化性能分析 89

5.7各型態PG載體性質整理 93

第六章 結論 94

參考文獻 96
[01] B. Beden, F. Hahn, S. Juanto, C. Lamy, J.M. Leger, J. Electroanal. Chem. 225 (1987) 215

[02] L. Niu, Q.H. Li, F.H.Wei, X. Chen, H.Wang, Synth. Met. 139 (2003) 271

[03] R. Venkataraman, H.R. Kunz, J.M. Fenton, J. Electrochem. Soc. 150 (2003) 278

[04] H. Shi, Electrochim Acta 41 (1996) 1633

[05] S.C. Roy, P.A. Christensen, A. Hamnett, K.M. Thomas, V. Trapp, J Electrochem Soc. 143 (1996) 3073

[06] S.Sharma, B.G. Pollet, Journal of Power Sources 208 (2012) 96

[07] N.Sammes, Fuel Cell Technology: Reaching Towards Commercialization, Springer, London, 2006

[08] L.J.M.J. Blomen, M.N. Mugerwa, Fuel Cell Systems, Plenum Press, New York, 1993

[09] M.M. Mench, Fuel Cell Engines, John Wiley and Sons Ltd., London, 2008.

[10] G.D.J. Harper, Fuel Cell Projects for the Evil Genius, 2008.

[11] S. Srinivasan, Fuel Cells: From Fundamentals to Applications, Springer Verlag, 2006

[12] A. Hermann, T. Chaudhuri, P. Spagnol, Int. J. Hydrogen Energy 30 (2005) 1297

[13] Letherby, H. J. chem. Soc., 15 (1862) 16

[14] A. G. Green, A. E. Woodhead, J. Chem. Soc. Trans. 97 (1910) 2388

[15] A.G. MacDiarmid, J.C. Chiang, M. Halpern, W.S. Huang, S.L. Mu, N.L.D. Somasir, W. Wu, S.I. Taniger, Mol. Cryst. Liq. Cryst. 121 (1985) 173

[16] A.G. Macdiarmid, Synth. Met. 26 (1994) 231

[17] E.M. Genies, A.A. Syed, C. Tsintaris, Mol. Cryst. Liq. Cryst. 121 (1985) 181

[18] D.M. Mohilner, R.N. Adams, J.Am.Chem.Soc., 84 (1962) 3618

[19] J.C. Chang, A.G. MacDiarmid, Synth. Met., 13 (1986) 193

[20] W.S. Huang, B.D. Humphrey, A.G. MacDiarmid, J. Chem. Soc. Fararday Trans, 82 (1986) 2385

[21] W.W. Focke, G.E. Wenk, Y. Wei, J. Phys. Chem. 91 (1987) 5813

[22] P. Xu, X. Han, B. Zhang, N. H. Mack, S. Jeon, H.L Wang, Polymer 50 (2009) 2624

[23] Y.F. Huang, C.W. Lin, C.S. Chang, M.J. Ho, Electrochim. Acta 56 (2011) 5679

[24] D. Zhang, Y. Wang, Mater Sci Eng B 134 (2006) 9

[25] C.R. Martin, L. S. Van Dyke, Z. Cai,W. Liang, J. Am. Chem. Soc. 112 (1990) 8976

[26] P. Ocon-Esteban, J.M. Leger, C. Lamy, E. Genies, J. Appl. Electrochem. 19 (1989) 462

[27] F. Ficicioglu, F. Kadirgan, J. Electroanal. Chem. 430 (1997) 179

[28] H. Laborde, J.M. Leger, C. Lamy, J. Appl. Electrochem. 24 (1994) 219

[29] H. J. Salavagione, C. Sanchis, E. Morallon, J. Phys. Chem. C 111 (2007) 12454

[30] M. Zhiani, B. Rezaei, J. Jalili, international journal of hydrogen energy 35

(2010) 9298-9305

[31] H. Gharibi, K. Kakaei, M. Zhiani, M. M. Taghiabadi, International journal

of hydrogen energy 36 (2011) 13301-13309

[32] M. Zhiani, H. Gharibi, K. Kakaei, Journal of Power Sources 210 (2012) 42–46

[33] K. Shimazu, D. Weisshaar, T. Kuwana, J. Electroanal. Chem. 223 (1987) 223

[34] K.M. Kost, D.E. Bartak, B. Kazee, T. Kuwana, Anal. Chem. 60 (1988) 2379

[35] K.L. Nagashree, M.F. Ahmed, Synth. Met. 158 (2008) 610.

[36] T. Frelink, W. Visscher, J. Veen, J Electroanal Chem. 382 (1995) 65

[37] B. Wessling, Synth. Met. 93 (1998) 143

[38] A. Al-Ghamdi, Z.Y. Al-Saigh, J Chromatogr A 969 (2002) 229

[39] S. Virji, J. Huang, R.B. Kaner, B.H. Weiller, Nano letters 4 (2004) 491

[40] G. Li, C. Martinez, J. Janata, J.A. Smith, M. Josowicz, S. Semancik,

Electochem. Solid State lett 7 (2004)

[41] Z. Chen, L. Xu, W. Li, M. Waje, Y. Yan, Nanotechnology 17 (2006) 5254

[42] S. Guo, S. Dong, and E. Wang, Small 5 (2009) 1869

[33] B. Rajesh, K. R. Thampi, J. M. Bonard, H. J. Mathieu,N. Xanthopoulos, B. Viswanathan, Electochem.Solid State lett. 7 (2004) A404

[43] Y.H. Lin, X.L. Cui, C.Y. Yen, C.M. Wai, Langmuir 21 (2005) 11474

[44] J.J. Niu, J.N. Wang, Electrochim. Acta 53 (2008) 805

[45] B.Z. Jang, A.A. Zhamu, J. Mater. Sci. 43 (2008) 5092

[46] A.K. Geim, K.S. Novoselov, Nature materials 6 (2007) 183

[47] A.A. Balandin, S. Ghosh, W.Z. Bao, I. Calizo, D. Teweldebrhan, F. Miao, C.N. Lau, Nano Lett. 8 (2008) 902

[48] C.G. Lee, X.D. Wei, J.W. Kysar, J. Hone, Science 321 (2008) 385

[49] D.A.C. Brownson, D.K. Kampouris, C.E. Banks, J. Power Sources 196 (2011) 4873

[50] T. Kuilla, S. Bhadra, D. Yao, N.H. Kim, S. Bose, J.H. Lee, Prog. Polym. Sci. 35 (2010) 1350 [30] Y. Li, W.Gao, L. Ci, C. Wang, P.M. Ajayan, Carbon 48 (2010) 1124

[51] Y. Li, W.Gao, L. Ci, C. Wang, P.M. Ajayan, Carbon 48 (2010) 1124

[52] C.C. Chien, K.T. Jeng, Mater. Chem. Phys. 99 (2006) 80

[53] K.Kakaei, M.Zhiani, Journal of Power Sources 225 (2013) 356

[54] K.Ji , G. Chang , M. Oyama, X. Shang ,X.Liu , Y.He, ElectrochimicaActa 85 (2012) 84

[55] J.Zang,Y.Wang,L.Bian,J.Zhang,F.Meng,Y.Zhao,R.Lu,X.Qu,S.Ren, CARBON 50 (2012) 3032

[56] S.H.Hsieh,M.C.Hsu,W.L.Liu,W.J.Chen, Applied Surface Science 277 (2013) 223

[57] J.M. Jehng,W.J. Liu,T.C. Pan,Y.M. Dai, Applied Surface Science 268 (2013) 425

[58] L. Dong, R.R.S. Gari, Z. Li, M.M. Craig, S. Hou, Carbon 48 (2010) 781

[59] Y. Li, L. Tang, J. Li, Electrochem. Comm. 11 (2009) 846

[60] E. Yoo, T. Okata, T. Akita, M. Kohyama, J. Nakamura, I. Honma Nano Lett. 9 (2009) 2255

[61] S. Guo, S. Dong, E. Wang, ACS Nano 4 (2010) 547

[62] S. Sharma, A. Ganguly, P. Papakonstantinou, X. Miao, M. Li, J.L. Hutchison, M. Delichatsios, S. Ukleja, J. Phys. Chem. C 114 (2010) 19459

[63] Y. Xin, J.G. Liu, Y. Zhou, W. Liu , J. Gao, Y. Xie, Y. Yin, Z. Zou, Journal of Power Sources 196 (2011) 1012

[64] H.Huang,H.Chen,D.Sun,,X.Wang, Journal of Power Sources 204 (2012) 46

[65] C.Xu, X.Wang, J.Zhu, J. Phys. Chem. C 2008, 112, 19841

[66] J.Y. Park, S. Kim, international journal of hydrogenenergy 38 (2013) 6275

[67] J.D. Qiu,G.C. Wang,R.P. Liang,X.H. Xia,H.W. Yu, J. Phys. Chem. C 115 (2011) 15639

[68] N. Yang, J. Zhai, M. Wan, D. Wang, L. Jiang, Synth. Met. 160 (2010) 1617

[69] H. Wang, Q. Hao, X. Yang, L. Lu, X. Wang, Applied materials and interfaces Vol.2, No.3, 821–828, 2010

[70] K. Zhang, L.L. Zhang, X.S. Zhao, J. Wu, Chem. Mater. 22 (2010) 1392

[71] H. Wang, Q. Hao, X. Yang, L. Lu, X. Wang, Electrochem. Comm. 11 (2009) 1158

[72] H. Wang, Q. Hao, X. Yang, L. Lu, X. Wang, ACS Appl. Mater. Interfaces 2 (2010) 821

[73] J. Xu, K. Wang, S. Zu, B. Han, Z. Wei, ACS Nano 4(2010) 5019

[74] Q. Wu, Y. Xu, Z. Yao, A. Liu, G. Shi, ACS Nano 4(2010) 1963

[75] X. Dong, J. Wang, J. Wang, Mary B. Chan-Park, X.Li, L.Wang,W.Huang, P.Chen, Materials Chemistry and Physics 134 (2012) 576

[76] J. Yan, T. Wei, B. Shao, Z. Fan, W. Qian,M. Zhang, F. Wei, CARBON 48 (2010) 487

[77] Q. Hao, H. Wang, X. Yang, L. Lu, X. Wang, Nano Res. 4 (2011) 323

[78] Y.F. Huang, C.W. Lin, C.S. Chang, M.J. Ho, Electrochim. Acta 56 (2011) 5679

[79] P. Xu, X. Han, B. Zhang, N. H. Mack, S. Jeon, H.L Wang, Polymer 50 (2009) 2624

[80] H.C.Schniepp, J.L. Li, M.J.McAllister, H. Sai, M. Herrera-Alonso, D.H.Adamson, R.K. Prud’homme, R.Car, D.A. Saville, I.A.Aksay, The journal of physical chemistry B letters 110 (2006) 8535

[81] S. Pei, H.M. Cheng, CARBON 50 (2012) 3210

[82] Y.F. Huang, C.W. Lin, Polymer 53 (2012) 1079

[83] Y.F. Huang, C.W. Lin, C.S. Chang, M.J. Ho, Electrochimica Acta 56 (2011) 5679

[84] B.Seger,P.V.Kamat,The journal of physical chemistry C letters 113 (2009) 7990

[85] Hyeon-Jin Shin, K.K. Kim, A.Benayad, Seon-Mi Yoon, H.K.Park, In-Sun Jung, M.H.Jin, Hae-Kyung Jeong, J.M.Kim,Jae-Young Choi,Y.H.Lee, Adv. Funct. Mater. 19 (2009) 1987

[86] K. Zhang, L.L. Zhang, X.S. Zhao, J. Wu, Chem. Mater. 2010, 22, 1392

[86] H. Huang, H. Chen, D. Sun, X. Wang, Journal of Power Sources 204 (2012) 46

[87] Chien-Te Hsieh,Wei-Yu Chen,Dong-Ying Tzou,Anup Kumar Roy,Han-Tsung Hsiao, international journal of hydrogenenergy 37 (2012) 17837

[88] F.J. Liu, Synth. Met. 158 (2008) 603

[89] 吳鳳玲,聚苯胺奈米纖維作為金/白金核殼奈米粒子載體應用於直接甲醇燃料電池陰極之研究,國立雲林科技大學化學工程與材料工程系,碩士論文(2011)

[90] 張智翔,導電性高分子聚苯胺應用於燃料電池膜電極組之研究,國立雲林科技大學化學工程與材料工程系,碩士論文(2011)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊
 
系統版面圖檔 系統版面圖檔