跳到主要內容

臺灣博碩士論文加值系統

(3.236.84.188) 您好!臺灣時間:2021/08/06 11:01
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:周鐿佶
研究生(外文):Yi-Chi Chou
論文名稱:以雙模版製備具光催化吸附材料處理揮發性有機廢氣之影響因子及其應用探討
論文名稱(外文):Study of application and influential factors of photocatalysis mesoporous adsorbent synthesized via dual-template for VOCs removal
指導教授:林育旨
指導教授(外文):Yu-Chih Lin
學位類別:碩士
校院名稱:元培科技大學
系所名稱:環境工程衛生研究所
學門:工程學門
學類:環境工程學類
論文種類:學術論文
畢業學年度:102
語文別:中文
論文頁數:88
中文關鍵詞:SBA-15二氧化鈦揮發性有機物界面活性劑
外文關鍵詞:SBA-15TiO2mesoporous materialvolatile organic compoundsurfant
相關次數:
  • 被引用被引用:1
  • 點閱點閱:120
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究利用三嵌段共聚塊界面活性劑P123搭配界面活性劑,製備出結構與SBA-15相同之中孔吸附材、在表面塗覆光觸媒。結果顯示以P123搭配F68合成重量比為3:1,其所合成中孔吸附材料吸附丙酮效能為最佳。由TEM與XRD之材料分析結果可知材料孔道分佈屬於典型二維六角結構。因此,雙界面活性劑合成中孔材料除了可有效提升比表面積、增益吸附能力,亦可加強孔道結構型態;接續於SBA-15表面塗覆Ti,TiO2 / SBA-15處理丙酮結果顯示,兼顧吸附量與光催化除污,Ti於SBA-15之最佳塗覆量為30wt%TiO2,其在無光照情況處理50與500ppm,飽和吸附貫穿時間分別為140及45分鐘,而光催化分解丙酮效率則分別為90與61%,顯現合成之TiO2/SBA-15不論處理室內或煙道尾氣排放等各範圍濃度之揮發性有機廢氣均具有良好之除污效能。
In this research, tri-block copolymer interfacial agent P123 is used together with interfacial agent to prepare mesoporous adsorbing material that has structure similar to SBA-15, and then photo-catalyst is coated on the surface. The result shows that when P123 is used together with F68 in the synthesis with weight ratio of 3:1, the synthesized mesoporous adsorbing material will have the best performance in adsorbing acetone. From TEM and XRD material analysis result, it is clear that the material channel distribution is typical two dimensional hexagonal structure. Therefore, when double interfacial agent is used to synthesize mesoporous material, in addition to enhancing effectively the specific area and the adsorption capability, it can also enhance the channel structural form; Next, the SBA-15 surface is coated with Ti, TiO2 /SBA-15, and the acetone processing result shows that it can take care both the adsorption amount and photo-catalysis de-staining effect. The optimal coating amount of Ti on SBA-15 is 30wt%TiO2, and when it processes 50 and 500ppm without light illumination, the saturation adsorption breakthrough time are 140 and 45 minutes, respectively. Moreover, the efficiencies for decomposition of acetone through photo-catalysis of acetone are 90 and 61%, respectively; hence, it is clear that synthesized TiO2/SBA-15 has very good pollutant removal efficiency no matter in the treatment of indoor or flue gas exhaust or volatile organic waste gas of all kinds of concentration ranges.
目 錄

摘要 I
Abstract II
目 錄 III
圖 目 錄 V
表 目 錄 VII
第一章 前言 1
1.1 研究緣起 1
1.2 研究目的 3
第二章 文獻回顧 6
2.1 揮發性有機物的之定義 6
2.2 揮發性有機物之排放來源 6
2.3 丙酮特性及危害 7
2.4 揮發性有機物控制技術 9
2.5 吸附原理 10
2.6 孔洞特性之材料簡介 12
2.7 介面活性劑簡介 13
2.8 SBA-15合成機制簡介 14
2.9 二氧化鈦反應機制 17
3.0 TiO2/SBA-15合成簡介 19
第三章 實驗步驟與方法 21
3.1 研究流程 21
3.2 實驗儀器及設備 23
3.2.1 填充管構造 24
3.2.2 吸附/光催化反應系統 25
3.2.3 吸附/光催化反應器構造 26
3.2.4 氣體供給系統 27
3.2.5 產物分析設備 28
3.2.6 實驗之藥品及所需設備 29
3.3 實驗步驟 31
3.3.1 觸媒製備 31
3.3.2 觸媒種類 39
3.3.3 等溫吸附實驗進行程序 39
3.3.4 吸附/光催化實驗進行程序 40
3.4 實驗操作參數 40
3.4.1 各種介面活性劑種類之影響 41
3.4.2 雙模版合成重量比之影響 41
3.4.3 TiO2塗覆比例之影響 42
3.4.4 丙酮濃度變化之影響 42
3.4.5 環境濕度變化之影響 42
3.4.6 進流流量變化之影響 43
第四章 結果與討論 44
4.1 各種介面活性劑種類對於丙酮吸附效率 44
4.2 雙模版合成重量比對於丙酮吸附效率 46
4.3 SBA-15上TiO2塗覆比例對於丙酮吸附/光催化效率影響 48
4.4 丙酮進流濃度對於30wt% TiO2/SBA-15吸附/光催化效能之影響 50
4.5 進流氣體濕度對於30wt% TiO2/SBA-15吸附/光催化效能之影響 52
4.6 進流氣體流量對於30wt% TiO2/SBA-15吸附/光催化效能之影響 54
4.7 材料特性分析與鑑定 56
4.7.1 XRD結構鑑定 56
4.7.2 BET比表面積分析 60
4.7.3 UV-Vis材料能隙值比較分析 64
4.7.4 TEM材料結構穿透觀察分析 66
4.7.5 SEM材料表面掃描觀察 68
4.7.6 TGA熱重分析 70
第五章 結論與建議 74
5.1 結論 74
5.2 建議 77
第六章 參考文獻 78
一、 英文部分 78
二、 中文部分 86


一、 英文部分
1. A. Taguchi, and F. Schuth, “Ordered Mesoporous Materials in Catalysis”, MICROPOROUS AND MESOPOROUS MATERIALS. vol. 77, no. 1-3, pp 1–45, 2005.
2. B.L. Newalkar, J. Olanrewaju, and S. Komarneni, “Application of Large Pore MCM-41 Molecular Sieves To Improve Pore Size Analysis Using Nitrogen Adsorption Measurements”, LANGMUIR. vol. 13, no. 23, pp 6267–6273, 1997.
3. C.H. Christensen, K. Johannsen, and I. Schmidt, “Catalytic Benzene Alkylation over Mesoporous Zeolite Single Crystals:  Improving Activity and Selectivity with a New Family of Porous Materials”, JOURNAL OF THE AMERICAN CHEMICAL SOCIETY. vol. 125, no. 44, pp 13370–13371, 2003.
4. D. Aaron, and C. Tsouris, “Separation of CO2 from Flue Gas: A Review”, SEPARATION SCIENCE AND TECHNOLOGY. vol.40, pp321–348, 2005.
5. D. Zhao, J. Feng, Q. Huo, N. Melosh, G.H. Fredrickson, B.F. Chmelka, and G.D. Stucky, “Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300 angstrom pores ”, SCIENCE. vol. 279, no.5350, pp. 548–552, 1998.
6. D. Zhao, Q. Huo, J. Feng, B.F. Chmelka, and G.D. Stucky, “Nonionic Triblock and Star Diblock Copolymer and Oligomeric Surfactant Syntheses of Highly Ordered, Hydrothermally Stable, Mesoporous Silica Structures”, JOURNAL OF THE AMERICAN CHEMICAL SOCIETY. vol. 120, no.24, pp. 6024–6036, 1998.
7. D.M. Antonelli, and J.Y. Ying, “Synthesis of Hexagonally Packed Mesoporous TiO2 by a Modified Sol–Gel Method”, ANGEWANDTE CHEMIE-INTERNATIONAL EDITION IN ENGLISH. vol. 34, no. 18, pp 2014–2017, 1995.
8. D.M. Ruthven, “Principles of Adsorption and Adsorption Process”, John Wiley & Sons, Inc., New York, 1984.
9. G. J. d. A. A. Soler-Illia, E. L. Crepaldi, D. Grosso, and C. Sanchez, “Block Copolymer-templated Mesoporous Oxides”, CURRENT OPINION IN COLLOID & INTERFACE SCIENCE. vol. 8, no. 1, pp109–126, 2003.
10. H.C. Yang, H.Y. Lin, Y.S. Chien, C.S. Wu, and H.H. Wu, “Mesoporous TiO2/SBA-15, and Cu/TiO2/SBA-15 Composite Photocatalysts for Photoreduction of CO2 to Methanol”, CATALYSIS LETTERS. vol. 131, no. 3-4, pp381–387, 2009.
11. H.X. Li, Z.F. Bian, J. Zhu, Y.N. Huo, H. Li, and Y.F. Lu, “Mesoporous Au/TiO2 Nanocomposites with Enhanced Photocatalytic Activity”, JOURNAL OF THE AMERICAN CHEMICAL SOCIETY. vol. 129, no. 15, pp 4538–4539, 2007.
12. H.Y. Huang, R.T. Yang, D. Chinn, and C.L. Munson, “Amine-Grafted MCM-48 and Silica Xerogel as Superior Sorbents for Acidic Gas Removal from Natural Gas”, INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH. vol.42, no. 12, pp24727–2433, 2003.
13. J. S. Beck , J. C. Vartuli , W. J. Roth , M. E. Leonowicz , C. T. Kresge , K. D. Schmitt , C. T. W. Chu , D. H. Olson , and E. W. Sheppard, “A new family of mesoporous molecular sieves prepared with liquid crystal templates”, JOURNAL OF THE AMERICAN CHEMICAL SOCIETY. vol. 114, no. 27, pp 10834–10843, 1992.
14. J.C. Yu, X.C. Wang, and X.Z. Fu, “Pore-Wall Chemistry and Photocatalytic Activity of Mesoporous Titania Molecular Sieve Films”, CHEMISTRY OF MATERIALS. vol. 16, no. 8, pp 1523–1530, 2004.
15. J.H. Huang, X.C. Wang, Y.D. Hou, X.F. Chen, L. Wu, X.X. Wang, and X.Z. Fu, “Synthesis of functionalized mesoporous TiO2 molecular sieves and their application in photocatalysis”, MICROPOROUS AND MESOPOROUS MATERIALS. vol. 110, no. 2-3, pp 543–552, 2008.
16. J.H. Smatt, S. Schunk, and M. Linden, “Versatile Double-Templating Synthesis Route to Silica Monoliths Exhibiting a Multimodal Hierarchical Porosity”, CHEMISTRY OF MATERIALS. vol. 15, no. 12, pp 2354–2361, 2003.
17. K. S. W. Sing, D. H. Everett, R. A.W. Haul, L. Moscou, R. A. Pierotti, T. Rouquerol, and J.,Siemieniewska, “Reporting Physisorption Data Forgas/solid Systems with Special Reference to the Determination of Surface Areaand Porosity (Recommendations 1984)”, PURE AND APPLIED CHEMISTRY. vol. 57, no. 4, pp 603–619, 1985.
18. L. Hinda, A. Olfa, H. Ammar, and J.P. Nogierb, “Photocatalytic Activity of TiO2-SBA-15 under UV and Visible Light”, JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY A-CHEMISTRY. vol. 226, no. 1, pp1–8, 2011.
19. M. Anpo, K. Chiba, M. Tomonari, S. Coluccia, M. Che, and M.A. Fox, “Photocatalysis on Native and Platinum-load TiO2 and ZnO Catalysts”, BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN. vol. 64, pp543–551, 1991.
20. M. Hartmann, and C. Bischof, “Mechanical Stability of Mesoporous Molecular Sieve MCM-48 Studied by Adsorption of Benzene, n-Heptane, and Cyclohexane”, JOURNAL OF PHYSICAL CHEMISTRY B B. vol. 103, pp 6230–6235 , 1999.
21. M. Imperor-Clerc, P. Davidson, and A. Davidson, “Existence of Amicroporouscorona Around the Mesopores of Silica-based SBA-15 Materialstemplated by Triblock Copolymers”, JOURNAL OF THE AMERICAN CHEMICAL SOCIETY. vol. 122, no. 48, pp 11925-11933, 2000.
22. M.L. Graya, , , Y. Soonga, K.J. Champagnea, H. Pennlinea, J.P. Baltrusa, R.W. Stevens Jr.b, R. Khatrib, S.S.C. Chuangb, and T. Filburnc, “Improved Immobilized Carbon Dioxide Capture Sorbents”, FUEL PROCESSING TECHNOLOGY. vol. 86, no. 14-15, pp 1449–1455, 2005.
23. M.N. Chong, B. Jin, C.W.K. Chow, and C. Saint, “Recent Developments in Photocatalytic Water Treatment Technology: A Review”, WATER RESEARCH. vol. 44, no. 10, pp 2997–3027, 2010.
24. N.D Nevers, ”Air Pollution Control Engineering”, McGraw-Hill. ed. 2001.
25. P.C.A. Alberius, K.L. Frindell, R.C. Hayward, E.J. Kramer, G.D. Stucky, and B.F. Chmelka, “General Predictive Syntheses of Cubic, Hexagonal, and Lamellar Silica and Titania Mesostructured Thin Films”, CHEMISTRY OF MATERIALS. vol. 14, no. 8, pp 3284–3294, 2002.
26. P.F. Fulvio, S. Pikus and M. Jaronice, “Short-time synthesis of SBA-15 Using Various Silica Sources”, JOURNAL OF COLLOID AND INTERFACE SCIENCE. vol. 287, no. 21, pp 717–720, 2005.
27. R. Grieken, M. pez-Mun˜oz, J. Aguado, and J. Maruga´n, “Role of the Support on the Activity of Silica-supported TiO2 Photocatalysts: Structure of the TiO2/SBA-15 Photocatalysts”, CATALYSIS TODAY.vol. 101, no. 3-4, pp 307–314, 2005.
28. S. Shamaila, A.K.L. Sajjad, F. Chen, and J. Zhang, “Mesoporous titania with high crystallinity during synthesis by dual template system as an efficient photocatalyst”, CATALYSIS TODAY. vol. 1745, no. 1, pp568–575, 2011.
29. S. Yuan, Q. Sheng, J. Zhang, F. Chen, M. Anpo, and W. Dai, “Synthesis of Pd Nanoparticles in La-doped Mesoporous Titania with Polycrystalline Framework”, CATALYSIS LETTERS. vol. 107, no. 1-2, pp 19–24, 2006.
30. S.Z. Qiao, S.K. Bhatia, and D. Nicholson, “Study of hexane adsorption in nanoporous MCM-41 silica,” LANGMUIR. vol. 20, no. 2, pp 389–95, 2004..
31. T. Hirakawa, and Y. Nosaka, “Selective Production of Superoxide Ions and Hydrogen Peroxide over Nitrogen and Sulfur-Doped TiO2 Photocatalysts with Visible Light in Aqueous Suspension Systems”, JOURNAL OF PHYSICAL CHEMISTRY C. vol. 112, no. 40, pp 15818–15823, 2008.
32. Van Grieken R, Aguado J, Lo´pez-Mun˜oz MJ, and Maruga´n J, “Journal of Photochemistry and Photobiology A: Chemistry,” vol.148, no. 31, 2002.
33. W. Wang, and M. Song, “Photocatalytic activity of titania-containing mesoporous SBA-15 silica” MICROPOROUS AND MESOPOROUS MATERIALS. vol. 96, no. 1-3, pp. 255–261, 2006.
34. X.j. Wang, F.T. Li, Y.J. Hao, S.J. Liu, and M.L. Yang, ” TiO2/SBA-15 composites prepared using H2TiO3 by hydrothermal method and its photocatalytic activity,” MATERIALS LETTERS. vol. 99, no. 15, pp. 38–41, 2013.
35. Y. Wan, and D. Zhao, ” On the Controllable Soft-Templating Approach to Mesoporous Silicates”, CHEMICAL REVIEWS. vol. 107, no.7, pp. 2821–2860, 2007.
二、 中文部分
1. 朱天樂,微環境空氣質控制,北京航空航天大學出版社,2006。
2. 行政院勞工委員會勞工安全衛生研究所,物質安全資料表。
3. 宋宗信,以GC/MS 偵測高科技工業區內空氣中揮發性有機物濃度之研究,國立交通大學工學院永續環境科技學程碩士論文,2010。
4. 李佳錡,以 TFT-LCD 廠粉末廢棄物資源化合成中孔洞材料及其二氧化碳氣體捕獲之研究,國立交通大學環境工程研究所碩士論文,2011。
5. 李貽華、徐慈鴻,多環芳香族碳氫化合物(PAHs)與植物,行政院農業委員會農業藥物毒物試驗所技術專刊,第132號,2004。
6. 沈明宗,實場蓄熱式焚化爐處理排氣中揮發性有機物之操作性能研究,國立中山大學環境工程研究所碩士論文,2001。
7. 周明顯,黃柏仁,鄭文熙,以蓄熱式觸媒焚化設施處理排氣中揮發性有機物質之理論解析與驗證,第十五屆空氣污染控制技術研討會論文集,1998。
8. 徐慈鴻、李貽華 ,氟污染與植物,行政院農業委員會農業藥物毒物試驗所技術專刊,第142號,2005。
9. 張簡君毅,多功能之高分子組成應用於中孔洞氧化矽與中孔洞碳材的合成研究,國立成功大學碩士論文,2005。
10. 莊淳元,運用沸石吸附半導體揮發性有機物丙酮、單甲基醚丙二醇及乙酸甲氧基異丙酯控制技術之評估研究,國立雲林科技大學環境與安全衛生工程研究所碩士論文,2004。
11. 莊錦烽,VOC廢氣處理概論,化工技術,第一卷,第八期,第78頁,1994。
12. 陳良誌,1.以模場生物滴濾塔處理含異辛醇排氣之操作性能研究2.以實場生物滴濾塔處理合成樹脂廠排氣之操作性能研究,國立中山大學環境工程研究所碩士論文,2000。
13. 詹彥暉,以光觸媒/沸石複合材料同時處理VOCs及NOx之研究,國立交通大學環境工程研究所碩士論文,2007。
14. 廖千宜,多孔材料吸附特性研究與氣體線上校正方法探討,國立中央大學化學系碩士論文,2009。
15. 劉毅弘、張文昇、楊昌中、鄭名山、曹芳海、黃昭銘、張慶源,二氧化碳新型吸附劑探討,工業污染防治第 111 期,2009。
16. 盧宜含,利用Thiosphaera pantotropha於懸浮與PVA 固定化系統中進行丙酮廢氣分解能力之研究,中華大學土木工程學系環工組碩士論文,2005。

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top