跳到主要內容

臺灣博碩士論文加值系統

(44.201.99.222) 您好!臺灣時間:2022/12/05 22:57
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:林恒州
研究生(外文):Heng-Chou Lin
論文名稱:以廢棄食用油行生物代謝生產聚3-羥基丁酯
論文名稱(外文):Biosynthesis of poly(3-hydroxybutyrate) from waste cooking oil
指導教授:藍祺偉
指導教授(外文):Chi-Wei Lan
口試委員:張嘉修陳博彥顏宏偉魏毓宏
口試委員(外文):Jo-Shu ChangBor-Yann ChenHong-Wei YenYu-Hong Wei
口試日期:2012-06-18
學位類別:碩士
校院名稱:元智大學
系所名稱:化學工程與材料科學學系
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2014
畢業學年度:102
語文別:中文
論文頁數:87
中文關鍵詞:聚羥基烷酯廢棄食用油油水混合
外文關鍵詞:polyhydroxyalkanoatewaste cooking oiloil-liquid mixing
相關次數:
  • 被引用被引用:1
  • 點閱點閱:194
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
  以植物油脂行代謝生產聚羥基烷酯(Polyhydroxyalkanoates, PHAs)之研究已逐漸被重視,因為油脂單位重量下所含有的碳原子多於醣類,此項優點有利於PHAs的累積,若直接以植物油進行代謝生產PHAs又過於浪費糧食資源,因此以廢棄食用油生產PHAs會是一項更為有利且符合廢棄物再利用之策略。
本研究先以大豆油先進行培養測試,過程中發現油水混合是在醱酵過程關鍵因素,若無特別提高油水混合的程度,最佳生產濃度約20 g L-1,且提高大豆油的添加量也未出現抑制之現象,因此本研究分別以物理及化學的方法提高醱酵過程中油水混合的程度,但所採用的大豆油濃度為50 g L-1,因為在提高油水混合的情形後,若添加的油脂非過量之濃度,菌體也會因碳源缺乏而無法累積更高的菌體密度,物理方法有提高醱酵過程中葉片轉動速度以及以不同攪拌葉改變醱酵過程中流體的循環方式,化學方法則是添加界面活性劑藉以提高油水混合,結果發現提高油水混合能有效增加菌體密度進而增加聚3-羥基丁酯(poly(3-hydroxybutyrate), P3HB),改變攪拌葉、攪拌速度和添加界面活性劑分別能夠提高P3HB濃度達24%、68%和80%。
  不同來源的廢棄食用油的性質會有些許不同,進行培養前,本研究評估了酸價對於菌體生長的影響,經由反應曲面法結果得知,當酸價約為7時,最不利於菌體的生長及PHA的合成,低酸價0.661最適合菌體的生長,而根據臺灣對廢棄食用油的法規規定酸價不得高於2,因此以廢棄食用油為碳源進行培養時,並不將酸價視為一項重要因子。
  在批次的培養條件下,本實驗以廢棄食用油為碳源能藉由提高油水混合來進一步提高菌體密度的產率,且策略能夠應用的範圍不侷限於生產聚羥基烷酯之研究,只要培養過程中出現兩相不互溶之基質,便能夠藉由提高轉速、添加界面活性劑及更改攪拌葉來提高油水混合的程度,使菌體利用油脂的效率提高,進而累積更高之菌體密度或是目標產物。本研究目前藉由提高油水混合的效率能大幅提高體積產率,聚羥基烷酯產量增幅達80%,且未來若能再繼續建構出更有效的油水混合策略,期望能夠在批次下添加更多植物油脂進而累積更多產物。
  It has been highlighted to produce polyhydroxyalkanoates by using vegetable oil as sole carbons source, because vegetable oil containing more carbon atoms per weight compared to sugar. Direct utilization of pure vegetable oil as carbon source will be a waste, which is why production of polyhydroxyalkanoates from waste cooking oil would be more beneficial and in line with strategy of renewable resource.
  First of all, we run some tests using soybean oil in this study and found that oil-liquid mixing is a key factor in fermentation process. Optimum concentration of vegetable oil is around 20 g L-1 without any mixing enhancement oil-liquid strategy and there is no sign of inhibition even when higher amount of vegetable oil. Therefore, we tried to improve oil-liquid mixing by using both physical and chemical methods. We chose 50 g L-1 as plant oil concentration, because it required over concentration to cultivation with different mixing strategy or microorganism will go in stationary phase due to lack of carbon source. Physical methods include increase stirring speed and changing stirring blade structure while chemical method is to add surfactant. The results showed that enhancing oil-liquid mixing would effectively improve the cell density, thereby, PHA’s concentration regardless of strategies used. Changing blade arrangement、increase stirring speed and adding surfactant increase PHA concentration by 24%、68% and 80% respectively.
  The properties of waste cooking oil from different resources are various. We evaluate that acid value effected on growth of microorganism by response surface mathematic before cultivation using waste cooking oil as carbon source. From the results, it is detrimental for microorganism to growth and synthesis PHA while acid value is around 7, beside lower acid value 0.661 is more suitable to use. We won’t consider acid value as a key factor when waste cooking oil serve as sole carbon source, according to Taiwan’s policy for waste cooking oil is to limit acid value lower than 2.
  Under batch fermentation with waste cooking oil as carbon source, enhancing oil-liquid mixing would effectivity improve cell density. These strategies could apply on producing not only PHAs but also other products when process with two phases undissolved. In this study, we could improve volume productivity by enhancing oil-liquid mixing regardless of strategies used and PHA concentration increase by 80%. If establishment more effectivity oil-liquid mixing in the future, we could adding more plant oil and biosynthesis more product in batch fermentation process.
摘要 I
Abstract II
致謝 IV
目錄 V
圖目錄 VIII
表目錄 XI
第一章、諸論 1
1.1 前言 1
1.2 聚羥基烷酯介紹 3
1.2.1 基本結構 4
1.2.2 聚羥基烷酯特性 6
1.2.3 生醫領域之應用 6
1.3 食用油脂來源 7
1.3.1 基本結構 9
1.3.2 特性 10
1.4 研究背景及發展現況 11
1.5 研究目的與動機 12
1.6 研究架構 14
第二章、以大豆油進行模擬廢棄食用油代謝生產PHB之分析 15
2.1 導論 15
2.2 實驗設計 16
2.3 材料與儀器設備 17
2.3.1 菌株 17
2.3.2 實驗藥品 17
2.3.3 實驗設備 18
2.4實驗方法與分析 19
2.4.1 不同菌種以大豆油脂為碳源生產PHB之探討 19
2.4.2 添加不同濃度大豆油對菌體的影響 19
2.4.3 油水混合對合成聚羥基烷酯的影響 19
2.4.4 油脂酸價對菌體密度的探討 23
2.4.5 細胞乾重的測量方法 24
2.4.6 聚羥基烷酯的定量 26
2.4.7 油脂酸價的測量 28
2.4.8 脂肪酸定性分析 28
2.4.9 薄層層析法 29
2.4.10 氧氣移動容量係數的測定 30
2.5、結果與討論 32
2.5.1不同菌種以大豆油為碳源生產PHB之探討 32
2.5.2 添加不同濃度大豆油對菌體的影響 33
2.5.3 油水混合對於累積聚羥基烷酯的影響 36
2.5.4 廢棄油脂酸價對菌體密度之探討 51
2.5.5 氧氣容量係數測試 57
2.6 結論 59
第三章、以廢棄食用油為碳源對Ralstonia eutropha B101生產PHB之可行性研究 60
3.1導論 60
3.2實驗設計 61
3.3材料與儀器設備 62
3.3.1 菌株 62
3.3.2 實驗藥品 62
3.3.3 實驗設備 63
3.4實驗方法 64
3.4.1 不同批次廢棄食用油為碳源進行測試 64
3.4.2 廢棄食用油以不同油水混和策略培養之影響 64
3.5實驗結果與討論 66
3.5.1 不同批次廢棄食用油為碳源進行測試 66
3.5.2 廢棄食用油以不同油水混合策略培養之比較 69
3.5.3 放大(Scale-up)醱酵測試 72
3.6結論 77
第四章、結論與未來展望 78
第五章、文獻 80
Akiyama, M., Tsuge, T., and Doi, Y. (2003). Environmental life cycle comparison of polyhydroxyalkanoates produced from renewable carbon resources by bacterial fermentation. Polymer Degradation and Stability 80, 183-194.
Atlic, A., Koller, M., Scherzer, D., Kutschera, C., Grillo-Fernandes, E., Horvat, P., Chiellini, E., and Braunegg, G. (2011). Continuous production of poly([R]-3-hydroxybutyrate) by Cupriavidus necator in a multistage bioreactor cascade. Appl Microbiol Biotechnol 91, 295-304.
Aziz, N. A., Sipaut, C. S., and Abdullah, A. A.-A. (2012). Improvement of the production of poly(3-hydroxybutyrate-co-3-hydroxyvalerate-co-4-hydroxybutyrate) terpolyester by manipulating the culture condition. Journal of Chemical Technology & Biotechnology 87, 1607-1614.
Belgacem, M. N., and Gandini, A. (2008). "Monomers, Polymers and Composites from Renewable Resources," Elsevier.
Budde, C. F., Riedel, S. L., Hubner, F., Risch, S., Popovic, M. K., Rha, C., and Sinskey, A. J. (2011a). Growth and polyhydroxybutyrate production by Ralstonia eutropha in emulsified plant oil medium. Appl Microbiol Biotechnol 89, 1611-9.
Budde, C. F., Riedel, S. L., Willis, L. B., Rha, C., and Sinskey, A. J. (2011b). Production of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) from plant oil by engineered Ralstonia eutropha strains. Appl Environ Microbiol 77, 2847-54.
Cavalheiro, J. M. B. T., de Almeida, M. C. M. D., Grandfils, C., and da Fonseca, M. M. R. (2009). Poly(3-hydroxybutyrate) production by Cupriavidus necator using waste glycerol. Process Biochemistry 44, 509-515.
Chakraborty, P., Muthukumarappan, K., and Gibbons, W. R. (2012). PHA productivity and yield of Ralstonia eutropha when intermittently or continuously fed a mixture of short chain fatty acids. J Biomed Biotechnol 2012, 506153.
Chia, K.-H., Ooi, T.-F., Saika, A., Tsuge, T., and Sudesh, K. (2010). Biosynthesis and characterization of novel polyhydroxyalkanoate polymers with high elastic property by Cupriavidus necator PHB−4 transformant. Polymer Degradation and Stability 95, 2226-2232.
CHOI, J.-I., LEE, S. Y., and HAN, K. (1998). Cloning of the Alcaligenes latus Poluhydroxyalkanoate Biosynthesis Gene and Use of These Genes for Enhanced Productionof Poly(3-hydroxybutyrate) in Escherichia coil. Applied and Environment Microbiology 64, 4897-4903.
Cunjiang Song, L. Z., Shin Ono, Choichiro Shimasaki and Masami Inoue (2001). Production of Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) from Cottonseed Oil and Valeric Acid in Batch Culture of Ralstonia sp. Strain JC-64. Applied Biochemistry and Biotechnology 94, 169-178.
Dalai, M. G. K. a. A. K. (2006). Waste cooking oil-an economical source for biodiesel: A review. Journal of Industrial and Engineering Chemical 45, 2901-2913.
Fonseca, G. G., and Antonio, R. V. (2006). Use of Vegetable Oils as Substrates for Medium-chain-length Polyhydroxyalkanoates Production by Rcombinant Escherichia coli. Biotechnology 5 (3), 277-279.
Ienczak, J. L., Quines, L. K., De Melo, A. A., Brandellero, M., Mendes, C. R., Schmidell, W., and Aragão, G. M. F. (2011). High cell density strategy for poly(3-hydroxybutyrate) production by Cupriavidus necator. Brazilian Journal of Chemical Engineering 28, 585-596.
Ienczak, J. L., Schmidell, W., and Aragao, G. M. (2013). High-cell-density culture strategies for polyhydroxyalkanoate production: a review. J Ind Microbiol Biotechnol 40, 275-86.
Jiang, Y., Marang, L., Tamis, J., van Loosdrecht, M. C., Dijkman, H., and Kleerebezem, R. (2012). Waste to resource: Converting paper mill wastewater to bioplastic. Water Res 46, 5517-30.
Kahar, P., Tsuge, T., Taguchi, K., and Doi, Y. (2004). High yield production of polyhydroxyalkanoates from soybean oil by Ralstonia eutropha and its recombinant strain. Polymer Degradation and Stability 83, 79-86.
Kamilah, H., Tsuge, T., Yang, T. A., and Sudesh, K. (2013). Waste cooking oil as substrate for bisynthesis of poly(3-hydroxybutyrate) and poly(3-hydroxybutyrate-co-3-hydroxyhexanoate: Turning waste into a value-added product. Malaysian Journal of Microbiology 9(1), 51-59.
Khosravi-Darani, K., Mokhtari, Z. B., Amai, T., and Tanaka, K. (2013). Microbial production of poly(hydroxybutyrate) from C(1) carbon sources. Appl Microbiol Biotechnol 97, 1407-24.
Kim, S. W., Kim, P., Lee, H. S., and Kim, J. H. (1996). Hgh Production of Poly-β-hydroxybutyrate (PHB) from Methylobacterium organophilum under Potassium Limitation. 18, 25-30.
Lee, F. W. a. S. Y. (1997). Poly(3-hydroxybutyrate) production with high productivity and high polymer content by a fed-bath culture of Alcaligenes latus under nitrogen limitation. Applied and Environment Microbiology 63, 3703-3706.
Lee, S. Y., Choi, J.-i., and Wong, H. H. (1999). Revent advances in polyhydroxyalkanoate production by bacterial fermentation: mini-review. International Journal of Biological Macromolecules 25, 31-36.
Lopez-Cuellar, M. R., Alba-Flores, J., Rodriguez, J. N., and Perez-Guevara, F. (2011). Production of polyhydroxyalkanoates (PHAs) with canola oil as carbon source. Int J Biol Macromol 48, 74-80.
Lu, J., Brigham, C. J., Rha, C., and Sinskey, A. J. (2013). Characterization of an extracellular lipase and its chaperone from Ralstonia eutropha H16. Appl Microbiol Biotechnol 97, 2443-54.
Ma, F., and Hanna, M. A. (1999). Biodiesel production a review. Bioresource Technology 70, 1-15.
Mauclaire, L., Brombacher, E., Bunger, J. D., and Zinn, M. (2010). Factors controlling bacterial attachment and biofilm formation on medium-chain-length polyhydroxyalkanoates (mcl-PHAs). Colloids Surf B Biointerfaces 76, 104-11.
Mumtaz, T., Yahaya, N. A., Abd-Aziz, S., Abdul Rahman, N. A., Yee, P. L., Shirai, Y., and Hassan, M. A. (2010). Turning waste to wealth-biodegradable plastics polyhydroxyalkanoates from palm oil mill effluent – a Malaysian perspective. Journal of Cleaner Production 18, 1393-1402.
Ng, K.-S., Wong, Y.-M., Tsuge, T., and Sudesh, K. (2011). Biosynthesis and characterization of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) and poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) copolymers using jatropha oil as the main carbon source. Process Biochemistry 46, 1572-1578.
Park, D. H., and Kim, B. S. (2011). Production of poly(3-hydroxybutyrate) and poly(3-hydroxybutyrate-co-4-hydroxybutyrate) by Ralstonia eutropha from soybean oil. N Biotechnol 28, 719-24.
Patwardhan, P., and Srivastava, A. K. (2008). Fed-batch cultivation of Wautersia eutropha. Bioresour Technol 99, 1787-92.
Pouton, C. W., and Akhtar, S. (1996). Biosynthetic polyhydroxyalkanoates and their potential in drug delivery. Advanced Drug Delivery Reviews 18, 133-162.
Pradella, J. G., Ienczak, J. L., Delgado, C. R., and Taciro, M. K. (2012). Carbon source pulsed feeding to attain high yield and high productivity in poly(3-hydroxybutyrate) (PHB) production from soybean oil using Cupriavidus necator. Biotechnol Lett 34, 1003-7.
Riedel, S. L., Bader, J., Brigham, C. J., Budde, C. F., Yusof, Z. A., Rha, C., and Sinskey, A. J. (2012). Production of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) by Ralstonia eutropha in high cell density palm oil fermentations. Biotechnol Bioeng 109, 74-83.
Rosillo-Calle, F., Pelkmans, L., and Walter, A. (2009). "A global overview of vegetable oils, with reference to biodiesel," IEA Bioenergy.
Ryu, H. W., Hahn, S. K., Chang, Y. K., and Chang, H. N. (1997). Production of poly(3-hydroxybutyrate) by high cell density fed-batch culture of Alcaligenes eutrophus with phosphate limitation. Journal of Biotechnology and Bioengineering 55(1), 25-32.
Seniha Güner, F., Yağcı, Y., and Tuncer Erciyes, A. (2006). Polymers from triglyceride oils. Progress in Polymer Science 31, 633-670.
Shang, L., Jiang, M., Yun, Z., Yan, H.-Q., and Chang, H.-N. (2008). Mass production of medium-chain-length poly(3-hydroxyalkanoates) from hydrolyzed corn oil by fed-batch culture of Pseudomonas putida. World Journal of Microbiology and Biotechnology 24, 2783-2787.
Taniguchi, I., Kagotani, K., and Kimura, Y. (2003). Microbial production of poly(hydroxyalkanoate)s from waste edible oils. Green Chemistry 5, 545.
Verlinden, R. A., Hill, D. J., Kenward, M. A., Williams, C. D., Piotrowska-Seget, Z., and Radecka, I. K. (2011). Production of polyhydroxyalkanoates from waste frying oil by Cupriavidus necator. AMB Express 1, 11.
WANG, F., and LEE, S. Y. (1997). Production of poly(3-hydroxybutyrate) by fed-batch culture of filamentation -susppressed recombinant Escherichaia coli. Applied and Environment Microbiology 63, 4765-4769.
Wang, F., and Lee, S. Y. (1998). High cell density culture of metabolically engineered Escherichia coli for the prodution of poly(3-hydroxybutyrate) in a defined medium. Journal of Biotechnology and Bioengineering 58, 325-328.
Williams, S. F., Martin, D. P., Horowitz, D. M., and Peoples, O. P. (1999). PHA application addressing the price performance issue I :Tissue engineering. International Journal of Biological Macromolecules 25, 111-121.
Wong, H. H., and Lee, S. Y. (1998). Poly-(3-hydroxybutyrate) production from whey by high-density cultivation of recombinant Escherichia coli. Appl Microbiol Biotechnol 50, 30-33.
Wong, Y. M., Brigham, C. J., Rha, C., Sinskey, A. J., and Sudesh, K. (2012). Biosynthesis and characterization of polyhydroxyalkanoate containing high 3-hydroxyhexanoate monomer fraction from crude palm kernel oil by recombinant Cupriavidus necator. Bioresour Technol 121, 320-7.
Xie, W. P., and Chen, G.-Q. (2008). Production and characterization of terpolyester poly(3-hydroxybutyrate-co-4-hydroxybutyrate-co-3-hydroxyhexanoate) by recombinant Aeromonas hydrophila 4AK4 harboring genes phaPCJ. Biochemical Engineering Journal 38, 384-389.
Yamane, T., Fukunage, M., and Lee, Y. W. (1996). Increased PHB Productuvuty by High-Cell-Density Fed-Batch Culture of Alcaligenes latus, a Growth-Associated PHB Producer. Biotechnology and Bioengineering 50, 197-202.
Yu, S. T., Lin, C. C., and Too, J. R. (2005). PHBV production by Ralstonia eutropha in a continuous stirred tank reactor. Process Biochemistry 40, 2729-2734.
Zhao, W., and Chen, G.-Q. (2007). Production and characterization of terpolyester poly(3-hydroxybutyrate-co-3-hydroxyvalerate-co-3-hydroxyhexanoate) by recombinant Aeromonas hydrophila 4AK4 harboring genes phaAB. Process Biochemistry 42, 1342-1347.
Zinn, M., Witholt, B., and Egli, T. (2001). Occurrence, synthesis and medical application of bacterial polyhudroxyalkanoate. Advanced Drug Delivery Reviews 53, 5-21.

劉奕君, 2013. 以廢甘油行生物代謝生產聚3-羥基丁酯-co-4-羥基丁酯之研究. 化學工程與材料科學學系碩士班. 元智大學, 中壢市, pp.28
電子全文 電子全文(本篇電子全文限研究生所屬學校校內系統及IP範圍內開放)
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top