|
1. Khanna, S.C. and P. Speiser, Epoxy resin beads as a pharmaceutical dosage form. I. Method of preparation. J Pharm Sci, 1969. 58(9): p. 1114-7.
2. Chen, Y.C., et al., Pluronic block copolymers: novel functions in ultrasound-mediated gene transfer and against cell damage. Ultrasound Med Biol, 2006. 32(1): p. 131-7.
3. Papagiannaros, A., et al., Quantum dots encapsulated in phospholipid micelles for imaging and quantification of tumors in the near-infrared region. Nanomedicine: Nanotechnology, Biology and Medicine, 2009. 5(2): p. 216-224.
4. Jones, M.-C. and J.-C. Leroux, Polymeric micelles – a new generation of colloidal drug carriers. European Journal of Pharmaceutics and Biopharmaceutics, 1999. 48(2): p. 101-111.
5. Elworthy, P.H., A.T. Florence, and C.B. Macfarlane, Solubilization by surface-active agents and its applications in chemistry and the biological sciences. 1968: Chapman & Hall.
6. Gao, Z. and A. Eisenberg, A model of micellization for block copolymers in solutions. Macromolecules, 1993. 26(26): p. 7353-7360.
7. Remant Bahadur, K.C., et al., Novel amphiphilic triblock copolymer based on PPDO, PCL, and PEG: Synthesis, characterization, and aqueous dispersion. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2007. 292(1): p. 69-78.
8. Kataoka, K., et al., Spontaneous Formation of Polyion Complex Micelles with Narrow Distribution from Antisense Oligonucleotide and Cationic Block Copolymer in Physiological Saline. Macromolecules, 1996. 29(26): p. 8556-8557.
9. Kwon, G.S. and T. Okano, Polymeric micelles as new drug carriers. Advanced Drug Delivery Reviews, 1996. 21(2): p. 107-116.
10. Kataoka, K., Design of Nanoscopic Vehicles for Drug Targeting Based on Micellization of Amphiphiuc Block Copolymers. Journal of Macromolecular Science, Part A, 1994. 31(11): p. 1759-1769.
11. Savic, R., et al., Micellar nanocontainers distribute to defined cytoplasmic organelles. Science, 2003. 300(5619): p. 615-8.
12. Tonge, S.R. and B.J. Tighe, Responsive hydrophobically associating polymers: a review of structure and properties. Advanced Drug Delivery Reviews, 2001. 53(1): p. 109-122.
13. Torres-Lugo, M. and N.A. Peppas, Molecular Design and in Vitro Studies of Novel pH-Sensitive Hydrogels for the Oral Delivery of Calcitonin. Macromolecules, 1999. 32(20): p. 6646-6651.
14. Pinkrah, V.T., et al., Physicochemical Properties of Poly(N-isopropylacrylamide-co-4-vinylpyridine) Cationic Polyelectrolyte Colloidal Microgels. Langmuir, 2003. 19(3): p. 585-590.
15. Bae, Y., et al., Design of Environment-Sensitive Supramolecular Assemblies for Intracellular Drug Delivery: Polymeric Micelles that are Responsive to Intracellular pH Change. Angewandte Chemie International Edition, 2003. 42(38): p. 4640-4643.
16. Qiu, Y. and K. Park, Environment-sensitive hydrogels for drug delivery. Advanced Drug Delivery Reviews, 2001. 53(3): p. 321-339.
17. Chen, W.-Q., et al., Fabrication of star-shaped, thermo-sensitive poly(N-isopropylacrylamide)–cholic acid–poly(ɛ-caprolactone) copolymers and their self-assembled micelles as drug carriers. Polymer, 2008. 49(18): p. 3965-3972.
18. Muhlebach, A., S.G. Gaynor, and K. Matyjaszewski, Synthesis of Amphiphilic Block Copolymers by Atom Transfer Radical Polymerization (ATRP). Macromolecules, 1998. 31(18): p. 6046-6052.
19. Schild, H.G., Poly(N-isopropylacrylamide): experiment, theory and application. Progress in Polymer Science, 1992. 17(2): p. 163-249.
20. Maolin, Z., et al., Radiation preparation of PVA-g-NIPAAm in a homogeneous system and its application in controlled release. Radiation Physics and Chemistry, 2000. 57(3–6): p. 481-484.
21. Kohori, F., et al., Process design for efficient and controlled drug incorporation into polymeric micelle carrier systems. Journal of Controlled Release, 2002. 78(1–3): p. 155-163.
22. Chang, C., et al., Thermo-responsive shell cross-linked PMMA-b-P(NIPAAm-co-NAS) micelles for drug delivery. International Journal of Pharmaceutics, 2011. 420(2): p. 333-340.
23. Liu, Y., et al., Dual targeting folate-conjugated hyaluronic acid polymeric micelles for paclitaxel delivery. International Journal of Pharmaceutics, 2011. 421(1): p. 160-169.
24. Lin, Y., Y. Li, and C.P. Ooi, 5-Fluorouracil encapsulated HA/PLGA composite microspheres for cancer therapy. J Mater Sci Mater Med, 2012. 23(10): p. 2453-60.
25. De Campos, A.M., et al., The effect of a PEG versus a chitosan coating on the interaction of drug colloidal carriers with the ocular mucosa. Eur J Pharm Sci, 2003. 20(1): p. 73-81.
26. Zhang, L., et al., Camptothecin derivative-loaded poly(caprolactone-co-lactide)-b-PEG-b-poly(caprolactone-co-lactide) nanoparticles and their biodistribution in mice. Journal of Controlled Release, 2004. 96(1): p. 135-148.
27. Kang, S.W., et al., pH-triggered unimer/vesicle-transformable and biodegradable polymersomes based on PEG-b-PCL–grafted poly(β-amino ester) for anti-cancer drug delivery. Polymer, 2013. 54(1): p. 102-110.
28. Chaw, C.-S., et al., Thermally responsive core-shell nanoparticles self-assembled from cholesteryl end-capped and grafted polyacrylamides:: drug incorporation and in vitro release. Biomaterials, 2004. 25(18): p. 4297-4308.
29. Xin, J., et al., Study of branched cationic β-cyclodextrin polymer/indomethacin complex and its release profile from alginate hydrogel. International Journal of Pharmaceutics, 2010. 386(1–2): p. 221-228.
30. Li, N.-N., et al., New heparin–indomethacin conjugate with an ester linkage: Synthesis, self aggregation and drug delivery behavior. Materials Science and Engineering: C, 2014. 34(0): p. 229-235.
31. Fuchigami, T., et al., Synthesis and biological evaluation of radioiodinated quinacrine-based derivatives for SPECT imaging of Abeta plaques. Eur J Med Chem, 2013. 60: p. 469-78.
32. Wu, X., et al., Quinacrine Inhibits Cell Growth and Induces Apoptosis in Human Gastric Cancer Cell Line SGC-7901. Current Therapeutic Research, 2012. 73(1–2): p. 52-64.
33. Zhang, L., et al., Mitochondrial targeting liposomes incorporating daunorubicin and quinacrine for treatment of relapsed breast cancer arising from cancer stem cells. Biomaterials, 2012. 33(2): p. 565-82.
34. Wu, Y., Preparation of low-molecular-weight hyaluronic acid by ozone treatment. Carbohydrate Polymers, 2012. 89(2): p. 709-712.
35. Liu, C., et al., Synthesis and characterization of a thermosensitive hydrogel based on biodegradable amphiphilic PCL-Pluronic (L35)-PCL block copolymers. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2007. 302(1–3): p. 430-438.
36. Zhao, C.L., et al., Fluorescence probe techniques used to study micelle formation in water-soluble block copolymers. Langmuir, 1990. 6(2): p. 514-516.
37. Jae-Woon Nah, Young-Il Jeong, and C. Chong-Su, Polymeric Micelle Formation of Multiblock Copolymer Composed of Poly(r-benzyl L-glutamate) and Poly(ethylene oxide). Bulletin of Korean Chemical Society, 2000. 21(no. 4): p. 383.
38. Lee, H., C.H. Ahn, and T.G. Park, Poly[lactic-co-(glycolic acid)]-grafted hyaluronic acid copolymer micelle nanoparticles for target-specific delivery of doxorubicin. Macromol Biosci, 2009. 9(4): p. 336-42.
39. Teng T.M., et al.,”Development of a novel HA-based micelle material as a potent nanocarrier for targeting delivery”, Polymers at the Interface with Biology: Opportunities in Antimicrobial Materials, Immunology, Delivery, and Imaging - EVE Session,no.192, 244th ACS National Meeting, Sheration Philadelphia City, PA, U.S.A., 21 Aug. 2012
|