跳到主要內容

臺灣博碩士論文加值系統

(44.201.99.222) 您好!臺灣時間:2022/12/05 22:56
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:孫睿鴻
研究生(外文):Jui-Hung Sun
論文名稱:二的冪次方長度複數格雷互補序列之乘積建構法
論文名稱(外文):Product Construction for Power-of-Two LengthComplex Golay Complementary Sequences
指導教授:李穎李穎引用關係
指導教授(外文):Ying Li
口試委員:鐘嘉德劉玉蓀陳逸民
口試委員(外文):Char-Dir ChungYu-Sun LiuYih-Min Chen
口試日期:2014-06-26
學位類別:碩士
校院名稱:元智大學
系所名稱:通訊工程學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2014
畢業學年度:102
語文別:中文
論文頁數:39
中文關鍵詞:格雷序列格雷互補序列格雷互補對乘積建構法布林函數表示法PSK序列碼字序列
外文關鍵詞:Golay SequencesGolay Complementary SequencesGolay Complementary PairsProduct ConstructionBoolean FunctionCodeword sequences
相關次數:
  • 被引用被引用:1
  • 點閱點閱:39
  • 評分評分:
  • 下載下載:4
  • 收藏至我的研究室書目清單書目收藏:0
格雷序列在通訊系統已有許多應用,如同步及通道估測。其中使用最廣的為長度是二的冪次方的BPSK格雷序列。二的冪次方長度的格雷序列字集已由實數的BPSK字集擴大到H-PSK與QAM等複數字集。其建構主要基於1999年Davis, Jedwab提出的廣義布林函數相加建構法。這個方法是將H-PSK格雷序列的相位對應到mod-H整數序列,並表為特定序列相加合併的結果。Budisin, Spasojevic於2013年提出了乘積建構法,使用乘積的方式產生格雷序列的元素值。不同於以往廣義布林函數建構法只描述相位,乘積建構法同時描述大小及相位,可以生成更多複數格雷序列,但序列長度仍限於二的冪次方。

本研究探討Budisin, Spasojevic提出的乘積建構法,觀察乘積建構法與相加建構法之間的關係,與乘積建構法對應之相位相加廣義布林函數表示式。由此表示式可得知非標準格雷序列無法由乘積建構法生成。本研究也提出以乘積建構法生成有唯一性無重複的所有標準格雷序列的方法,並說明Budisin, Spasojevic研究所需做的一些更正。
Golay complementary sequences have many applications in communications systems, including synchronization and hannel estimation. The most widely used are power-of-two length BPSK Golay complementary sequences. The alphabet of power-of-two length Golay complementary sequences has been extended to complex alphabets such as H-PSK and QAM. The constructions are mainly based on the generalized Boolean function sum method proposed by Davis and Jedwab in 1999. In their method, mod-H sequences corresponding to the phase of H-PSK Golay complementary sequences were obtained by the addition of specific base sequences. In 2013, Budisin and Spasojevic proposed a product construction, where the elements of Golay complementary sequences are obtained from a product operation. Unlike the generalized Boolean function construction which only describes the phase, the product construction describes both the magnitude and the phase, and can generate more complex Golay sequences with the restriction that the sequence lengths still being powers of two.

This research aims to study Budisin and Spasojevic’s product construction and observe its relation with the sum construction and the corresponding generalized Boolean function expression. From this expression, it is concluded that non-standard Golay complementary sequences cannot be generated from the product construction. A method to generate unique standard Golay complementary sequences from the product construction is proposed, together with some minor corrections for the product construction.
中文摘要 i
ABSTRACT ii
誌謝 iii
目 錄 iv
符號表 v
第一章 序論 1
1.1 研究動機與目的 1
1.2 研究成果 2
第二章 二的冪次方長度格雷互補序列建構法 4
2.1 格雷互補序列的定義 4
2.2 二的冪次方長度PSK序列的碼字序列與廣義布林函數表示法 5
2.2.1 PSK序列與碼字序列 5
2.2.2 二的冪次方長度PSK序列廣義布林函數表示法 7
2.3 標準格雷序列廣義布林函數相加建構法 11
2.4 二的冪次方長度複數格雷序列乘積建構法 12
2.4.1 Unitary matrix 13
2.4.2 The Boolean Exponent Form 16
2.4.3 BooleanCS程式流程架構 17
第三章 複數格雷序列乘積建構法的特性探討 22
3.1乘積建構法無法生成的格雷序列 22
3.2以乘積建構法生成無重複之PSK標準格雷序列 24
3.3 Budisin , Spasojevic[BuS 13]研究之訂正 26
3.4 特例說明 28
3.4.1 Permutation序列P的影響 28
3.4.2 互補對 32
第四章 結論 37
參考文獻 38
[Bud 13]S. Z. Budišin and P. Spasojević, "Paraunitary generation/correlation of QAM com-mplementary sequence pairs, " Cryptography and Communications, (DOI 10.1007
/s12095-013-0087-9), 2013.

[BuS 13]S. Z. Budišin, and P. Spasojević. "Universal Generator for Complementary Pairs of Sequences Based on Boolean Functions," arXiv preprint arXiv:1311.47
82, 2013.

[Cha 06]張美雯, "OFDM序列PAPR, " 元智大學碩士論文, 2006.

[CLH 10]C. Y. Chang, Y. Li and J. Hirata, "New 64-QAM Golay Complementary Sequences," IEEE Trans. Inf. Theory, vol. 56, no. 5, pp. 2479-2485, 2010.

[ DaJ 99]J. A. Davis and J. Jedwab, "Peak-to-mean power control in OFDM, Golay complementary sequences and Reed-Muller codes," IEEE Trans. Inf. Theory, vol. 45, no. 7, pp. 2397-2417, 1999.

[ FiJ 06 ]F. Fiedler and J. Jedwab, "How do more Golay sequences arise?," IEEE Trans. Inf. Theory, vol. 52 ,no. 9, pp. 4261-4266, 2006.

[FJPa 08]F. Fiedler, J. Jedwab and M.G. Parker, "A multi-dimensional approach to the construction and enumeration of Golay complementary sequences," J. Comb. Theory, vol. 115, pp. 753-776, 2008.

[FJPb 08]F. Fiedler, J. Jedwab and M.G. Parker, "A framework for the construction of Golay sequences," IEEE Trans. Inf. Theory, vol. 54, no. 7, pp. 3114-3129, 2008.

[FJW 10]F. Fiedler, J. Jedwab and A. Wiebe, "A new source of seed pairs for Golay sequences of length 2m, " J. Comb. Theory, vol. 117, pp. 589–597, 2010.

[Gol 61]M.J.E. Golay, "Complementary Series", IRE Trans. Inf. Theory, vol. IT-7,
no. 2, pp. 82-87, 1961.

[Hwa 06]黃國倫, "格雷互補序列遞迴建構探討, " 元智大學碩士論文, 2006.

[ Li 08 ]Y. Li, "Comments on "A new construction of 16-QAM Golay complementary sequences" and extension for 64-QAM Golay sequences" IEEE Trans. Inf. Theory, vol. 54, no. 7, pp. 3246-3251, 2008.

[LiC 05] Y. Li and W.B. Chu, "More Golay Sequences, " IEEE Trans. Inf. Theory, vol. 51, no. 3, pp. 1141-1145, 2005.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top