跳到主要內容

臺灣博碩士論文加值系統

(3.235.227.117) 您好!臺灣時間:2021/07/28 02:40
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:劉春蘭
研究生(外文):Chun-Lan, Liou
論文名稱:利用聲輻射力脈衝評估乳腺病變
論文名稱(外文):Assessment of breast lesions by using acoustic radiation force impulse technique
指導教授:郭瓊文博士
指導教授(外文):Chiung-Wen, Kuo
學位類別:碩士
校院名稱:元培科技大學
系所名稱:醫學影像暨放射技術研究所
學門:醫藥衛生學門
學類:醫學技術及檢驗學類
論文種類:學術論文
畢業學年度:102
語文別:中文
論文頁數:68
中文關鍵詞:乳房彈性超音波乳房腫瘤聲輻射力脈衝虛擬接觸定量影像剪力波速
外文關鍵詞:elastographytumor lesionacoustic radiation force impulse techniquevirtual touch quantification imagingshear wave velocity
相關次數:
  • 被引用被引用:0
  • 點閱點閱:186
  • 評分評分:
  • 下載下載:7
  • 收藏至我的研究室書目清單書目收藏:0
乳癌一直是全球女性的十大死因之一,近幾年乳房彈性超音波已成為測量腫瘤硬度最常使用的方法,利用人為操作壓迫乳房腫瘤,以獲得腫瘤硬度的動態彈性影像。聲輻射力脈衝技術為另一種不需人為操作壓迫乳房腫瘤,藉由剪力波速值測量腫瘤軟硬度的利器。本研究的目的為利用聲輻射力脈衝技術的虛擬接觸定量影像的剪力波速,判讀腫瘤的軟硬度,以分析良性與惡性腫瘤的診斷準確率。本研究中有95位受檢者,96個腫瘤分別先以聲輻射力脈衝技術測量腫瘤特性,再以病理切片獲得組織病理學的驗證。經病理切片驗證後共有44個為良性腫瘤52個為惡性腫瘤,66個有測量值,包含36個良性腫瘤與30個惡性腫瘤;30個無測量值,包含8個良性腫瘤與22個惡性腫瘤;本研究經由聲輻力脈衝技術的虛擬接觸定量影像數據的結果顯示,有測量值的惡性腫瘤中心比良性腫瘤中心的硬度硬,且有顯著的差異(p=0.02)。分辨良惡性腫瘤的剪力波速最佳切點為2.81m/s,其敏感度40.0%;特異性91.7%。小於2.81m/s且腫瘤中心與乳腺實質的比值小於0.76,則為良性腫瘤其敏感度99.5%;特異性30.4%。腫瘤中心與乳腺實質的比值大於1.44,則為惡性腫瘤其敏感度27.8%;特異性81.8%。對於無測量值顯示的腫瘤可藉由測量腫瘤邊緣值推測(r=0.75, p<0.0001)。研究結果顯示剪力波速可提供乳房組織客觀定量的測量,結合BI-RADS分類可提高乳房腫瘤的鑑別診斷,並能減少不必要的切片及病人的不適,以節省醫療資源與提升服務品質。
Breast cancer has been one of the world's most common cancer deaths in women. Recently, the elastography has become the useful method for measuring the degree of hardness at tumor lesion by compression breast tumor. Acoustic radiation force impulse technique (ARFI) is another modality to measure the shear wave velocity of breast lesions without human oppression.The purpose of this study was to assess the accuracy of diagnosing breast cancer by using the ARFI technique of virtual touch quantitative imaging (VTQI) shear wave velocity (SWV). Ninety-five patients were enrolled in this study. Totally 96 tumors (44 benign tumors and 52 malignant tumors) had been proved by pathological biopsy. Sixty-six (36 benign tumors and 30 malignant tumors) demonstrated velocity value whereas 30 (8 benign tumors and 22 malignant tumors) could not measured velocity value. The results demonstrated that the center of malignant tumor was significant harder than benign tumor (p=0.02). The cut-off point was 2.81 m/s for distinguishing the malignant tumor and benign tumor (sensitivity 40.0%, specificity 91.7%). When SWV was less than 2.81 m/s and ratio of lesion and breast parenchyma was less than 0.76, the lesions showed tendency to benign tumors (sensitivity 99.5%, specificity 30.4%). Contrastly, the ratio of lesion and breast parenchyma was more than 1.44, the lesions showed the tendency to malignant tumor (sensitivity 27.8%, specificity 81.8%). When applying the marginal value of unmeasured-tumors, the SWV of the central maligant tumor could be derived (r=0.75, p<0.0001). The results demonstrated the SWV could provide effective measurements of the breast tissues. Furthermore, the SWV combine with BI-RADS classification could improve the diagnosis of breast tumor to reduce the unnecessary biopsy.
中文摘要 I
英文摘要 II
致謝 III
目錄 V
圖目錄 VIII
表目錄 X
第一章 緒論 1
1.1 前言 1
1.2 研究背景 1
1.3 研究目的 4
第二章 超音波與乳房組織概論 5
2.1 剪力波理論 5
2.2 超音波理論 5
2.2.1 超音波基本原理 5
2.2.2 顯像形式 6
2.3 彈性超音波簡介 6
2.3.1 彈性超音波的基本原理 6
2.3.2 彈性超音波的分類 7
2.3.3 聲輻射力脈衝成像技術分類 8
2.4 乳房構造與腫瘤介紹 10
2.4.1 乳房構造 10
2.4.2 乳癌好發部位與危險因子 11
2.4.3 乳癌的症狀 13
2.4.4 乳癌腫瘤組織結構 14
2.4.5 腫瘤生長方式與良惡性腫瘤的區別 14
2.5 乳癌分類、分期及乳房影像報告資料與系統 17
2.5.1 乳癌的分類 17
2.5.2 乳癌的分期 17
2.5.3 乳房影像報告與資料系統 18
第三章 材料與方法 20
3.1 研究樣本 20
3.2 儀器設備 20
3.3 檢查流程與分析步驟 22
3.3.1 一般灰階乳房超音波檢查 22
3.3.2 乳房彈性超音波檢查 22
3.4 資料分析步驟與統計分析方法 25
第四章 結果 28
4.1 研究樣本特質 28
4.2 良性與惡性腫瘤之間的剪力波速比較 28
4.3 良性與惡性腫瘤的最佳切點 30
4.3.1 良性與惡性腫瘤中心硬度的最佳切點 30
4.3.2 腫瘤剪力波速小於2.81 m/s其與乳腺比的最佳切點 32
4.3.3 腫瘤剪力波速小於2.81 m/s,加入BI-RADS分類評估 35
4.4 腫瘤中心與腫瘤邊緣的剪力波速 37
4.5 胸肌在良性與惡性腫瘤的剪力波速比較 40
4.6 良性與惡性腫瘤的分類 41
4.6.1 良性腫瘤分類 41
4.6.2 惡性腫瘤分類 43
第五章 討論 45
5.1 良性與惡性腫瘤之間的剪力波速比較 46
5.2 良性與惡性腫瘤的最佳切點之討論 50
5.3 腫瘤中心與腫瘤邊緣的剪力波速之討論 54
5.4 胸肌在良性與惡性腫瘤的剪力波速 56
5.5 良性與惡性腫瘤的分類 56
5.6 研究限制及缺點 57
第六章 結論與未來展望 59
6.1 結論 59
6.2 未來展望 59
參考文獻 60


一、英文部分
Abdullah N, Mesurolle B, El-Khoury M, et al. Breast imaging reporting and data system lexicon for US: interobserver agreement for assessment of breast masses. Radiol, 2009; 252: 665–672.
American College of Radiology.Breast imaging reporting and data system (BI-RADS), ultrasound. 4thedn. ACR, Reston, VA. Available at:http://www.acr.org 2003.
Athanasiou A, Tardivon A, Tanter M, et al. Breast lesions: quantitative elastography with supersonic shear imaging-preliminary results. Radiology 2010; 256:297-303.
Bai M, Du L, Gu J, Li F, Jia X. Virtual touch tissue quantification using acoustic radiation force impulse technology initial clinical experience with solid breast masses. J Ultrasound Med 2012; 31:289-294.
Barnes SL, Young PP, Miga MI. A novel model-gel-tissue assay analysis for comparing tumor elastic properties to collagen content. Biomech Model Mechanobiol 2009; 8:337-343.
Barr RG. Shear wave imaging of the breast: still on the learning curve. J Ultrasound Med 2012; 31:347-50.
Barton MB, Harris R, Fletcher SW. The rational clinical examination: does this patient have breast cancer? The screening clinical breast examination: should it be done? How? JAMA 1999; 282:1270-1280.
Blohmer JU, Oellinger H, Schmidt C, Hufnagl P, Felix R, Lichtenegger W Comparison of various imaging methods with particular evaluation of color Doppler sonography for planning surgery of breast tumors. Arch Gynecol Obstet , 1999 262:159-171.
Bodian CA, Perzin KH, Lattes R, Hoffmann P, Abernathy TG. Prognostic significance of benign proliferative breast disease. Cancer 1993; 71:3798-3807.
Bota S, Sporea I, Sirli R, et al. Spleen assessment by acoustic radiation force impulse elastography (ARFI) for prediction of liver cirrhosis and portal hypertension. Med Ultrason 2010; 12:213-7.
Bouchard RR, Hsu SJ, Wolf PD, Trahey GE. In vivo cardiac, acoustic- radiation-force-driven, shear wave velocimetry. Ultrason Imaging 2009; 31:201-213.
Burnside ES, Hall TJ, Sommer AM et al. Differentiating benign from malignant solid breast masses with US strain imaging. Radiology 2007; 245:401-410.
Chang JM, Moon WK, Cho N, et al. Breast mass evaluation: factor sinfluencing the quality of US elastography. Radiology 2011; 259:59-64.
Cho N, Moon WK, Chang JM, et al. Aliasing artifact depicted on ultrasound (US)-elastography for breast cystic lesions mimicking solid masses. Acta Radiol 2011; 52:3-7.
Cho N, Moon WK, Kim HY, Chang JM, Park SH, Lyou CY. Sonoelastographic strain index for differentiation of benign and malignant non- palpable breast masses. J Ultrasound Med 2010; 29:1-7.
Cho N, Moon WK, Park JS, Cha JH, Jang M, Seong MH. Nonpalpable breast masses: Evaluation by US elastography. Korean J Radiol 2008; 9:111-118.
Cosgrove DO, Kedar RP, Bamber JC, et al. Breast disease: Color Doppler US in differential diagnosis. Radiology 1993; 189:99-104.
Dowell B. Real-time tissue elastography. Ultrasound 2008; 16:123-7.
Evans A, Whelehan P, Thomson K, et al. Quantitative shear wave ultra- sound elastography: initial experience in solid breast masses. Breast Cancer Res 2010; 12:R104.
Fahey BJ, Nelson RC, Bradway DP, Hsu SJ, Dumont DM, Trahey GE. In vivo visualization of abdominal malignancies with acoustic radiation force elastography. Phys Med Biol 2008; 53:279-293.
Fahley BJ, Palmeri ML, Trahey GE, et al. The impact of physiological motion on tissue tracking during radiation force imaging. Ultrasound Med Biol 2007; 33:1149-66.
Fierbinteanu-Braticevici C, Andronescu D, Usvat R, et al. Acoustic radiation force imaging sonoelastography for noninvasive staging of liver fibrosis. World J Gastro-enterol 2009; 15:5525-32.
Flobbe K, Nelemans PJ, Kessels AG, Beets GL, von Meyenfeldt MF, van Engelshoven JM. The role of ultrasonography as an adjunct to mammography in the detection of breast cancer. A systematic review. Eur J Cancer 2002; 38:1044-1050.
Friedrich-Rust M, Wunder K, Kriener S et al. Liver fibrosis in viral hepatitis: Noninvasive assessment with acoustic radiation force impulse imaging versus transient elastography. Radiology 2009; 252: 595-604.
Garra BS, Cespedes EI, Ophir J et al. Elastography of breast lesion:initial clinical results Radiology 1997; 202:79-86.
Ginat DT, Destounis SV, Barr RG, et al. US elastography of breast and prostate lesions. Radiographics 2009; 29:2007-16.
Hall TJ. AAPM/RSNA physics tutorial for residents. Topics in US: beyond the basics-elasticity imaging with US. Radiographics 2003; 23:1657-1671.
Hasebe T, Mukai K, Tsuda H, Ochiai A. New prognostic histological parameter of invasive ductal carcinoma of the breast: clinicopathological significance of fibrotic focus. Pathol Int 2000; 50:263-272.
Hasebe T, Tsuda H, Hirohashi S, et al. Fibrotic focus in invasive ductal carcinoma: an indicator of high tumor aggressiveness. Jpn J Cancer Res 1996; 87:385-394.
Itoh A, Ueno E, Tohno E et al. Breast disease: Clinical application of US elastography for diagnosis. Radiology 2006; 239:341-350.
Jin Z, Li X, Zhou H et al. Acoustic radiation force impulse Elastography of Breast Imaging Reporting and Data System Category 4 Breast Lesions. Clin Breast Cancer 2012; 12(6):420-427.
Kalluri R, Zeisberg M. Fibroblasts in cancer. Nat Rev Cancer 2006; 6:392-401.
Kathryn R. Nightingale, Roger W. Nightingale, Mark L. Palmeri And Gregg E. Trahey. A Finite Element Model of Remote Palpation of Breast Lesions Using Radiation Force: Factors Affecting Tissue Displacement. Ultrasonic imaging 2000; 22: 35-54.
Kentaro Tamaki, Nobumitsu Tamaki, Yoshihiko Kamada, Kano Uehara, Minoru Miyashita, Takanori Ishida et al . A Non-invasive Modality: The US Virtual Touch Tissue Quantification (VTTQ) for Evaluation of Breast Cancer. Jpn J Clin Oncol 2013; 43(9)889-895
Kotsianos-Hermle D, Hiltawsky KM, Wirth S, Fischer T, Friese K, Reiser M. Analysis of 107 breast lesions with automated 3D ultrasound and comparison with mammography and manual ultrasound. Eur J Radiol 2009; 71:109-115.
Krouskop TA, Wheeler TM, Kallel F, Garra BS, Hall T. Elastic moduli of breast and prostate tissue under compression. Ultrason Imaging 1998; 20:260-274.
Lee JH, Kim SH, Kang BJ, et al. Role and clinical usefulness of elastography in small breast masses. Acad Radiol 2011; 18:74-80.
Liberman L, Feng TL, Dershaw DD et al. US-guided core breast biopsy:use and cost-effectiveness. Radiology 1998; 208:717-723.
Lupsor M, Badea R, Horia S, et al. Performance of a new elastographic method (ARFI technology) compared to unidimensional transient elastography in the noninvasive assessment of chronic hepatitis C, preliminary results. J Gastrointestin Liver Dis 2009; 18:303-10.
McAleavey SA, Menson M, Orszulak J. Shear-modulus estimation by application of spatially-modulated impulsive acoustic radiation force. Ultrason Imaging 2007; 29:87-104.
Meng W, Zhang G, Wu C, Wu G, Song Y, Lu Z. Preliminary results of acoustic radiation force impulse (ARFI) ultrasound imaging of breast lesions. Ultrasound Med Biol 2011; 37:1436-1443.
Meyberg-Solomayer G, Kraemer B, Bergmann A, et al. Does 3-D sonography bring any advantage to noninvasive breast diagnostics? Ultrasound Med Biol 2004; 30:583-589.
Mitsuhiro Tozaki, Sachiko Isobe, Eisuke Fukuma. Preliminary study of ultrasonographic tissue quantification of the breast using the acoustic radiation force impulse (ARFI) technology. European Journal of Radiology 2011; 80: e182–e187
Nightingale K, Kornguth, P. and Trahey, G. The use of acoustic streaming in breast lesion diagnosis: a clinical study, Ultrasound Med. Biol. 1999; 25: 75-87.
Nightingale K, McAleavey S, Trahey G. Shear-wave generation using acoustic radiation force: In vivo and ex vivo results. Ultrasound Med Biol 2003; 29:1715–1723.
Nightingale K, Soo MS, Nightingale R, Trahey G. Acoustic radiation force impulse imaging: in vivo demonstration of clinical feasibility. Ultrasound Med Biol 2002; 28:227-235.
Nightingale KR, Palmeri ML, Nightingale RW, Trahey GE. On the feasibility of remote palpation using acoustic radiation force. J Acoust Soc Am 2001; 110:625-634.
Ophir J, Cespedes I, Ponnekanti H, Yadzi Y, Li X. Elastosnography:a quantitative method for imaging the elasticity of biological tissues. Ultrasonic Imaging 1991; 13:11-134.
Palmeri ML, Wang MH, Dahl JJ, Frinkley KD, Nightingale KR. Quantifying hepatic shear modulus in vivo using acoustic radiation force. Ultrasound Med Biol 2008; 34:546-558.
Pruthi S. Detection and evaluation of a palpable breast mass. Mayo Clin Proc2001; 76:641-647.
Rangayyan RM, Prajna S, Ayres FJ, Desautels JEL. Detection of architectural distortion in prior mammograms using Gabor filters, phase portraits, fractal dimension, and texture analysis. Int J Comput Assist Radiol Surg 2008; 2:347-361.
Regner DM, Hesley GK, Hangiandreou NJ, et al. Breast lesions: evaluation with US strain imaging—clinical experience of multiple observers. Radiology 2006; 238:425–437.
Ronnov-Jessen L, Petersen OW, Bissell MJ. Cellular changes involved in conversion of normal to malignant breast: importance of the stromal reaction. Physiol Rev 1996; 76:69-125.
Sandrin L, Fourquet B, Hasquenoph JM, et al. Transient elastography: a new noninvasive method for assessment of hepatic fibrosis. Ultrasound Med Biol 2003; 29:1705-1713.
Sarvazyan AP, Rudenko OV, Swanson SD, Fowlkes JB, Emelianov SY. Shear wave elasticity imaging: a new ultrasonic technology of medical diagnostics. Ultrasound Med Biol 1998; 24:1419-1435.
Saslow D, Hannan J, Osuch J, et al. Clinical breast examination: practical recommendations for optimizing performance and reporting. CA Cancer J Clin 2004; 54:327-344.
Scaperrotta G, Ferranti C, Costa C et al. Role of sonoelastography in non-palpable breast lesions. Eur Radiol 2008; 18:2381-2389.
Schroeder RJ, Bostanjoglo M, Rademaker J, Maeurer J, Felix R. Role of power Doppler techniques and ultrasound contrast enhancement in the differential diagnosis of focal breast lesions. Eur Radiol 2003; 13:68-79.
Sewell CW. Pathology of benign and malignant breast disorders. Radiol Clin North Am 1995; 33:1067-1080.
Stavors AT, Thickman D, Rapp CL, Dennis MA, Parker SH, Sisney GA. Solid breast nodules: use of sonography to distinguish between benign and malignant lesions. Radiology 1995; 196:123-134.
Tanter M, Bercoff J, Athanasiou A, et al. Quantitative assessment of breast lesion viscoelasticity: initial clinical results using supersonic shear imaging. Ultrasound Med Biol 2008; 34:1373–1386.
Tardivon AA, Guinebretiere JM, Dromain C, Vanel D. Imagingand management of nonpalpable lesions of the breast. Eur J Radiol. 2002; 42:2-9.
Thomas A, Degenhardt F, Farrokh A, Wojcinski S, Slowinski T, Fischer T. Significant differentiation of focal breast lesions: calculation of strain ratio in breast sonoelastography. Acad Radiol 2010; 17:558-563.
Thomas A, Kummel S, Fritzsche F, et al. Real-time sonoelastography performed in addition to B-mode ultrasound and mammography: improved differentiation of breast lesions? Acad Radiol 2006; 13:1496-1504.
Tozaki M, Isobe S, Fukuma E. Preliminary study of ultrasonographic tissue quantification of the breast using the acoustic radiation force impulse (ARFI) technology. Eur J Radiol 2011; 80:182-187.
Van den Eynden GG, Colpaert CG, Couvelard A, et al. A fibrotic focus is a prognostic factor and a surrogate marker for hypoxia and (lymph) angiogenesis in breast cancer: review of the literature and proposal on the criteria of evaluation. Histopathology 2007; 51:440-451.
Varghese T. Quasi-static ultrasound elastography. Ultrasound Clin 2009; 4:323-338.
Watermann D, Foldi M, Hanjalic-Beck A, et al. Three-dimensional ultrasound for the assessment of breast lesions. Ultrasound Obstet Gynecol 2005; 25:592-598.

Ye L, Wang L, Huang Y, Deng Y. Preliminary results of acoustic radiation force impulses (ARFI) ultrasound imaging of solid suspicious breast lesions.Chinese-German J Clin Oncol2013; 12(5):219-223.
Yerli H, Yilmaz T, Kaskati T, Gulay H. Qualitative and semiquantitative evaluations of solid breast lesions by sonoelastography. J Ultrasound Med 2011; 30:179-186.

Yoon JH, Kim MH, Kim EK, et al. Interobserver variability of ultrasound elastography: how it affects the diagnosis of breast lesions. Am J Roentgenol 2011; 196:730-736.
Zhai L, Palmeri ML, Bouchard RR, Nightingale RW, Nightingale KR. An integrated indenter-ARFI imaging system for tissue stiffness quantification. Ultrason Imaging 2008; 30:95-111.
Zhi H, Xiao XY, Yang HY, Ou B, Wen YL, Luo BM. Ultrasonic elastography in breast cancer diagnosis: Strain ratio vs 5-point scale. Acad Radiol 2010; 17:1227-1233.
Zhou J, Zhan W, Chang C et al. Role of Acoustic Shear Wave Velocity Measurement in Characterization of Breast Lesions. J Ultrasound Med 2013; 32:285-294.
Zonderland HM, Coerkamp EG, Hermans J, van de Vijver MJ, van Voorthuisen AE. Diagnosis of breast cancer: contribution of US as an adjunct to mammography. Radiology 1999; 213:413-422.
Zonderland HM, Hermans J, Coerkamp EG Ultrasound variables and their prognostic value in a population of 1,103 patients with 272 breast cancers. Eur Radiol 2000; 10:1562-1568.

二、中文部分
王信凱,超音波彈性影像,中華民國放射線醫學會訊,民國97年2-3頁。
世界癌症研究基金會(World Cancer Research Fund)。
行政院衛生署國民健康局網站(民國101年主要死因分析)。

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top