(3.238.173.209) 您好!臺灣時間:2021/05/16 05:48
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

: 
twitterline
研究生:蔡岳璋
研究生(外文):Yueh-Chang Tsai
論文名稱:改良型基因演算法應用於強健型二維IIR濾波器設計
論文名稱(外文):Two Dimensional Robust IIR Filter Design Using Improved Genetic Algorithm
指導教授:林志民林志民引用關係李慶鴻
指導教授(外文):Chih-Min LinChing-Hung Lee
口試委員:李仲溪
口試委員(外文):Junghsi Lee
口試日期:2014-01-14
學位類別:碩士
校院名稱:元智大學
系所名稱:電機工程學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2014
畢業學年度:102
語文別:中文
論文頁數:97
中文關鍵詞:基因演算法模糊系統二維數位濾波器無限脈衝濾波器強健穩定
外文關鍵詞:Genetic algorithmFuzzy systemTwo dimensional dogotal filterInfinite impulse response filterRobust stability
相關次數:
  • 被引用被引用:0
  • 點閱點閱:177
  • 評分評分:
  • 下載下載:24
  • 收藏至我的研究室書目清單書目收藏:0
本論文提出改良型基因演算法(Improved Genetic Algorithm, IGA)應用於強健穩定條件之二維無限脈衝響應(Infinite Impulse Response, IIR)濾波器設計,本文提出新穎的交配運算及基於模糊系統之突變機率調整法,以改善基因演算法搜索效率與精確度;其中交配運算透過母代與參數邊界之間進行子代搜索,將有效搜索整個解的空間並保有隨機性;此外,適應值與個體之群聚效應均影響突變機率,本文藉由模糊系統調整較合適的突變機率,並根據演化結果適度調整搜索範圍,以求得最佳解。本論文基於D-stability提出二維IIR濾波器之強健穩定條件,並採用改良型基因演算法設計強健濾波器。最後藉由函數測試觀察改良型基因演算法的性能,並實現頻域及時域之強健型二維IIR濾波器設計。
In this thesis, we propose an improved genetic algorithm (IGA) and apply on the design of robust stability two dimensional infinite impulse response (IIR) filter. For the proposed IGA, we present a novel crossover operation and a fuzzy based adaptive mutation probability for mutation operation to enhance the performance and accuracy of IGA. The trial offspring by crossover operation is generated randomly by searching between parents and boundary. According to the fitness value and clustering factor of populations, we develop a fuzzy logic system to provide the proper mutation probability. Besides, the searching boundary is also changed according to the evolution status.
This thesis also derives the robust stability criterion of two dimensional IIR filter based on D-stability and then the proposed IGA is applied to design the robust IIR filter. Finally, several illustration examples of test functions and IIR filter design in frequency and time domain are introduced to show the effectiveness and performance of the improved genetic algorithm.
中文摘要……………………………………………………………………i
英文摘要…………………………………………………………………..iii
誌謝.……………………….……………………………………………….v
目錄………………………………………………………………………..vi
圖目錄……………………………………………………………………..ix
表目錄…………………………………………………………………….xii
第一章、 緒論…………………………………………………………..1
第二章、 改良型基因演算法…………………………………………..4
2.1傳統型基因演算法…………………………………………….4
2.1.1適應函數……………………...………………………….5
2.1.2編碼與解碼……………………...……………………….5
2.1.3選擇與複製……………………...………………….……6
2.1.4交配……………………...……………………………….7
2.1.5突變……………………...……………………………….9
2.2改良型基因演算法……………………...……………………10
2.2.1初始化……………………...…………………………...10
2.2.2適應函數……………………...………………………...11
2.2.3選擇……………………...……………………………...11
2.2.4交配……………………...……………………………...11
2.2.5突變……………………...……………………………...15
2.3函數測試…………………….……………..…………………24
2.3.1討論停止條件………...…………………………...……27
2.3.2討論族群大小………...…………………………...……31
2.3.3討論相似度之半徑………...……………...……………31
2.3.4函數測試結果………...…………………………...……32
第三章、 強健型二維IIR濾波器設計………...……………………...45
3.1二維IIR濾波器基本特性...………………………...………...45
3.1.1二維數位濾波器系統……...…………………………...46
3.1.2二維濾波器頻域特性…………………………………..48
3.2二維IIR濾波器穩定之穩定條件…….………........................51
3.2.1一維穩定條件...………………………….......................51
3.2.2二維穩定條件...………………………….......................53
3.3應用基因演算法設計強健型二維IIR濾波器..………..….....56
3.3.1修正改良型基因演算法…………………......................57
3.3.2模擬結果與說明…………………..................................66
3.4時域強健IIR濾波器設計……………………………………79
第四章、 結論與未來展望…………………………............................87
參考文獻……………………………………………….............................89
[1] M. Gen and R. Cheng, Genetic Algorithms and Engineering Design, New York: Wiley, 1997.
[2] D. E. Goldberg, Genetic Algorithms in Search, Optimization and Machine Learning, reading: Addison-Wesley, 1989.
[3] J. T. Tsai, W. H. Ho, and J. H. Chou, “Design of Two-Dimensional IIR Digital Structure-Specified Filters by Using an Improved Genetic Algorithm,” Expert Systems with Applications, Vol. 36, Issue 3, Part 2, pp.6928-6934, 2009.
[4] S. G. Tzafestas, Multidimensional Systems, Techniques and Applications, New York: Marcel Dekker, 1986.
[5] W. S. Lu and A. Antoniou, Two-Dimensional Digital Filters, New Yourk: Marcel Dekker, 1992.
[6] G. A. Maria and M. M. Fahmy, “An lp Design Technique for Two-Dimensional Digital Recursive Filters,” IEEE Trans. Acoust. Speech, Signal Process., Vol. ASSP-22 ,No. 1, pp. 15-21, 1974.
[7] P. K. Rajan and M. N. S. Swamy, “Quadrantal Symmetry Associated with Two-Dimensional Digital Transfer Functions,” IEEE Trans. Circuits Syst., Vol. CAS-29, No. 6, pp. 340-343, 1983.
[8] T. Laasko and S. Ovaska, “Design and Implementation of Efficient IIR Notch Filters with Quantization Error Feedback,” IEEE Trans. Instrum. Meas., Vol. 43, No. 3, pp. 449-456, 1994.
[9] C. H. Hsieh, C. M. Kuo, Y. D. Jou, and Y. L. Han, “Design of Two-Dimensional FIR Digital Filters by a Two-Dimensional WLS Technique,” IEEE Trans. Circuits Syst. II, Analog Digit. Signal Process., Vol. 44, No. 5, pp. 348-412, 1997.
[10] M. Daniel and A. Willsky, “Efficient Implementations of 2-D Noncausal IIR Filters,” IEEE Trans. Circuits Syst. II, Analog Digit. Signal Process., Vol. 44, No. 7, pp. 549-563, 1997.
[11] W. P. Zhu, M. O. Ahmad, and M. N. S. Swamy, “A Closed-form Solution to the Least-Square Design Problem of 2-D Linear-Phase FIR Filters,” IEEE Trans. Circuits Syst. II, Analog Digit. Signal Process., Vol. 44, No. 12, pp. 1032-1039, 1997.
[12] D. Gorinevsky and S. Boyd, “Optimization-Based Design and Implementation of Multidimensional Zero-Phase IIR Filters,” IEEE Trans. Circuits Syst. Regul. Pap., Vol. 53, No. 2, pp. 372-383, 2006.
[13] W. S. Lu, “A Unified Approach for the Design of 2-D Digital Filters via Semidefinite Programming,” IEEE Trans. Circuits Syst. I, Fundam. Theory appl., Vol. 49, No. 6, pp. 814-826, 2002.
[14] W. S. Lu, S. C. Pei, and C. C. Tseng, “A Weighted Least-Squares Method for the Design of Stable 1-D and 2-D IIR Digital Filters,” IEEE Trans. Signal Pro., Vol. 46, No. 1, pp. 1-10, 1998.
[15] C. C. Tseng, “Design of Stable IIR Digital Filter Based on Least P-Power Error Criterion,” IEEE Trans. Circuits Syst. II, Vol. 51, No. 9, pp. 1879-1888, 2004.
[16] W. S. Lu and T. Hinamoto, “Optimal Design of IIR Digital Filters with Robust Stability Using Conic-Quadratic-Programming Updates,” IEEE Trans. Signal Process., Vol. 51, No. 6, pp. 1581-1592, 2003.
[17] J. Sun, W. Fang, and W. Xu, “A Quantum-Behaved Particle Swarm Optimization With Diversity-Guided Mutation for the Design of Two-Dimensional IIR Digital Filters,” IEEE Trans. Circuits Syst. Express Briefs, Vol. 57, No. 2, pp. 141-145, 2010.
[18] V. M. Mladenov and N. E. Mastorakis, “Design of Two-Dimensional Recursive Filters by Using Neural Networks,” IEEE Trans. Neural Netw., Vol. 12, No. 3, pp. 585-590, 2001.
[19] N. E. Mastorakis, “Design of two-Dimensional Recursive Filters Using Genetic Algorithms,” IEEE Trans. Circuits Syst. I, Vol. 50, No. 5, pp. 634-639, 2003.
[20] I. F. Gonos, L. I. Virirakis, and N. E. Mastorakis, “Evolutionary Design of 2-Dimensional Recursive Filters via the Computer Language Genetica,” IEEE Trans. Circuits Syst. II, Vol. 53, No. 4, pp. 254-258, 2006.
[21] J. T. Tsai and J. H. Chou, “Optimal Design of Digital IIR Filters by Using Hybrid Taguchi Genetic Algorithm,” IEEE Trans. Ind. Electron., Vol. 53, No. 3, pp. 867-879, 2006.
[22] S. C. Ng, C. Y. Chung, S. H. Leung, and A. Luk, “Fast Convergent Genetic Search for Adaptive IIR Filtering,” IEEE Trans. Signal Pro., Vol. 49, No. 7, pp. 1421-1432, 2001.
[23] S. T. Pan, “Design of Robust D-stable IIR Filter Using Genetic Algorithms with Embedded Stability Criterion,” IEEE Trans. Signal Pro., Vol. 57, No. 8, pp. 3008-3016, 2009.
[24] B. M. Ginley, J. Maher, C. O’Riordan, and F. Morgan, “Maintaining Healthy Population Diversity Using Adaptive Crossover, Mutation, and Selection,” IEEE Trans. Evol. Comput, Vol. 15, No. 5, pp. 692-714, 2011.
[25] X. Dai, “Allele Gene Based Adaptive Genetic Algorithm to the Code Design,” IEEE Trans. Comm, Vol. 59, No.5, pp. 1253-1258, 2011.
[26] Z. Tu and Y. Lu, “A Robust Stochastic Genetic Algorithm (StGA) for Global Bumerical Optimization,” IEEE Trans. Evol, Vol. 8, No. 5, pp. 456-470, 2004.
[27] H. F. Leung, H. K. Lam, S. H. Ling, and K. S. Tam, “Tuning of the Structure and Parameters of a Neural Network Using an Improved Genetic Algorithm,” IEEE Trans. Neural Netw., Vol. 14, No. 1, pp. 79-88, 2003.
[28] J. T. Tsai, T. K. Lin, and J. H. Chou, “Hybrid Taguchi-Genetic Algorithm for Global Numerical Optimization,” IEEE Trans. Evol. Comput., Vol. 8, No. 4, pp. 365-377, 2004.
[29] T. Park and K. R. Ryu, “A Dual-Population Genetic Algorithm for Adaptive Diversity Control,” IEEE Trans. Evol. Comput., Vol. 14, No. 6, pp. 865-884, 2010.
[30] W. S. Lu and T. Hinamoto, “Optimal Design of IIR Digital Filters With Robust Stability using Conic-Quadratic-Programming Updates,” IEEE Trans. Signal Pro., Vol. 51, No. 6, pp. 1581-1592, 2003.
[31] T. Hinamoto, M. Muneyasu, and H. Toda,“Design of 2-D IIR Filters with Asymmetry and Constant Group Delays,” Journal of the Franklin Institute, Vol. 329, Issue 2, pp. 371-381, 1992.
[32] T. Hinamoto, M. Muneyasu, H. Kukita, and S. Maekawa, “A Direct Design of Two-dimensional Asymmetric Half-plane Recursive Digital Filters,” Journal of the Franklin Institute, Vol. 323, Issue 2, pp. 253-266, 1987.
[33] B. Dumitrescu, “Optimization of Two-Dimensional IIR Filters With Nonseparable and Separable Denominator,” IEEE Trans. Signal Pro., Vol. 53, No. 5, pp. 1768-1776, 2005.
[34] M. Wang, E. B. Lee, and D. Boley, “A simple Method to Determine the Stability and Margin of Stability of 2-D Recursive Filters,” IEEE Trans. Circuits Syst. I., Vol. 39, No. 3, pp. 237-239, 1992.
[35] B. Akay and D. Karaboga, “A Modified Artificial Bee Colony Algorithm for Real-Parameter Optimization,” Information Sciences, Vol. 192, pp. 120-142, 2012.
[36] J. H. Lee and Y. H. Yang, “Two-Channel Quincunx QMF Banks Using Two-Dimensional Digital Allpass Filters,” IEEE Trans. Circuits Syst. I., Vol. 56, No. 12, pp. 2644-2654, 2009.
[37] J. H. Holland, Adaptation in natural and Artificial Systems. Ann Arobr, MI: Univ. Michigan Press, 1975.
[38] J. T. Tsai, W. H. Ho, and J. H. Chou, “Design of Two-Dimensional Recursive Filters by Using Taguchi-Based Immune Algorithm,” IET Signal Process., Vol. 2, No. 2, pp. 110-117, 2008.
[39] D. Guindon and D. J. Shpak, “Design Methodology for Nearly Linear-Phase Recursive Digital Filters by Constrained Optimization,” IEEE Trans. Circuits Syst. I, Vol. 57, No.7, pp. 1719-1731, 2010.
[40] C. H. Hsieh, C. M. Kuo, Y. D. Jou, and Y. L. Han, “Design of Two-Dimensional FIR Digital Filters by a Two-Dimensional WLS Technique,” IEEE Trans. Circuits Syst. II, Analog Digit. Signal Pro., Vol. 44, No. 5, 1997.
[41] D. E. Goldberg, Genetic Algorithms in Search, Optimization and Machine Learning. New York: Addison-Wiley, 1990.
[42] L. Shi, Y. K. Deng, H. F. Sun, R. Wang, J. Q. Ai, and H. Yan, “An Improved Real-Coded Genetic Algorithm for the Beam Forming of Spaceborne SAR,” IEEE Trans. Antennas Propag., Vol.60, No.6, pp.3034-3040, 2012.
[43] Z. Michalewicz, Genetic Algorithms + Data Structures = Evolution Programs. Berlin: Springer-Verlag 1996.
[44] Y. W. Leung and Y. Wang, “An Orthogonal Genetic Algorithm With Quantization for Global Numerical Optimization,” IEEE Trans. Evol. Comput., Vol. 5, No. 1, pp. 41-53, 2001.
[45] T. Hinamoto, T. Oumi, O. I. Omoifo, and W. S. Lu, “Minimization of Frequency-Weighted l2-Sensitivity Subject to l2-Scaling Constraints for Two-Dimensional State-Space Digital Filters,” IEEE Trans. Signal Pro., Vol. 56, No. 10, pp. 5157-5168, 2008.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top