跳到主要內容

臺灣博碩士論文加值系統

(44.201.99.222) 您好!臺灣時間:2022/12/05 23:46
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:陳柏安
研究生(外文):Chen Po An
論文名稱:隔離膜微波沉積二氧化鈦以提升鋰離子電池之效能
論文名稱(外文):Improvement of Li-ion battery performance by using microwave deposition of titania onto separators
指導教授:莊瑞鑫莊瑞鑫引用關係
指導教授(外文):Ruey-Shin Juang
口試委員:呂幸江謝建德
口試委員(外文):Shing-Jiang LueChien-Te Hsieh
口試日期:2014-07-10
學位類別:碩士
校院名稱:元智大學
系所名稱:化學工程與材料科學學系
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2014
畢業學年度:102
語文別:中文
論文頁數:88
中文關鍵詞:隔離膜鋰離子電池大氣電漿二氧化鈦微波輔助溶膠-凝膠法熱穩定性電池安全
外文關鍵詞:SeparatorsLithium-ion batteryAtmospheric plasma jetTiO2Microwave assisted sol-gel methodThermal stabilityBattery safety
相關次數:
  • 被引用被引用:1
  • 點閱點閱:229
  • 評分評分:
  • 下載下載:4
  • 收藏至我的研究室書目清單書目收藏:0
本研究主要係探討鋰離子電池中隔離膜經氣旋式大氣電漿製程活化,並在表面形成具有活性的官能基團,增加其親水性;並結合溶膠-凝膠法在膜材表面沉積氧化鈦薄膜,並檢驗其物、化性和電性表現。
本文主要分成三部分,第一部份使用氣旋式大氣電漿反應器活化膜材,並使用接觸角量測儀探討最適化的參數,並可由FTIR-ATR偵測出3300cm-1的訊號峰,顯示帶有-OH的存在。第二部分為使用微波輔助溶膠-凝膠法,以三種不同鈦酸濃度的溶膠和膜材做反應,並輔以TGA和SEM確認其表面形貌及沉積在膜材上的量。第三部分則是將不同參數條件的隔離膜,組裝成鋰離子電池,並做電性測試和等效電路擬合;可以發現在經過溶膠-凝膠法處理過後膜材的阻抗皆小於未改質膜材,且由TGA和熱縮性實驗可得知在鈦酸濃度26.4%時有最好的熱穩定性;即使在材料熔點附近,依然能夠維持膜材50%面積,而Untreated對照組則是縮小到只剩原面積的20%。在鋰電池熱穩定性實驗也有相同的趨勢;Celgard PP/PE/PP膜材與Asahi PE膜材皆有高於未改質膜材10℃以上的趨勢。
本實驗成功將有機聚烯烴膜材和無機氧化鈦材料結合。且由TGA分析可知表面固體殘餘量可達5~7W.t.%。且在鋰電池電容量及熱穩定性皆有提升之效果,故為增加聚烯烴膜材效能與安全兼備的有效方法。
Lithium-ion battery is widely use in portable electronic devices and electric vehicles,so the safety of battery has attracted researcher’s attention in recent years. This study provides a novel way to enhance thermal property of separators. We combine atmospheric plasma and microwave assisted sol-gel method. First, the Asahi PE separator and Celgard PP/PE/PP trilayer separator are surface-activated by atmospheric plasma then coated by microwave-assisted sol-gel method with TBT (Tetra-n-butyl Titanate). Then we examined physical、chemical and electrical property. Owing to the importance of atmospheric plasma’s parameter, this study use contact angle to determine the best parameter for activation. From the FTIR spectroscopy revealed the existence of –OH, and from TGA show that at the 24.6 of TBT Vol. % has the highest amount of TiO2 on both PE and PP/PE/PP separators. After coated, the thermal shrinkage of PE separators at meltdown temperature pint is reduced form 82% to 49%, also the PP/PE/PP reduced form 71% to 24%. The Tio2 coating also enhanced LIB’s performance and capacity because of wettability improvement. While the drop of OCV test also increased 10℃, and the impendence also decreased.
目錄
摘要 I
Abstract II
致謝 III
目錄 IV
圖目錄 VIII
表目錄 XI
第一章 緒論 1
1-1 前言 1
1-2 鋰電池的發展 3
1-3 鋰電池元件介紹 4
1-3.1 陽極材料 4
1-3.2 陰極材料 6
1-3.3 電解液 7
1-3.4 隔離膜 7
1-4 隔離膜簡介 8
1-5 電漿技術 12
1-5.1 電漿 12
1-5.2 大氣電漿 14
1-6 二氧化鈦粒子 17
1-6.1 製備方法 17
1-7 微波輔助成核 19
1-8 文獻回顧 21
1-9 研究動機及目的 24
第二章 實驗部分 25
2-1 實驗藥品及儀器 25
2-1.1 藥品 25
2-1.2 儀器 26
2-2 實驗流程圖 28
2-3 實驗系統 29
2-3.1 實驗裝置圖 29
2-4 實驗步驟 29
2-4.1 膜材前處理 29
2-4.2 電漿表面活化 30
2-4.3 溶膠-凝膠法 30
2-4.4 鈕扣型電池組裝 32
2-5 實驗分析方法 35
2-5.1 接觸角 35
2-5.2 電化學阻抗分析 37
2-5.3 示差掃描熱分析儀 39
2-5.4 熱重損失分析儀 39
2-5.5 熱縮性實驗 40
2-5.6 鋰電池熱穩定實驗 40
2-5.7 電池充放電壽命 41
第三章 結果與討論 42
3-1 氣旋式大氣電漿參數探討 42
3-1.1 改變電漿處理次數 42
3-1.2 改變電漿功率 45
3-1.3 改變氣體流率 47
3-1.4 改變電漿噴頭至膜材距離 49
3-1.5 電漿老化實驗 53
3-2 溶膠-凝膠法 56
3-3 DSC分析 58
3-4 TGA分析 59
3-5 SEM表面形貌分析 65
3-6 電化學阻抗分析 67
3-7 電解液濕潤性測試 70
3-7.1 電解液揮發 70
3-7.2 改質完膜材接觸角 72
3-8 充放電測試 73
3-9 循環壽命測試 75
3-10 熱縮性實驗 76
3-11 鋰電池熱穩定實驗 79
第四章 結論 82
參考文獻 83
附錄一 88

圖目錄
Figure 1- 1日本電池歷年生產數量(年分) 2
Figure 1- 2日本電池歷年生產金額 2
Figure 1- 3鋰離子電池工作示意圖 3
Figure 1- 4微孔隙烯烴之微結構影像 4
Figure 1- 5氣旋式雙套管大氣電漿改質示意圖 16
Figure 1- 6電漿旋轉頭之正視圖 17
Figure 1- 7 利用微波加熱之示意圖 19
Figure 1- 8傳統加熱方式之示意圖 20
Figure 1- 9 表面溶膠-凝膠法 22

Figure 2- 1 實驗流程圖 28
Figure 2- 2氣旋式大氣電漿裝置圖 29
Figure 2- 3 溶膠-凝膠法配置過程 31
Figure 2- 4鋰電池零組件示意圖 34
Figure 2- 5電漿定點改質示意圖 36
Figure 2- 6 EIS之實體圖 37
Figure 2- 7 Nyquist示意圖 38
Figure 2- 8 DSC實體圖 39
Figure 2- 9 TGA實體圖 39
Figure 2- 10 鋰電池熱穩定實驗裝置示意圖 41

Figure 3- 1改變活化次數之接觸角與表面能變化圖(小圖為水滴接觸角之影像) 43
Figure 3- 2 不同電漿處理次數之SEM圖(a) Untreated,(b) 30次,(c) 50次 44
Figure 3- 3改變電漿功率之接觸角與表面能變化圖(小圖為水滴接觸角之影像) 46
Figure 3- 4 不同電漿功率之SEM圖 (a) Untreated ,(b) 90 W,(c) 120 W 47
Figure 3- 5改變氬氣流率之接觸角與表面能變化圖(小圖為水滴接觸角之影像) 48
Figure 3- 6 不同氬氣流率之SEM圖 (a) Untreated ,(b) 6 slm,(c) 10 slm 49
Figure 3- 7改變電漿噴頭距離之接觸角與表面能變化(小圖為水滴接觸角之影像) 51
Figure 3- 8不同電漿噴頭距基材距離的SEM圖 (a) Untreated,(b) 5mm, (c) 10mm 52
Figure 3- 9 電漿活化之膜材的老化接觸角變化(24小時) 54
Figure 3- 10 隔離膜活化後FTIR比較圖(**為二氧化矽汙染物) 55
Figure 3- 11 不同鈦酸四丁酯添加量之凝膠圖 56
Figure 3- 12 各參數下溶膠之形貌(a)20.8%,(b) 26.4%,(c)31.5% 58
Figure 3- 13 各PE之DSC比較圖 59
Figure 3- 14 Untreated PE之重量損失與微分圖 60
Figure 3- 15 PE-26.4%之重量損失與微分圖 61
Figure 3- 16 各參數下PE之TGA比較圖 61
Figure 3- 17 Untreated-PP之重量損失與微分圖 62
Figure 3- 18 PP-26.4%之重量損失與微分圖 63
Figure 3- 19 各參數下PP之TGA比較圖 63
Figure 3- 20 PE膜材經不同參數溶膠-凝膠法處理之SEM圖 (a) PE-20.4%, (b)PE-26.4%,(c)PE-31.5% 65
Figure 3- 21 PP膜材經不同參數溶膠-凝膠法處理之SEM圖 (a) Untreated-PP, (b) PP-20.4%,(c) PP-26.4% ,(d) PP-31.5% 66
Figure 3- 22鋰電池之等效電路圖 67
Figure 3- 23各PE改質參數下的阻抗圖及其擬合結果 68
Figure 3- 24各PP改質參數下的阻抗圖及其擬合結果 69
Figure 3- 25 PE Sample之電解液揮發比較圖 71
Figure 3- 26 PP Sample之電解液揮發比較圖 71
Figure 3- 27 各改質完PE Sample之接觸角 72
Figure 3- 28 各改質完PP 之接觸角比較圖 73
Figure 3- 29 各改質參數下PE的 0.1C充放電圖 74
Figure 3- 30各改質參數下PP的 0.1C充放電 74
Figure 3- 31 各參數下PE在1C rate之長效電容量 75
Figure 3- 32 各參數下PP在1C rate之長效電容量 76
Figure 3- 33 各改質參數PE在不同溫度下面積的變化 77
Figure 3- 34各改質參數PP在不同溫度下面積的變化 77
Figure 3- 35 PE膜材在不同溫度下的熱縮性(由左到右分別為Untreated-PE、PE-20.4%、PE-26.4%及PE-31.5%) 78
Figure 3- 36 PP膜材在不同溫度下的熱縮性(由左到右分別為Untreated-PP、PP-20.4%、PP-26.4%及PP-31.5%。邊緣黃線為軟體判斷之邊界) 78
Figure 3- 37 Untreated PE之鋰電池熱穩定實驗 80
Figure 3- 38 PE-26.4%之鋰電池熱穩定實驗 80
Figure 3- 39 Untreated PP之鋰電池熱穩定實驗 81
Figure 3- 40 PP-26.4%之鋰電池熱穩定實驗 81


表目錄
Table 1- 1鋰離子電池之隔離膜的物化性質的目標期望值 10
Table 1- 2常見商業隔離膜製造商與材料種類組成 11
Table 1- 3電漿氣體種類及反應現象 15
Table 1- 4改質隔離膜文獻之整理 23

Table 3- 1 Celgard 2320 三層膜之活化最佳化參數 42
Table 3- 2 改變電漿處理次數之參數 43
Table 3- 3改變電漿功率之參數 45
Table 3- 4 改變氣體流率之參數 48
Table 3- 5 改變電漿噴頭至膜材距離之參數 50
Table 3- 6電漿活化之膜材的老化接觸角變化 (24小時) 54
Table 3- 7各凝膠之pH值與鈦酸添加量 57
Table 3- 8 各Sample之Tm點比較表 59
Table 3- 9 各參數下PE之裂解溫度及殘餘重量比較表 62
Table 3- 10 各參數PP之裂解溫度及殘餘重量比較表 64
Table 3- 11 各PE改質參數之擬合結果 68
Table 3- 12各PP改質參數之擬合結果 69
Arora, P., Zhang, Z., Battery Separators, Chemical Reviews 104(10) (2004) 4419-4462.
Baldassari , S., Komarneni, S., Mariani, E., Villa, C., Microwave-hydrothermal process for the synthesis of rutile, Materials Research Bulletin 40(11) (2005) 2014-2020.
Borkar, S. A., Dharwadkar, S. R., Effect of microwave processing on polymorphic transformation of TiO2, Ceramics International 30(4) (2004) 509-514.
Bruce, P. G., Scrosati, B., Tarascon, J. M., Nanomaterials for rechargeable lithium batteries., Angewandte Chemie International Edition 47(16) (2008) 2930-2946.
Chen, H., Lin, Q., Xu, Q., Yang, Y., Shao, Z., Wang, Y., Plasma activation and atomic layer deposition of TiO2 on polypropylene membranes for improved performances of lithium-ion batteries, Journal of Membrane Science 458 (2014) 217-224.
Chung, Y. S., Yoo, S. H., Kim, C. K.,Enhancement of Meltdown Temperature of the Polyethylene Lithium-Ion Battery Separator via Surface Coating with Polymers Having High Thermal Resistance, Industrial & Engineering Chemistry Research 48(9) (2009) 4346-4351.
Delmas, C., Alkali metal intercalation in layered oxides,Materials Science and Engineering: B 3(1–2) (1989) 97-101.
Emanuel, P., Diana, G, SEI on lithium, graphite disordered carbons and tin-based alloys Graphite Disordered Carbons And Tin-Based Alloys Lithium-Ion Batteries,Imperial College Press , World Scientific Publishing Co,(2004) 1-69.
Grill, A., Cold plasma in materials fabrication, IEEE Press, New York. (1994)

Gwon, S.-J., Choi, J.-H.,Sohn, J.-Y.,Lim, Y.-M., Nho, Y.-C., Ihm, Y.-E., Battery performance of PMMA-grafted PE separators prepared by pre-irradiation grafting technique, Journal of Industrial and Engineering Chemistry 15(5) (2009) 748-751.
Huang, J., Kunitake, T., Nano-Precision Replication of Natural Cellulosic Substances by Metal Oxides, Journal of the American Chemical Society 125(39) (2003) 11834-11835.
Ichinose, I., Senzu, H., Kunitake, T., A Surface Sol−Gel Process of TiO2 and Other Metal Oxide Films with Molecular Precision, Chemistry of Materials 9(6) (1997) 1296-1298.
Jung, Y. S., Cavanagh, A. S., Gedvilas, L., Widjonarko, N. E.,Scott, I. D., Lee, S.-H., Kim, G.-H., George, S. M.,Dillon, A. C., Improved Functionality of Lithium-Ion Batteries Enabled by Atomic Layer Deposition on the Porous Microstructure of Polymer Separators and Coating Electrodes, Advanced Energy Materials 2(8) (2012) 1022-1027.
Kaplan, S. L., Rose, P. W., Plasma surface treatment of plastics to enhance adhesion., International Journal of Adhesion and Adhesives 11(2) (1991) 109-113.
Kim, J. Y., Lee, Y., Lim, D. Y., Plasma-modified polyethylene membrane as a separator for lithium-ion polymer battery, Electrochimica Acta 54(14) (2009) 3714-3719.

Kim, M., Park, J. H., Inorganic thin layer coated porous separator with high thermal stability for safety reinforced Li-ion battery, Journal of Power Sources 212 (2012) 22-27.
Kritzer, P., Nonwoven support material for improved separators in Li–polymer batteries, Journal of Power Sources 161(2) (2006) 1335-1340.
Langmuir, I., Oscillations in Ionized Gases, PHYSICS 14 (1928).
Liston, E. M., Martinu, L., Wertheimer, M. R., Plasma surface modification of polymers for improved adhesion: a critical review, Journal of Adhesion Science and Technology 7(10) (1993) 1091-1127.
Prasanna, K., Subburaj, T., Lee, W. J., Lee, C. W., Polyethylene separator: stretched and coated with porous nickel oxide nanoparticles for enhancement of its efficiency in Li-ion batteries, Electrochimica Acta(0) (2014).
Shi, J.-L., Fang, L.-F., Li, H., Zhang, H., Zhu, B.-K., Zhu, L.-P., Improved thermal and electrochemical performances of PMMA modified PE separator skeleton prepared via dopamine-initiated ATRP for lithium ion batteries, Journal of Membrane Science 437 (2013) 160-168.
Shishoo, R., Plasma technologies for textiles., Woodhead Publishing Limited and CRC Press LLC 2007, Woodhead Publishing Limited(2007).
Štefečka, M.;Kando, M., Černák, M., Korzec, D., Finantu-Dinu, E. G., Dinu, G. L., Engemann, J., Spatial distribution of surface treatment efficiency in coplanar barrier discharge operated with oxygen–nitrogen gas mixtures, Surface and Coatings Technology (0) 553-558 (2003) 174–175.
Thackeray, M. M., David, W. I. F., Bruce, P. G., Goodenough, J. B., Lithium insertion into manganese spinels, Materials Research Bulletin 18(4) (1983) 461-472.
Tobishima, S.-i., Yamaki, J.-i., A consideration of lithium cell safety, Journal of Power Sources (1999) 882-886.
Tomabechi, K., Energy Resources in the Future, Energies 3(4) (2010) 686-695.
Wang, Q., Ping, P., Zhao, X., Chu, G., Sun, J., Chen, C., Thermal runaway caused fire and explosion of lithium ion battery, Journal of Power Sources 208 (2012) 210-224.
Woo, J.-J., Nam, S. H., Seo, S.-J., Yun, S.-H., Kim, W. B., Xu, T., Moon, S.-H., A flame retarding separator with improved thermal stability for safe lithium-ion batteries, Electrochemistry Communications 35 (2013) 68-71.
Xu, Q., Yang, Y., Yang, J., Wang, X., Wang, Z., Wang, Y., Plasma activation of porous polytetrafluoroethylene membranes for superior hydrophilicity and separation performances via atomic layer deposition of TiO2, Journal of Membrane Science 443 (2013) 62-68.
Yamaki, J.-i., Tobishima, S.-i., Hayashi, K., Keiichi, S., Nemoto, Y., Arakawa, M., A consideration of the morphology of electrochemically deposited lithium in an organic electrolyte, Journal of Power Sources 74(2) (1998) 219-227.
Yoshio, M., Brodd, R. J., Kozawa, Lithium-Ion Batteries, Springer, (2009)Chapter 8.
Zhang, S. S., A review on the separators of liquid electrolyte Li-ion batteries, Journal of Power Sources 164(1) (2007) 351-364.
Zhang, S. S., Xu, K., Jow, T. R., An inorganic composite membrane as the separator of Li-ion batteries, Journal of Power Sources 140(2) (2005) 361-364.
Zhao, Z.-P., Li, N., Li, M.-S., Zhang, Y., Controllable Modification of Polymer Membranes by Long-Distance and Dynamic Low-Temperature Plasma Flow: Long-Distance and Dynamic Characteristics, Plasma Chemistry and Plasma Processing 32(6) (2012) 1243-1258.
宋金穎,「微孔性聚氟乙烯高分子電解質之電化學特性研究」,博士論文,國立清華大學,臺灣 (2000)。
林紀呈,「電漿改質隔離膜以提升鋰離子電池之效能」,碩士論文,元智大學,臺灣 (2011) 。
陳克紹、曹永偉,「薄膜技術」,全華科技圖書,臺北,1986,第三章。
陳金銘,「下世代高能量鋰電池與材料技術發展趨勢」,工業材料雜誌, 工業技術研究院,2012, 第302期,第71至83頁。
黃可龍,「Lithium Ion Batteries-Principles and Key Technologies」,五南圖書,臺北 2010,第五章。
劉志宏、黃駿,許文通、蔡禎輝、張所鋐,「微/奈米製造技術專輯」機械工業雜誌,2008,第306期 9月號。
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top