跳到主要內容

臺灣博碩士論文加值系統

(98.84.18.52) 您好!臺灣時間:2024/10/06 11:54
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:黃政緯
研究生(外文):Cheng-Wei,Huang
論文名稱:石墨烯之製備及改善潤濕性於高分子有機發光二極體之應用
論文名稱(外文):Preparation of graphene and wettability modification and its application on polymer organic light-emitting diode
指導教授:蒲念文蒲念文引用關係
指導教授(外文):Nen-Wen Pu
口試委員:葛明德劉國辰
口試委員(外文):Ming-Der GerKou-Chen Liu
口試日期:2014-07-25
學位類別:碩士
校院名稱:元智大學
系所名稱:光電工程學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2014
畢業學年度:102
語文別:中文
論文頁數:96
中文關鍵詞:石墨烯聚二氧乙基噻吩:聚苯乙烯磺酸複合物陽極潤濕性有機發光二極體
外文關鍵詞:GraphenePEDOT:PSSAnodeWettabilityOLED
相關次數:
  • 被引用被引用:0
  • 點閱點閱:86
  • 評分評分:
  • 下載下載:8
  • 收藏至我的研究室書目清單書目收藏:0
本篇論文中第一部份為利用常壓化學氣相沉積法以銅箔作為觸媒成長出大面積且均勻之石墨烯薄膜,並探討固定晶格方向之銅箔,其厚度對於石墨烯成長層數的影響。我們並利用拉曼光譜儀分析石墨烯之層數及均勻性、以四點探針量測石墨烯薄膜之片電阻、以紫外線/可見光分光光譜儀量測薄膜之光穿透率,並探討石墨烯之成長機制。我們觀察到,在未刻意固定銅箔晶格方向下成長石墨烯,所呈現之現象皆為當銅箔厚度的厚度越厚,成長出的石墨烯越趨近於多層的石墨烯,因此,我們也嘗試利用改良化學氣相沉積的過程控制銅箔受熱時保持固定晶格方向,在130μm、90μm、40μm銅箔上成長石墨烯之I2D/IG之比值分別為0.9-少層、1.0-雙層、1.4-單層,其薄膜透光率分別約為95%、96%、97%,成功利用銅箔厚度來控制我們需要的石墨烯層數。
此外,我們將石墨烯薄膜應用於大分子有機發光二極體作為陽極,但因石墨烯本質為疏水性,導電高分子PEDOT:PSS及PH1000,兩者材料應用於元件中亦有層間潤濕性的問題,故我們利用硝酸將石墨烯進行摻雜,其一能降低片電阻又不影響透光,其二為增加薄膜表面之潤濕性,硝酸摻雜石墨烯前後之接觸角分別為71∘及98∘,故我們利用IPA摻雜於導電高分子PEDOT:PSS及PH1000並搭配硝酸摻雜之石墨烯薄膜,其接觸角成功從71∘降至約23∘,與PEDOT:PSS於PT-ITO(Plasma Treatment)之接觸角相近,此改質方法的搭配有助於增加導電高分子之成膜均勻性並有助於增加石墨烯於元件中之應用。
緊接著我們再利用表面電位分布(SKPM)及場發射電子顯微鏡(FESEM)進一步證明改質前後之導電高分子於石墨烯薄膜之分布情形及其表面形貌,然而我們可以明顯地觀察到,IPA改質前後之導電高分子於石墨烯薄膜之披覆性亦有得到明顯改善。
最後石墨烯及ITO應用於PLED元件上的特性,在漏電流的部分,石墨烯在電流密度部分 10-4 A/cm2 遠大於在ITO為陽極的元件 10-6 A/cm2,且發光面積不均勻,推測可能由於製備石墨烯薄膜時多次的疊加轉印導致薄膜結構亦不穩定,然而,本身單層石墨烯之薄膜結構不完整故電流流至電阻較大或者流經石墨烯薄膜結構缺陷處,導致電流流失,產生漏電的情形故電洞無法循二極體結構躍遷至發光層與電子進行復合。但是我們證明,經過一連串於石墨烯薄膜及導電高分子的改質後,石墨烯薄膜運用於PLED元件之陽極是具有可行性。
In this study we used copper as the catalyst to grow large-area uniform graphene films by atmospheric-pressure chemical vapor deposition.We also explore the fixed direction of the lattice of copper, the thickness of the graphene layers.
Raman spectroscopy of graphene, four-point probe sheet resistance measurement, and UV/Vis spectrophotometer were used to characterize the properties of graphene. We found that when the Cu foil thickness was increased, the number of graphene layers became larger.
We also explored the application of graphene in polymer light-emitting diode (PLED) devices, and studied the influences of the doping method on the graphene work function, sheet resistance, and contact angle, AFM, FESEM and SPoM. In this study, we used nitric acid (HNO3) to dope graphene film, and we found that transmittance of the film was unaffected.Moreover, the doping methods can effectively raise the graphene work function from 4.6 eV to 4.9 eV. The contact angle between graphene and PEDOT : PSS was also studied. We found that by adding 0.25 wt.% of IPA as a surfactant into the PEDOT : PSS solution in addition to doping the graphene the contact angle was effectively reduced to 23o. Finally, the performance of PLED devices was characterized. The leakage current for PLED with a graphene anode was 10-4 A/cm2 much higher than that with an ITO anode 10-6 A/cm2 and the light-emitting patter was non-uniform.
書名頁……………………………………………………………………...i
論文口試委員審定書…………………………………………………..…ii
授權書…………………………………………………………………….iii
摘要 iii
Abstract vi
誌謝 vii
目錄 ix
表目錄 xiiii
圖目錄 xiiiii
一、緒論 1
1.1 前言 1
1.2 研究動機 6
二、文獻回顧 8
2.1 石墨烯…………………………………………………………....8
2.1.1石墨烯的特性 8
2.1.2石墨烯的應用 10
2.2石墨烯之製備方法……………………………………………...14
2.2.1 膠帶剝離法…………………………………………………...14
2.2.2 氧化還原法…………………………………………………...15
2.2.3化學氣相沉積法 18
2.2.4碳化矽熱裂解磊晶法 19
2.2.5超臨界流體法[28] 20
2.3 化學氣相沉積法之進程 22
2.4 有機發光二極體………………………………………………. 28
三、實驗製備流程及步驟 32
3.1實驗流程圖 32
3.2實驗材料 33
3.2.1石墨烯製備材料 33
3.2.2有機發光二極體製備的設備及材料 34
3.3實驗設備及儀器 35
3.3.1石墨烯之製備 35
3.3.2大分子有機發光二極體之製備 37
3.4元件製作及應用設備 38
3.4.1石墨烯透明導電膜製作 38
3.4.2高分子有機發光二極體元件製作 44
3.5分析與檢測 50
3.5.1拉曼光譜特性檢測 50
3.5.2薄膜透光率分析 51
3.5.3功函數量測 53
3.5.4薄膜片電阻量測 54
3.5.5水接觸角量測 56
3.5.6 PLED元件特性量測 57
四、實驗結果與討論 59
4.1 觸媒金屬銅箔厚度對成長石墨烯層數之研究 59
4.1.1 改變銅箔厚度對石墨烯層數之特性研究 59
4.1.2以電化學蝕刻薄化銅箔對於石墨烯層數之研究 63
4.2 溶液摻雜於導電高分子對石墨烯表面潤濕性之影響 67
4.2.1 溶液摻雜於導電高分子對石墨烯薄膜親疏水性之影響 67
4.2.2溶液摻雜於導電高分子對石墨烯薄膜功函數之影響 69
4.2.3溶液摻雜之導電高分子成膜於石墨烯表面均勻性之探討 73
4.3 石墨烯運用於PLED元件之陽極 80
4.3.1 石墨烯運用於PLED陽極漏電流之分析 80
4.3.2 石墨烯運用於PLED陽極電壓-電流之分析 81
4.3.3 石墨烯運用於PLED陽極發光效率及亮度之分析 82
五、結論 85
六、未來展望 87
參考文獻 89
[1] S. Stankovich, D.A. Dikin, G.H.B. Dommett, K.M. Kohlhaas, E.J. Zimney, E.A. Stach, R.D. Piner, S.T. Nguyen, and R.S. Ruoff, “Graphene-based composite materials”, Nature, Vol. 442, pp.282-286, 2006.。
[2] http://www.solartech.com.tw/tw/rd_product_roadmap4.html
[3] http://www.materialsnet.com.tw/DocView.aspx?id=7554
[4] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva and A. A. Firsov, Science 306, 666 (2004).
[5] D. A. Dikin, S. Stankovich, E. J. Zimney, R. D. Piner, G. H. B. Dommett, G. Evmenenko, S. T. Nguyen, R. S. Ruoff,Nature 448, 457 (2007).
[6] S. Gilje, S. Han, M. Wang, K. L. Wang and R. B. Kaner, Nano Lett. 7, 3394 (2007).
[7] S. Stankovich, D. A. Dikin, G. H. B. Dommett, K. M. Kohlhaas, E. J. Zimney, E. A. Stach,R. D. Piner, S. T. Nguyen, R.S. Ruoff, Nature 442, 282 (2006).
[8] S. Park, R. S. Ruoff, Nat. Nanotechnol. 4, 217 (2009).
[9] C. Berger,Z. Song,X.Li, X. Wu, N. Brown, C. Naud, D. Mayou, T. Li, J. Hass, A. N. Marchenkov, E. H. Conrad, P. N.First and W. A. de Heer, Science 312, 1191 (2006).
[10] K. V. Emtsev, A. Bostwick, K. Horn, J. Jobst, G. L. Kellogg, L. Ley, J. L. McChesney, T. Ohta, S. A. Reshanov, J. Röhrl, E.Rotenberg, A. K. Schmid, D. Waldmann, H. B. Weber and T. Seyller, Nat. Mater. 8, 203 (2009).
[11] http://www.materialsnet.com.tw/DocView.aspx?id=9214
[12] Lee.,et al, “Metal Diffusion from Electrodes in OrganicLight-Emitting Diodes.” Appl Phys Lett, Vol. 75, 1404-1406, (1999)
[13] Chen.,et al, “A mechanical Assessment of Flexible Optoelectronic Devices.” Thin Solid Films, Vol. 394, 201-205, (2001)
[14] O’Connor.,et al, “Transparent and Conductive Electrodes Based on Unpatterned.” Thin Metal Films, Vol. 93, 223304, (2008)
[15] Camacho.,et al, “Surface and Grain Boundary Contributions in the Electrical Resistivity of Metallic Nanofilms.” Thin Solid Films, Vol. 15, 1881-1885, (2006)
[16] Lee.,et al, “Solution-Processed Metal Nanowire Mesh Transparent Electrodes." Nano Lett, Vol. 8, 689-692, (2008)
[17] Wu.,et al. ”Organic light-emitting diodes on solution-processed graphene transparent electrodes.” ACS Nano, Vol. 4, 43-48, (2009).
[18] Charton.,et al, ”Optical Properties of Thin Ag Films Deposited by Magnetron Sputtering.“ Surf Coat Technol, Vol. 174-175, 181–186, (2003)
[19] Mauricio.,et al, ”Graphene and graphite nanoribbons: Morphology,properties, synthesis, defects and applications.” Nano Today, Vol. 5,351-372, (2010)
[20] Kroto.,et al,“C60:Buckminsterfullerene.” Nature, Vol. 318, 162-163, (1985)
[21] Novoselov, K.S., Geim, A.K., Morozov, S.V., Jiang, D., Zhang, Y., Dubonos, S.V., et al., “Electric field effect in atomically thin carbon films”, Science; 306(5696):666–669, 2004.
[22] Schniepp, H. C., Li, J. L., McAllister, M. J., and Hiroaki, S., “Functionalized Single Graphene Sheets Derived from Splitting graphite Oxide,” Phys Chem Lett,Vol. 110, pp. 8535- 8539, 2006.
[23] William, S., Hummers, J. R., and Richard, E., “Preparation of Graphitic Oxide,”1957.
[24] Cote, L. J., Silva, R. C., and Huang, J., “Flash Reduction and Patterning of Graphite Oxide and Its Polymer Composite,” American Chemical Society, Vol. 131, pp. 11027-11032, 2009.
[25] Chen, W., Yan, L., and Bangal, P. R., ”Preparation of graphene by the rapid andmild thermal reduction of graphene oxide induced by microwaves,” Carbon, Vol.48, pp. 1146-1152, 2010.
[26] Sukang Bae1, Hyeongkeun Kim, Youngbin Lee, Xiangfan Xu, Jae-Sung Park, Yi Zheng,Jayakumar Balakrishnan,etc. Roll-to-roll production of 30-inch graphene films for transparent electrodes,Nature Nanotechnology 5,574–578(2010).
[27] Forbeaux, I., Themlin, J. M., and Debever, J. M., “Heteroepitaxial graphite on 6H-SiC(0001): Interface formation through conduction-band electronic structure,” The American Physical Society, Vol. 58, No. 24, pp. 396-406
[28] Pu, N. W., Wang, C. A., Sung Y., Liu, Y. M., and Ger, M. D., “Production offew-layer graphene by supercritical CO2 exfoliation of graphite,” MaterialsLetters, Vol. 63, pp. 1987-1989, 2009.
[29] Owen C. Compton and SonBinh T. Nguyen, Graphene Oxide, Highly Reduced Graphene Oxide, and Graphene: Versatile Building Blocks for Carbon-Based Materials. small 2010, 6, No. 6, 711–723
[30] Iskandar N. Kholmanov,Carl W. Magnuson,Ali E. Aliev,Huifeng Li,Bin Zhang,Ji Won Suk,Li Li Zhang,Eric Peng,S. Hossein Mousavi, Alexander B. Khanikaev,Richard Piner,Gennady Shvets,and Rodney S. Ruoff, Improved Electrical Conductivity of Graphene Films Integrated with Metal Nanowires, Nano Lett., 2012, 12 (11), pp 5679–5683.
[31] Vaari, J.; Lahtinen, J.; Hautoja¨rvi, P. The adsorption and decomposition of acetylene on clean and K-covered Co(0001). Catal. Lett. 1997, 44(1), 43–49.
[32] Ueta, H.; Saida, M.; Nakai, C.; Yamada, Y.; Sasaki, M.; Yamamoto,S. Highly oriented monolayer graphite formation on Pt(111) by a supersonic methane beam. Surf. Sci. 2004, 560 (1-3), 183–190.
[33] Starr, D. E.; Pazhetnov, E. M.; Stadnichenko, A. I.; Boronin, A. I.;Shaikhutdinov, S. K. Carbon films grown on Pt(111) as supports for model gold catalysts. Surf. Sci. 2006, 600 (13), 2688–2695.
[34] Gall, N.; Rut kov, E.; Tontegode, A. Interaction of silver atoms with iridium and with a two-dimensional graphite film on iridium: Adsorption,desorption, and dissolution. Phys. Solid State 2004, 46 (2), 371–377.
[35] Coraux, J.; Ndiaye, A. T.; Busse, C.; Michely, T. Structural Coherency of Graphene on Ir(111). Nano Lett. 2008, 8 (2), 565–570.
[36] de Parga, A. L. V.; Calleja, F.; Borca, B.; Passeggi, J. M. C. G.;Hinarejos, J. J.; Guinea, F.; Miranda, R. Periodically RippledGraphene: Growth and Spatially Resolved Electronic Structure. Phys.ReV. Lett. 2008, 100 (5), 056807–4.
[37] Marchini, S.; Gunther, S.; Wintterlin, J. Scanning tunneling microscopy of graphene on Ru(0001). Phys. ReV. B Condens. Matter 2007, 76(7), 075429–9.
[38] Goodman, D. W.; Yates, J. T. CO isotopic mixing measurements on nickel: Evidence for irreversibility of CO dissociation. J. Catal. 1983,82 (2), 255–260.
[39] Madden, H. H.; Kuppers, J.; Ertl, G. Interaction of carbon monoxide with (110) nickel surfaces. J. Chem. Phys. 1973, 58 (8), 3401–3410.
[40] Gamo, Y.; Nagashima, A.; Wakabayashi, M.; Terai, M.; Oshima, C.Atomic structure of monolayer graphite formed on Ni(111). Surf. Sci.1997, 374 (1-3), 61–64.
[41] Kawano, T.; Kawaguchi, M.; Okamoto, Y.; Enomoto, H.; Bando, H.Preparation of layered B/C/N thin films on nickel single crystal by LPCVD. Solid State Sci. 2002, 4 (11-12), 1521–1527.
[42] Starodubov, A. G.; Medvetskii, M. A.; Shikin, A. M.; Adamchuk,V. K. Intercalation of silver atoms under a graphite monolayer onNi(111). Phys. Solid State 2004, 46 (7), 1340–1348.
[43] PETER W. SUTTER, JAN-INGO FLEGE AND ELI A. SUTTER,Epitaxial graphene on ruthenium,Nature Mater.,vol. 7,p.406-411,2008.
[44] K. S. Kim et al., Large-scale pattern growth of graphene films for stretchable transparent electrodes Nature 457, 706 (2009).
[45] Xuesong Li, et al. Large-Area Synthesis of High-Quality and Uniform Graphene Films on Copper Foils, Science 324, 1312 (2009).
[46] Xuesong Li,Yanwu Zhu,Weiwei Cai,Mark Borysiak,Boyang Han,David Chen,Richard D. Piner, Luigi Colombo,and Rodney S. Ruoff, Transfer of Large-Area Graphene Films for High-Performance Transparent Conductive Electrodes.Nano Letter 9(12),4359-4363(2009).
[47] Alfonso Reina,Xiaoting Jia,John Ho,Daniel Nezich,Hyungbin Son,Vladimir Bulovic,Mildred S. Dresselhaus, and Jing Kong, Large Area, Few-Layer Graphene Films on Arbitrary Substrates by Chemical Vapor Deposition’,Nano Lett.,vol.9,p.30-35,2009.
[48] Alfonso Reina, Stefan Thiele,Xiaoting Jia,Sreekar Bhaviripudi, Mildred S.Dresselhaus,Juergen A.Schaefer, and Jing Kong,” Growth of Large-Area Single- and Bi-Layer Graphene by Controlled Carbon Precipitation on Polycrystalline Ni Surfaces”, Nano Res (2009) 2: 509-516
[49] Bonaccorso.,et al, ”Graphene photonics and optoelectronics.” Nature Photon, Vol. 4, 611-622, (2010)
[50] Gordo,et al, ”Criteria for Choosing Transparent Conductors.” MRS Bulletin , Vol. 25, 52-57, (2011)
[51] Granqvist.,et al, “Transparent conductors as solar energy materials:a panoramic review.” Solar Energy Mater and Solar Cells, Vol. 91, 1529-1598, (2007)
[52] Geng.,et al, ”Effect of acid treatment on carbon nanotube-based flexible transparent conducting films.” Am Chem Soc, Vol. 129, 7758-7759 (2007)
[53] Wu.,et al, “Transparent,conductive carbon nanotube films.” “Science, Vol. 305, 1273-1276, (2004)
[54] De.,et al “Are there fundamental limitations on the sheet resistanceand transmittance of thin graphene films?” ACS Nano, Vol. 4, 2713-2720, (2010)
[55] De.,et al, “Silver nanowire networks as flexible, transparent,conducting films:extremely high DC to optical conductivity ratios.” ACS Nano, Vol. 3, 1767-1774, (2009)
[56] Maria Losurdo,* Maria Michela Giangregorio, Pio Capezzuto and Giovanni Bruno, Graphene CVD growth on copper and nickel: role of hydrogen in kinetics and structure, Phys. Chem. Chem. Phys., 2011,13, 20836-20843.
[57] Matyba.,et al. ”Graphene and mobile ions: the key to all-plastic, solution process
[58] Wang.,et al, ”Transparent, conductive graphene electrodes for dye-sensitized solar cells.” Nano Lett, Vol. 8, 323-327, (2007)
[59] Reina.,et al, “Large Area, Few-Layer Graphene Films on Arbitrary Substrates by Chemical Vapor Deposition.” Nano Lett, Vol. 9, 30-35, (2009)
[60] Correia.,et al ” Graphene position paper.” Nano newsletter, special issue, (2011)
[61] Tung.,et al, ”Low-temperature solution processing of graphene-carbon nanotube hybrid materials for high-performance transparent conductors.” Nano Lett, Vol. 9, 1949-1955, (2009)
[62] Pope.,et al, ”Electroluminescence in Organic Crystals.” Chem Phys,Vol. 38, 2042, (1963)
[63] Tang.,et al, “Organic electroluminescent diodes.” Appl Phy Lett, Vol. 51, 913-915, (1987)
[64] Burroughes.,et al, “Light-emitting diodes based on conjugated polymers.” Nature, Vol. 347, 539-541, (1990)
[65] Tae-Hee Han..et al,”Extremely efficient flexible organic light-emitting diodes with modified graphene anode.”Nature,Vol. 9,105-110(2012)
[66] 鄭碩方, “製備銅催化化學氣相沉積石墨烯與其氨氣摻雜之奈米帶電性研究”,國立清華大學電子工程研究所碩士論文,新竹,第88頁, (2011)
[67] Cote.,et al, “Flash Reduction and Patterning of Graphite Oxide and Its Polymer Composite,” Am Chem Soc, Vol. 131, 11027-11032, (2009)
[68] Hersberg, ”Molecular Spectra and Molecular Structure III. Electronic Spectra and Electronic Structure of Polyatomic Molecules,” van Nostrand Reihold Company Inc., New York, (1966)
[69] 博精儀器股份有限公司” 紫外光/可見光光譜儀原理”
[70] Joshua D. Wood,Scott W. Schmucker,Austin S. Lyons,Eric Pop,and Joseph W. Lyding, Effects of Polycrystalline Cu Substrate on Graphene Growth by Chemical Vapor Deposition,Nano Lett.,2011,11(11),pp 4547-4554.
[71] Vlassiouk.,et al, ” Role of Hydrogen in Chemical Vapor Deposition Growth of Large Single-Crystal Graphene.” ACS Nano, Vol. 5, 6069, (2011)
[72] R. B. McLellan, Scr. Metal. 3, 389 (1969).
[73] G. Mathieu, S. Guiot, J. Carbané, Scr. Metal. 7, 421(1973).
[74] G. A. López, E. J. Mittemeijer, Scr. Mater. 51, 1 (2004).
[75] S. Zhang, J. De Baets, M. Vereeken, A. Vervae and A Van Calster,“Stabilizer Concentration and local envirmen:their effects on electroless nickel plating of PCB Micropads,” Journal of the Electrochemical Society, Vol.146, No.8, pp. 2807-2875, 1999
[76] Lee, S. J., Huang, C. H., and Chen, Y. P., “Investigation of PVD Coating on Corrosion Resistance of Metallic Bipolar Plates in PEMFC,” Journal of Materials Processing Technology, Vol. 140, pp. 688-693, 2003.
[77] H Park,et al, Interface engineering of graphene for universal applications as both anode and cathode in organic photovoltaics,”Scientific Reports. 3”,1581,2012
[78] Hyesung Park,et al,“Application ofsolventmodified PEDOT:PSS to graphene electrodes in organic solar cells”, Nanoscale, 2013,5, 8934-8939
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊