跳到主要內容

臺灣博碩士論文加值系統

(18.206.76.226) 您好!臺灣時間:2021/07/30 23:27
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:莊府華
研究生(外文):Fu-Hua, Chuang
論文名稱:探討蜂巢式汽機車廢氣處理觸媒之熱劣化影響研究-擔體與金屬效應
論文名稱(外文):Study of thermal deactivation of automotive catalysts – effect of supports and metals
指導教授:張宗良張宗良引用關係
指導教授(外文):Chung-Liang Chang
學位類別:碩士
校院名稱:元培科技大學
系所名稱:環境工程衛生研究所
學門:工程學門
學類:環境工程學類
論文種類:學術論文
畢業學年度:102
語文別:中文
論文頁數:45
中文關鍵詞:觸媒熱劣化氮氧化物一氧化碳碳氫化合物
外文關鍵詞:Catalyticthermal deactivationNOxCOHC
相關次數:
  • 被引用被引用:1
  • 點閱點閱:158
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
汽機車廢氣中含有大量氮氧化物(NOx)、一氧化碳(CO)與碳氫化合物(HC)等污染物,必須於廢氣管道加裝觸媒轉化器降低污染排放,以保護環境與人體健康。而汽機車觸媒於長時間或過高的溫條件下操作,則會產生熱劣化現象,導致觸媒失活,並造成污染處理效能降低。因此在觸媒開發上,除了注意處理效能外,也必須考量抗熱劣化因子,如此才能發展出具有兼具經濟效益之環保效能觸媒。
為解決上述問題,本研究以鈰鋯氧化物(CZ)與氧化鋁(Al2O3)為擔體,在其上塗覆鉑(Pt)、鈀(Pd)、銠(Rh)貴金屬,合成單金屬與複合金屬觸媒,探討熱劣化對之所合成觸媒除污效能影響,藉以尋找出最耐熱劣化之擔體種類與金屬組合,以BET、XRD及SEM-EDS分析,探討擔體、單金屬與複合金屬觸媒未熱劣化前與熱劣化後表面積與結構之變化。
研究顯示Al2O3觸媒在經過900℃熱劣化後起燃溫度T50增溫率為65%,高於CZ觸媒38% 1.7倍,代表使用CZ為擔體可增強觸媒熱劣化耐受性。在單屬與複合金屬測試,結果顯示Pd金屬的添加有助於增強觸媒熱劣化耐受性。

There are lots of nitrogen oxides (NOx), carbon monoxide (CO), hydrocarbons (HC) and other pollutants in the vehicles (cars and motorcycles) exhaust. Therefore, installing catalytic converter to the exhaust pipeline to protect the environment and human health is a must. However, the automotive catalysts operated in high-temperature for long time, will cause the phenomenon of thermal degradation and lead to catalysts loss of activation, and downgrade the pollution treatment performance. Thus, the development of catalysts, besides taking the process performance into account, thermal degradation factor must also be put into consideration. In this way, developing a catalyst of economic benefit and environmental performance could become reality.To solve the above issues, the study uses cerium-zirconium oxide (CZ) and alumina oxide (Al2O3) as a support, and covers with platinum (Pt), palladium (Pd), and rhodium (Rh) precious metal as synthetic mono-metal or composite metal catalytic, to explore the impact of thermal degradation, in order to find out the best combination which has the best capability to endure thermal degradation. BET, XRD, and SEM-EDS analysis is applied to explore the transition of surface area and structure for the carriers, mono-metal, composite metal catalytic, prior and after the thermal degradation.
The study indicates that after Al2O3 went through 900℃ thermal degradation process, the ignition temperature T50 temperature increasing rate as 65%, which is higher than CZ catalytic 38% up to 1.7 times. The result shows with CZ as carrier can improve the catalytic thermal degradation resistance. As to the mono-metal and composite metal test, the result indicates that Pd metal additives helped on the catalytic thermal degradation resistance.

摘要 II
目錄 IV
表目錄 VII
圖目錄 VIII
第一章 前言 1
1.1 研究緣起 1
1.2 研究目的 1
第二章 文獻回顧 2
2.1 臺灣汽機車現況分析 2
2.1.1 移動式污染源來源與危害 2
2.1.2 國內管制措施 3
2.2 三元觸媒轉化器轉化器簡介 4
2.2.1 觸媒轉化器原理 4
2.2.2 觸媒擔體 5
2.2.3 活性金屬 5
2.3 觸媒轉化器劣化機制 6
2.3.1 觸媒熱劣化 6
2.3.2 溫度與劣化時間 7
第三章 實驗條件與流程 11
3.1 研究步驟與流程 11
3.2 實驗設備與參數設定 13
3.2.1 實驗氣體 13
3.2.2 實驗儀器設備 14
3.3 實驗方法 15
3.3.1 觸媒製備 15
3.4 觸媒活性測試 16
3.4.1 氣體分析系統 16
3.4.2 熱劣化測試 17
3.5 觸媒特性分析 19
3.5.1 觸媒特性分析儀器及基本原理 19
第四章 結果與討論 20
4.1 熱劣化對擔體晶相之影響 20
4.1.2 熱劣化對金屬觸媒晶相之影響 21
4.2 觸媒熱劣化前後之污染物去除效能探討 30
4.2.1觸媒擔體影響 30
4.3 單金屬觸媒熱劣化前後之活性影響 32
4.4 雙金屬觸媒熱劣化後之活性影響 35
4.5 單金屬與複合金屬觸媒效能影響 38
第五章 結論與建議 41
5.1 結論 41
5.2 建議 41
第六章 參考文獻 42


Bartholomew, C.H., “Mechanisms of catalyst deactivation, ” Applied catalysis A: general, vol 212, pp. 17~60, (2001).
Guo, J.S., Sun, G.Q., Wang, Q., Wang, G.X., Zhou, Z.H., Tang, S.I., Jiang, L.H., Zhou, B., Xin, Q., ” Carbon nanofibers supported Pt–Ru electro catalysts for direct methanol fuel cells, ” Carbon 44 152–157, (2006).
Guo, J.X., Yuan, S.H., Gong, M.C., Shen, M., Zhong, J.B., Chen, Y.Q., “Influence of Ce0.35Zr0.55Y0.10 solid solution on peroformance of Pt-Rh three-way catalysts, ” Journal of rare earths 25 179 – 183, (2007).
Guo, J.X., Shi, Z.H., Wu, D.D., Yin, H.Q., Gong, M.C., Chen, Y.Q., “Study of Pt–Rh/CeO2–ZrO2–MxOy (M=Y, La)/Al2O3 three-way catalysts,” Applied surface science 273 527–535, (2013).
Heck, R.M., Farrauto, R.J., Gulati, S.T., “Catalytic air pollution control, ” John Wiley & Sons, Inc, New York, (2002).
Hung, C.M., “Cordierite-supported Pt–Pd–Rh ternary composite for selective catalytic oxidation of ammonia, ” Powder technology 200 78–83, (2010).
Koltsakis, G.C., Stamatelos, A.M., “Catalytic Automotive Exhaust Aftertreatment, ” Energy combust sci. vol. 23, p. 1-39, (1997).
Kim, J.R., Myeong, W.J., Ihm, S.K., “Characteristics of CeO2–ZrO2 mixed oxideprepared by continuous hydrothermal synthesis in supercritical water assupport of Rh catalyst for catalytic reduction of NO, ” J catal 263:123–33, (2009).
Lassi, U., “Deactivation correlations of Pd/Rh three-way catalysis designed for EURO IV emission limits, ” Oulu, (2003).
Lassi, U., Hietikko, M., Rahkamaa, K., Kallinen, K., Savimaki, A., Harkonen, M., Laitinen, R., Keiski, R.L., “Deactivation correlations over Pd/Rh monoliths: the role of gas phase composition, ” Topics in catalysis vols. 30/31, nos. 1–4, (2004).
Li, C., Gu, X., Wang, Y., Wang, Y., Wang, Y., Liu, X., “Synthesis and characterization of mesostructured ceria–zirconia solid solution, “ J rare earths, 27:211–5, (2009).
Li, G.F., Wang, Q.Y., Zhao, B., Zhou, R.X., “The promotional effect of transition metals on the catalytic behavior of model Pd/Ce0.67Zr0.33O2 three-way catalyst, ” Catalysis today 158 385–392, (2010).
Li, G.F., Wang, Q.Y., Zhao, B., Zhou, R.X., “A new insight into the role of transition metals doping with CeO2–ZrO2 and its application in Pd-only three-way catalysts for automotive emission control, ” Fuel 92 360–368, (2012).
Lohmiller, J., Baumbusch, R., Kerber, M.B., Castrup, B., Hahn, H., Schafler, .E., Zehetbauer, M., Kraft O., Gruber P.A., “Following the deformation behavior of nanocrystalline Pd films on polyimide substrates using in situ synchrotron XRD, ” Mechanics of materials 67 65–73, (2013).
Rscandon, L.S., Ordonez, S., Vega, A., Diez F.V., “Oxidation of methane over palladium catalysis: effect of the support,” Chemosphere 58, 9-17, (2005).
Santen, R.A., Leeuwen, P.W.N.M., Moulijn, J.A., Averill, B.A. “Catalysis: an integrated approach, ” Elserier, (1999).
Shen, M.Q., Yang, M., Wang, J., Wen, J., Zhao, M.W., Wang, W.L., “Pd/Support interface-promoted Pd-Ce0.7Zr0.3O2-Al2O3 automobile three-way catalysts: studying the dynamic oxygen storage capacity and CO, C3H8, and NO conversion, ” J. phys. chem., 113, 3212–3221, (2009).
Thevenin, P.O., Ersson, A.G., Kušar, H.M.J., Menon, P.G., Järås, S.G., “Deactivation of high temperature combustion catalysts, ” Applied Catalysis A: General 212 189–197, (2001).
Wu, X.D., Xu, L.H., Yang, B., Weng, D., ” Surface characterization and catalytic performance of La0.7Sr0.3MnO3+λ coating deposited by plasma spraying, ” Surface and Coatings Technology 184 40–46, (2004).
Wang, J.Q., Shen, M.Q., Wang, J., Gao, J.D., Ma, J.,Liu, S.X., “Steam effects over Pd/Ce0.67Zr0.33O2-Al2O3 three-way catalyst, ” journal of rare earths, vol. 30, P 748, (2012).
葉家伶,以三向觸媒同時處理焚化廢棄中有機污染物、CO 及NOx 之研究,國立中興大學環境工程所碩士論文,2002。
何柏村,蓄熱式觸媒轉化器於機車引擎冷車起動的轉化特性研究,崑山科技大學機 械 工 程 系碩 士 論 文,2006。
余奕賢,機車觸媒熱劣化現象之探討,國立台灣大學環境工程所碩士論文,2007。
張元義,機車觸媒引擎污染物排放影響與其活性在生之研究,國立台北科技大學環境與管理研究所碩士學位論文,2008。
李坤賢,機車觸媒轉化器毒化現象探討,國立臺灣大學工學院環境工程學研究所,2009。
楊先仁,黃啟輝,高熱穩定性汽車觸媒轉化器水洗層之研究,遠東學報第二十八卷第一期,2011。
行政院環保署移動污染源管制網, URL: http://mobile.epa.gov.tw/restrain.asp

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top