跳到主要內容

臺灣博碩士論文加值系統

(34.204.172.188) 您好!臺灣時間:2023/09/28 12:57
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:賴盈傑
研究生(外文):Ying-chieh Lai
論文名稱:高溫型熔融氯化鹽電解質浴脈衝電解精煉鎂金屬之研究
論文名稱(外文):Pulse electrorefining of magnesium metal from high temperature molten
指導教授:楊肇政楊肇政引用關係
指導教授(外文):Chao-Chen Yang
學位類別:碩士
校院名稱:國立雲林科技大學
系所名稱:化學工程與材料工程系碩士班
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2014
畢業學年度:102
語文別:中文
論文頁數:82
中文關鍵詞:氯化胺熔融鹽
外文關鍵詞:Ammonium chloridemagnesiumMolten salt
相關次數:
  • 被引用被引用:2
  • 點閱點閱:386
  • 評分評分:
  • 下載下載:13
  • 收藏至我的研究室書目清單書目收藏:0
本研究係利用三元系NaCl-KCl-MgCl2熔融氯化物電解質浴進行脈衝電解鎂金屬之研究,含三元系熔融鹽之電化學循環伏安法量測與三元系熔融鹽之鎂電解沉積,及使用脈衝電流值為2A、2.5A、3A、3.5A、4A分別量測電流效率。依實驗結果比較,選擇以脈衝電流值為3A、Duty Cycle 50%為電解條件。添加NH4Cl於融熔鹽浴中,依循環伏安圖得知,隨著NH4Cl添加融熔鹽浴的還原電位窗有增大趨勢,此情形有利於鎂金屬的還原及提升鎂金屬純度,其中以添加35 mole% NH4Cl可得到較佳純度的鎂金屬。鎂電解實驗以MgCl2-(NaCl-KCl)組成為40:60 mol%做為電解質浴,以碳棒為陽極、不鏽鋼棒為陰極,電解操作溫度973K,脈衝電流值為3A、Duty Cycle為50%時,進行脈衝電解沉積鎂金屬,所得電流效率值較佳。此外,添加NH4¬¬Cl後脈衝電解製備的鎂金屬純度可達99%,可歸因於NH4Cl加熱分解時,產生的氣體時會除電極表面的雜質,且分解出來的Cl2具有純化融熔鹽浴的效果,故可提升鎂金屬純度。
In this study, the magnesium metal electrodeposited by using the pulse electrolysis with the electrolyte bath of ternary system molten chlorides of NaCl-KCl-MgCl2, and the measurement and analysis of ternary system molten salt are carried out by the electrochemical cyclic voltammetry; moreover, the electrodeposition and analysis of magnesium will also be discussed. The current efficiency is respectively measured when the pulse current values are 2A, 2.5A, 3A, 3.5A and 4A, and from the analysis of these results, the pulse current value 3A and the duty cycle 50% are selected as the pulse electrolysis conditions. From the analysis of cyclic voltammetry, it shows the potential window of molten salt with adding NH4Cl tends to go up, and the result is beneficial to the reduction of magnesium and promote the magnesium metal purity. In this study, the electrolyte bath is composited by proportion of 40:60% for MgCl2-(NaCl-KCl), and the carbon rod acts as anode, and the stainless steel rod acts as cathode. The pulse electrolysis is proceeded to electrodeposite magnesium metal when the temperature of electrolysis is 937K, the pulse current value is 3A and the duty cycle is 50%, the best current efficiency obtained on the condition. However, the purity of the magnesium metal prepared by pulse electrolysis can be achieved 99%. It is the cause that when the NH4Cl is decomposed to gas phase which included NH4 and Cl2, and the electrodes are cleaned by this gas phase; moreover, the Cl2 can also increase the purity of the molten salt. So the purity of the magnesium metal is increased.
目錄

中文摘要.............................................................i

ABSTRACT...........................................................ii

誌謝................................................................iii

目錄.................................................................iv

表目錄...............................................................vi

圖目錄..............................................................viii

符號說明.............................................................xii

ㄧ、緒論..............................................................1

1-1 電化學系統.......................................................1

1-2 電化學電解槽(Electrochemical cell).................................2

1-3 電化學之相關參數說明.................................................5

1-4 熔融鹽之定義........................................................6

1-5 鎂金屬與鎂合金之製備方法.............................................13

1-6 鎂金屬的應用.......................................................14

1-7 研究動機與目的......................................................15

1-8 研究架構...........................................................16

二、文獻回顧............................................................18

2-1 熔融鹽電化學........................................................18

2-2 熔融鹽電解之優點(Advantages of Fused Salt Electrolysis)..............19

2-3 脈衝電解電鍍.........................................................20

2-4循環伏安法(cyclic voltammetry)........................................21

2-5庫倫法...............................................................22

2-6 電解質阻抗(Electrolyte resistance)...................................23

2-7 電解槽設計(Electrolyzer design)......................................23

2-8 輕金屬(Light metal)..................................................33

2-9 輕金屬之製備(Electrowinning)..........................................34

2-10 熔融鹽組成的選擇......................................................37

2-11 鎂金屬的純度提升......................................................38

2-12 電流效率的提升........................................................39

三、實驗方法與步驟..........................................................41

3-1 實驗藥品..............................................................41

3-2 實驗設備..............................................................42

四、結果與討論.............................................................50

4-1 電解效率量測...........................................................50

4-2 電解效率量測¬-Duty Cycle 分析...........................................61

4-3 電化學行為量測-添加NH4Cl分析.............................................63

4-4 電流效率量測-添加NH4Cl分析...............................................69

4-5 AA純度分析.............................................................72

4-6 EDS分析...............................................................75

五、結論...................................................................77

六、未來展望................................................................78

參考文獻...................................................................79
參考文獻

1.許信儀, 低溫型熔融鹽電解質輸送特性及相關應用之研究. 國立雲林科技大學,博士論文, 2003.

2.Gale, D.G.L.a.R.J., Molten Salt Techniques. 1983. Vol. 1.

3.Gale, D.G.L.a.R.J., Molten Salt Techniques. 1984. Vol. 2.

4.Gale, D.G.L.a.R.J., Molten Salt Techniques. 1987. Vol. 3.

5.Gale, D.G.L.a.R.J., Molten Salt Techniques. 1991. Vol. 4.

6.J.E. Gordon, J.A., Chem. Soc, 1964. 86: p. 4492.

7.H.A. Patel, D.L.C., S.D. Bhole, K. Sadayappan, Microstructure and tensile properties of thixomolded magnesium alloys. Journal of Alloys and Compounds, 2010. 496(1-2): p. 140-148.



8.Czerwinski, F., Selected aspects of semisolid forming magnesium alloys ( Conference Paper ). Materials Science Forum, 2007. 539-543(part 2): p. 1644-1649.



9.Zude Zhao, Q.C., Zejun Tang, Chuankai Hu, Microstructural evolution and tensile mechanical properties of AM60B magnesium alloy prepared by the SIMA route. Journal of Alloys and Compounds, 2010. 497(1-2): p. 402-411.



10.Birol, Y., Forming of AlSi8Cu3Fe alloy in the semi-solid state. Journal of Alloys and Compounds, 2009. 470: p. 183-187.



11.M. Moradi, M.N.-A., B. Heidarian, S. Ashouri, Defect control and mechanical properties of thixoformed Al–Si alloy. Journal of Alloys and Compounds, 2009. 487: p. 768-775.



12.Mohammad Reza Elahi, M.H.S., Abdolghayoom Safaei, Liquid phase surface

alloying of AZ91D magnesium alloy with Al and Ni powders. Applied Surface Science, 2012. 258(15): p. 5876-5880.



13.Shaohua YANG, F.Y., Chunfa LIAO, Mingzhou Li, Xu WANG, Electrodeposition of magnesium-yttrium alloys by molten salt electrolysis. Journal of Rare Earths, 2010. 28: p. 385-388.



14.C. Zhong, M.F.H., L. Liu, Y.J. Chen, B. Shen, Y.T. Wu, Y.D. Deng, W.B. Hu, Formation of an aluminum-alloyed coating on AZ91D magnesium alloy in molten salts at lower temperature. Surface and Coatings Technology, 2010. 205(7): p. 2412-2418.



15.Jifu Zhang, C.Y., Fuhui Wang, Electrodeposition of Al–Mn alloy on AZ31B magnesium alloy in molten salts. Applied Surface Science, 2009. 255(9): p. 4926-4932.



16.Ito, Y., A Bright Future for Molten Salts in Science and Technolog. Electrochemistry, 1999. 67: p. 528.



17.T.P. Boyarchuk, E.G.K., V.L. Cherginets, Potentiometric measurements in molten chlorides. Solubilities of metal oxides in the molten eutectic mixture CsCl-KCl-NaCl at 600°C. Electrochimica Acta, 1993. 38(10): p. 1481-1485.



18.Koji Nitta, T.N., Rika Hagiwara, Masatoshi Majima, Shinji Inazawa, Physicochemical properties of ZnCl2–NaCl–KCl eutectic melt. Electrochimica Acta, 2009. 54(21): p. 4898–4902.



19.Hyun-Suk Choo, K.-Y.L., Yun-Sung Kim, Jung-Ho Wee, Synthesis of Ni3Al intermetallic powder in eutectic molten salts. Intermetallics, 2005. 13(2): p. 157-162.



20.Hui-Ling Li, Z.-N.D., Gen-Lin Wang, Yong-Cai Zhang, Low temperature molten salt synthesis of SrTiO3 submicron crystallites and nanocrystals in the eutectic NaCl–KCl. Materials Letters, 2010. 64(3): p. 431-434.



21.Faulkner, A.J.B.a.L.R., Electrochemical methods; fundamentals and applications. John Wiley and Sons, New York, 1952.



22.Jianfeng Lu, J.D., Jianping Yang, Solidification and melting behaviors and characteristics of molten salt in cold filling pipe. International Journal of Heat and Mass Transfer, 2010. 53(9-10): p. 1628-1635.



23.Mikito Ueda, H.K., Toshiaki Ohtsuka, Co-deposition of Al–Cr–Ni alloys using constant potential and potential pulse techniques in AlCl3–NaCl–KCl molten salt. Electrochimica Acta, 2007. 52(7): p. 2515-2519.



24.A.J.B. Dutra, J.C.V., A. Espinola, Use of pulse currents for tantalum electrowinning in molten fluorides. Minerals Engineering, 1993. 6(6): p. 663-672.



25.Gerhard Ett, E.J.P., Pulse current plating of TiB2 in molten fluoride. Electrochimica Acta, 1999. 44(17): p. 2859-2870.



26.Muhammad Rostom Ali, A.N., Tooru Tsuru, Electrodeposition of Al–Ni intermetallic compounds from aluminum chloride-N-(n-butyl)pyridinium chloride room temperature molten salt. Journal of Electroanalytical Chemistry, 2001. 513(2): p. 111-118.



27.D.L.Grimmett, M. Schwartz and K. Nobe, J. Electrochem. Soc.,1990, 137, p.3414.



28.B.N. Popov, K.M. Yin and R.E. White, ibid.,1993,140, p.1321.

29.K.M. Yin, S.L. Jan, C.C. Lee, Surf. Coat. Technol., 1996, 88,p.219.

30.Gerhard Ett, Elisabete J. Pessine, Electrochimca Acta, 1999, 44,p. 2859.

31.S.K.Ghosh, A.K.Grovera, G.K Dey, M.K.Totlani, Surf. Coat. Technol., 2000 ,126,p.48.



32.M, Cherkaoui, E. Chassaing, K.VU. Quang, Surf. Coat. Technol., 1988, 34, p.243.



33.Varadarajan, D., et al, J. Electrochem. Soc.,2000, 147(9), p.3382.

34.Gill, W. et al, J. Electrochem. Soc., 2001, 148(4), C289.

35.Fray, D.J., Potential for fused salt electrolysis in metal winning and refining. conference proceedings, Soc. Chem, Ind. Newcastle-upon-Tyne: p. pp99-111.



36.Oddmund Wallevik, K.A., Andre Faucher, Thorvald Mellerud, Magnesium electrolysis - a monopolar viewpoint. Magnesium Technology, 2000.



37.財團法人工業技術研究院, 輕金屬熔鹽電解技術評估. 2001.

38.葉哲政/金屬中心, 經濟部技術處產業技術知識服務(ITIS)計劃. 2006.

39.Toshihide Takenaka, Y.N., Nobuo Narukawa, Takuya Noichi, and Masahiro Kawakami, Direct electrodeposition of Mg containing La in molten salt and its corrosion property. Electrochemistry, 2005. 73(8): p.706-709.



40.陳威統, 高溫型融熔氯化鹽電解質浴電解製被鎂金屬之研究. 國立雲林科技大學, 碩士論文, 2012.

41.Gokhan Demirci, I.K., Collection of magnesium in an Mg–Pb alloy cathode placed at the bottom of the cell in MgCl2 electrolysis. Journal of Alloys and Compounds, 2007. 439: p. 237-242.



42.YANG Sheng-hai,TANG Mo-tang, HE Jing,YAO Wei-yi,Preparation of High- Purity Zinc From Zinc Calcine by an Ammonia Process. Sept . 2003, Vol. 24, No. 3.



43.Zheng Huajun, Gu Zhenghai, Zheng Yunpeng. Electrorefining zinc dross in ammoniacal ammonium chloride system. January 2008, 90(1),p.8-12



44.B.Sharifi, M.Mojtahedi, M.Goodarzi, J.Vahdati Khaki. Effect of alkaline electrolysis conditions on current efficiency and morphology of zinc powder.Hydrometallurgy.,2009, 99,p.72–76



45.徐明豐, 室溫型熔融鹽電解質離子之輸送特性及其磁性薄膜之製備. 國立 雲林科技大學,博士論文, 2007.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top