跳到主要內容

臺灣博碩士論文加值系統

(44.201.99.222) 您好!臺灣時間:2022/11/30 18:29
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:朱潔瑩
研究生(外文):CHAU KIET OANH
論文名稱:了解使用者對數位學習系統的滿意度和持續使用意圖
論文名稱(外文):Understanding users’ satisfaction and continuance intention towards e-learning systems
指導教授:湯玲郎湯玲郎引用關係
指導教授(外文):Ling-Lang Tang
口試委員:蘇雄義池文海
口試委員(外文):Shong-Iee Ivan SuWen-Hai Chih
口試日期:2014-06-12
學位類別:碩士
校院名稱:元智大學
系所名稱:經營管理碩士班(企業管理)
學門:商業及管理學門
學類:企業管理學類
論文種類:學術論文
論文出版年:2014
畢業學年度:102
語文別:英文
論文頁數:75
中文關鍵詞:科技接受模型資訊系統成功模型資訊系統接受後持續採用模型數位學習持續使用意圖
外文關鍵詞:TAMD&M ModelISCME-learningContinuance intention
相關次數:
  • 被引用被引用:0
  • 點閱點閱:577
  • 評分評分:
  • 下載下載:189
  • 收藏至我的研究室書目清單書目收藏:3
數位學習具有成本效益、傳遞效益、自主學習、及時訓練與隨時隨地可取得等特性,使得數位學習已被廣泛地運用於教育單位。本研究以科技接受模型(Technology Acceptance Model, TAM)、資訊系統成功模型(D&M Information Success Model, D&M)以及資訊系統接受後持續採用模型(Information System Continuance Model, ISCM)為架構,探討使用者對數位學習的使情形,而不同於TAM針對使用者的初次使用進行探討,本研究則探討使用者使用後的採用情形,期以對數位學習之滿意度與持續使用意圖有更完整的解釋。本研究架構中共有八個構面:認知支持、自我效能、焦慮、認知品質、認知有用性、認知易用性、滿意度與持續使用意圖,研究涵蓋教育單位數位學習系統的四個面向:系統、學生、教師與大學。
本研究以學生為調查對象,透過問卷調查法共回收268份有效問卷,接著使用AMOS 18.0統計軟體以結構方程式模型(SEM)系統性地驗證研究假說。研究結果發現了更多影響數位學習系統的成功因素,其中認知易用性直接影響持續使用意圖,而認知有用性並非影響滿意度的關鍵因素。本研究結果可提供教育單位在提升數位學習系統上的參考,並提出未來研究建議供相關研究者參考。
With its beneficial features such as cost-efficiency, delivery-effectiveness, self-management of learning, on-demand training, anywhere and anytime availability, e-learning has been applied widely in education. Based on Technology Acceptance Model (TAM), D&M Information Success Model (D&M model) and Information System Continuance Model (ISCM), this study seeks to develop a more comprehensive framework to explain about user satisfaction and continuance intention to use e-learning system in educational section. There are totally eight constructs in our proposed framework, which are perceived support, self-efficacy, anxiety, perceived quality, perceived usefulness, perceived ease of use, user satisfaction and continuance intention. Based on the responses of 268 students, Structural Equation Modeling (SEM) with AMOS 18.0 was used to conduct data analysis. In academia, our findings make some contributions. Different from TAM model, our framework focuses on the e-learners’ post adoption instead of initial acceptance. Our research findings indicate that there are more factors influencing on the success of e-learning systems rather than IS-related constructs proposed in D&M IS success model. Besides, our study proves that perceived usefulness is not the mere determinant of user satisfaction. Another contribution is that some variables investigated in this study are rarely empirically explored before. Our research framework covers four dimensions regarding to the e-learning system in educational section including systems, learners, instructor, and university, which hardly been studied before. Furthermore, this study also shows the direct influence of perceived ease of use on users’ continuance intention to use, which is usually ignored in the past researches. In practice, our research findings provide with more references to enhance e-learning system usage in educational section and suggestions for future research direction.
Table of Contents
ABSTRACT ii
ACKNOWLEDGEMENTS iv
Table of Contents v
List of Tables vii
List of Figures viii
Chapter 1. Introduction 1
1.1 Introduction 1
1.2 Research scopes 2
1.3 Research objectives 3
Chapter 2. Literature Review 4
2.1 E-learning 4
2.1.1 Definition 4
2.1.2 The advantages of e-learning 5
2.1.3 E-learning categories 6
2.2 Underlying theories 7
2.2.1 D&M model 7
2.2.2 Technology Acceptance Model, TAM 8
2.2.3 Information system continuance model (ISCM) 9
2.3 Prior researches 11
2.4 Research model development 14
2.4.1 Perceived quality 15
2.4.2 Perceived usefulness and Perceived ease of use 16
2.4.3 Perceived support 17
2.4.4 Self efficacy and Anxiety 18
2.4.5 User Satisfaction and Continuance Intention 21
Chapter 3. Research Methodology 23
3.1 Research framework 23
3.2 Sample and data collection 24
3.3 Measures 24
3.4 Pilot test 28
3.5 Analysis Method 31
Chapter 4. Research Analysis and Result 33
4.1 Sample demography 33
4.2 Reliability test 34
4.3 Independent sample T-test 36
4.3.1 Groups by college 36
4.3.2 Groups by gender 37
4.4 Measurement model 38
4.5 Structural model 44
4.6 Model extensions 47
4.6.1 Model 1 47
4.6.2 Mediating roles of PEOU and CI 48
4.6.3 Model 2 50
Chapter 5. Discussion and Conclusion 52
5.1 Discussion 52
5.1.1 The relationship among perceived quality, user satisfaction and continuance intention. 52
5.1.2 The relationship between perceived usefulness, perceived ease of use, user satisfaction and continuance intention. 53
5.1.3 The impact of self-efficacy, perceived support, anxiety, on perceived ease of use and perceived usefulness. 54
5.2 Implications 54
5.3 Limitations and future directions 56
References 58
Appendix 1. Questionnaire items and sources 67
Appendix 2. Questionnaire in Chinese 71
Appendix 3. PORTAL learning website of Yuan Ze University 74
Ajzen, I. (2002). Perceived Behavioral Control, Self‐Efficacy, Locus of Control, and the Theory of Planned Behavior1. Journal of applied social psychology, 32(4), 665-683.
Al-Busaidi, K. A. (2012). Learners’ Perspective on Critical Factors to LMS Success in Blended Learning: An Empirical Investigation. Communications of the Association for Information Systems, 30(1), 2.
Bagozzi, R. P., & Yi, Y. (1988). On the evaluation of structural equation models. Journal of the academy of marketing science, 16(1), 74-94.
Bailey, J. E., & Pearson, S. W. (1983). Development of a tool for measuring and analyzing computer user satisfaction. Management science, 29(5), 530-545.
Bandura, A. (1986). Social foundations of thought and action. Englewood Cliffs, NJ.
Benson, L., Elliott, D., Grant, M., Holschuh, D., Kim, B., Kim, H., ... & Reeves, T. C. (2002). Usability and instructional design heuristics for e-learning evaluation. In World Conference on Educational Multimedia, Hypermedia and Telecommunications (Vol. 2002, No. 1, pp. 1615-1621).
Bentler, P. M., & Bonett, D. G. (1980). Significance tests and goodness of fit in the analysis of covariance structures. Psychological bulletin, 88(3), 588.
Bhatnagar, A., & Ghose, S. (2004). An Analysis of Frequency and Duration of Search on the Internet. The Journal of Business, 77(2), 311-330.
Bhattacherjee, A. (2001). Understanding information systems continuance: an expectation-confirmation model. MIS quarterly, 25(3), 351-370.
Blunch, N. (2012). Introduction to structural equation modeling using IBM SPSS statistics and AMOS. Sage.
Bokhari, R. H. (2005). The relationship between system usage and user satisfaction: a meta-analysis. Journal of Enterprise Information Management, 18(2), 211-234.
Bouhnik, D., & Marcus, T. (2006). Interaction in distance‐learning courses. Journal of the American Society for Information Science and Technology, 57(3), 299-305.
Brown, I. T. (2002). Individual and technological factors affecting perceived ease of use of web-based learning technologies in a developing country. The Electronic Journal of Information Systems in Developing Countries, 9.
Brown, S. A., Massey, A. P., Montoya-Weiss, M. M., & Burkman, J. R. (2002). Do I really have to? User acceptance of mandated technology. European journal of information systems, 11(4), 283-295.
Browne, M. W., & Cudeck, R. (1992). Alternative ways of assessing model fit.Sociological Methods & Research, 21(2), 230-258.
Byrne, B. M. (2013). Structural equation modeling with LISREL, PRELIS, and SIMPLIS: Basic concepts, applications, and programming. Psychology Press.
Capper, J. (2001). E-learning growth and promise for the developing world. TechKnowLogia, 2(2), 7-10.
Chen, H. J. (2010). Linking employees’e-learning system use to their overall job outcomes: An empirical study based on the IS success model. Computers & Education, 55(4), 1628-1639.
Cheng, B., Wang, M., Moormann, J., Olaniran, B. A., & Chen, N. S. (2012). The effects of organizational learning environment factors on e-learning acceptance. Computers & Education, 58(3), 885-899.
Cheng, Y. M. (2011). Antecedents and consequences of e‐learning acceptance. Information Systems Journal, 21(3), 269-299.
Chiu, C. M., Chiu, C. S., & Chang, H. C. (2007). Examining the integrated influence of fairness and quality on learners’ satisfaction and Web‐based learning continuance intention. Information Systems Journal, 17(3), 271-287.
Chiu, C. M., Hsu, M. H., Sun, S. Y., Lin, T. C., & Sun, P. C. (2005). Usability, quality, value and e-learning continuance decisions. Computers & Education, 45(4), 399-416.
Chiu, C. M., Sun, S. Y., Sun, P. C., & Ju, T. L. (2007). An empirical analysis of the antecedents of web-based learning continuance. Computers & Education, 49(4), 1224-1245.
Cho, V., Cheng, T. C. E., & Hung, H. (2009). Continued usage of technology versus situational factors: An empirical analysis. Journal of Engineering and Technology Management, 26(4), 264-284.
Chung, J. E., Park, N., Wang, H., Fulk, J., & McLaughlin, M. (2010). Age differences in perceptions of online community participation among non-users: An extension of the Technology Acceptance Model. Computers in Human Behavior, 26(6), 1674-1684.
Churchill Jr, G. A., & Surprenant, C. (1982). An investigation into the determinants of customer satisfaction. Journal of Marketing research, 491-504.
Clark, R. (2002). Six principles of effective e-learning: What works and why. The E-Learning Developer’s Journal.
Compeau, D. R., & Higgins, C. A. (1995). Computer self-efficacy: Development of a measure and initial test. MIS quarterly, 189-211.
Conklin, W., & Robbins-McNeish, N. (2007). The Evolution of E-learning in Diversity. The Diversity Factor, 15(1), 33-40.
Davis, F. D. (1989). Perceived usefulness, perceived ease of use, and user acceptance of information technology. MIS quarterly, 319-340.
DeLone, W. H., & McLean, E. R. (1992). Information systems success: the quest for the dependent variable. Information systems research, 3(1), 60-95.
DeLone, W. H., & McLean, E. R. (2002, January). Information systems success revisited. In System Sciences, 2002. HICSS. Proceedings of the 35th Annual Hawaii International Conference on (pp. 2966-2976). IEEE.
DeLone, W. H., & McLean, E. R. (2003). The DeLone and McLean model of information systems success: a ten-year update. Journal of management information systems, 19(4), 9-30.
Devaraj, S., Fan, M., & Kohli, R. (2002). Antecedents of B2C channel satisfaction and preference: validating e-commerce metrics. Information systems research, 13(3), 316-333.
Ellis. R (2004). Down with boring e-learning! Interview with e-learning guru Dr. Michael W.Allen. Learning circuits, Retrieved from http://www.astd.org/LC/2004/0704_allen.htm
Eom, S. B., Wen, H. J., & Ashill, N. (2006). The Determinants of Students' Perceived Learning Outcomes and Satisfaction in University Online Education: An Empirical Investigation*. Decision Sciences Journal of Innovative Education, 4(2), 215-235.
Fornell, C., & Larcker, D. F. (1981). Evaluating structural equation models with unobservable variables and measurement error. Journal of Marketing Research (JMR), 18(1).
Freeze, R. D., Alshare, K. A., Lane, P. L., & Joseph Wen, H. (2010). IS success model in e-learning context based on students' perceptions. Journal of Information Systems Education, 21(2), 173.
Gable, G. G., Sedera, D., & Chan, T. (2008). Re-conceptualizing information system success: the IS-impact measurement model. Journal of the Association for Information Systems, 9(7), 377-408.
Hair, J. F., Anderson, R. E., Tatham, R. L., & William, C. (1998). Black (1998), Multivariate data analysis.
Hair, J.F., Anderson, R.E., Tatham, R.L., & Black, W.C. (2008) Multivariate Data Analysis, (7th ed.). Prentice Hall Publisher, Upper Saddle River, New Jersey
Hayashi, A., Chen, C., Ryan, T., & Wu, J. (2004). The role of social presence and moderating role of computer self efficacy in predicting the continuance usage of e-learning systems. Journal of Information Systems Education, 15, 139-154.
Ho, L. A., & Kuo, T. H. (2010). How can one amplify the effect of e-learning? An examination of high-tech employees’ computer attitude and flow experience. Computers in Human Behavior, 26(1), 23-31.
Hong, S., Kim, J., & Lee, H. (2008). Antecedents Of Use-Continuance In Information Systems: Toward An Intergrative View. Journal of Computer Information Systems, 48(3), 61.
Hong, S., Thong, J. Y., & Tam, K. Y. (2006). Understanding continued information technology usage behavior: a comparison of three models in the context of mobile internet. Decision Support Systems, 42(3), 1819-1834.
Hrastinski, S. (2008). Asynchronous and synchronous e-learning. Educause quarterly, 31(4), 51-55.
Hu, L. T., & Bentler, P. M. (1995). Evaluating model fit.
Huang, H. M., & Liaw, S. S. (2005). Exploring users' attitudes and intentions toward the web as a survey tool. Computers in human behavior, 21(5), 729-743.
Johnson, R. D., Hornik, S., & Salas, E. (2008). An empirical examination of factors contributing to the creation of successful e-learning environments. International Journal of Human-Computer Studies, 66(5), 356-369.
Lai, T. L. (2004). Service quality and perceived value's impact on satisfaction, intention and usage of short message service (SMS). Information Systems Frontiers, 6(4), 353-368.
Larsen, T. J., Sørebø, A. M., & Sørebø, Ø. (2009). The role of task-technology fit as users’ motivation to continue information system use. Computers in Human Behavior, 25(3), 778-784.
Lee, M. C. (2010). Explaining and predicting users’ continuance intention toward e-learning: An extension of the expectation–confirmation model. Computers & Education, 54(2), 506-516.
Leso, T., & Peck, K. L. (1992). Computer anxiety and different types of computer courses. Journal of Educational Computing Research, 8(4), 469-478.
Levy, Y. (2007). Comparing dropouts and persistence in e-learning courses. Computers & education, 48(2), 185-204.
Liao, C., Chen, J. L., & Yen, D. C. (2007). Theory of planning behavior (TPB) and customer satisfaction in the continued use of e-service: An integrated model. Computers in Human Behavior, 23(6), 2804-2822.
Liao, C., Palvia, P., & Chen, J. L. (2009). Information technology adoption behavior life cycle: Toward a Technology Continuance Theory (TCT). International Journal of Information Management, 29(4), 309-320.
Liaw, S. S. (2008). Investigating students’ perceived satisfaction, behavioral intention, and effectiveness of e-learning: A case study of the Blackboard system. Computers & Education, 51(2), 864-873.
Liaw, S. S., Huang, H. M., & Chen, G. D. (2007). An activity-theoretical approach to investigate learners’ factors toward e-learning systems. Computers in Human Behavior, 23(4), 1906-1920.
Liaw, S. S., Huang, H. M., & Chen, G. D. (2007). Surveying instructor and learner attitudes toward e-learning. Computers & Education, 49(4), 1066-1080.
Limayem, M., & Cheung, C. M. (2008). Understanding information systems continuance: The case of Internet-based learning technologies. Information & Management, 45(4), 227-232.
Limayem, M., & Cheung, C. M. (2011). Predicting the continued use of Internet-based learning technologies: the role of habit. Behaviour & Information Technology, 30(1), 91-99.
Lin, C. S., Wu, S., & Tsai, R. J. (2005). Integrating perceived playfulness into expectation-confirmation model for web portal context. Information & Management, 42(5), 683-693.
Lin, K. M., Chen, N. S., & Fang, K. (2011). Understanding e-learning continuance intention: a negative critical incidents perspective. Behaviour & Information Technology, 30(1), 77-89.
Marakas, G., Yi, M., & Johnson, R. (1996). The multilevel construct of computer self-efficacy: an empirical investigation at the general and task-specific levels.
Martínez-Torres, M. R., Toral Marín, S. L., Garcia, F. B., Vazquez, S. G., Oliva, M. A., & Torres, T. (2008). A technological acceptance of e-learning tools used in practical and laboratory teaching, according to the European higher education area 1. Behaviour & Information Technology, 27(6), 495-505.
Masrom, M., Zainon, O., & Rahiman, R. (2008). Critical success in e-learning: an examination of technological and institutional support factors. International Journal of Cyber Society and Education, 1(2), 131-142.
Moore, J. L., Dickson-Deane, C., & Galyen, K. (2011). e-Learning, online learning, and distance learning environments: Are they the same?. The Internet and Higher Education, 14(2), 129-135.
Negash, S., Ryan, T., & Igbaria, M. (2003). Quality and effectiveness in web-based customer support systems. Information & Management, 40(8), 757-768.
Nichols, M. (2003). A theory for eLearning. Educational technology & society, 6(2), 1-10.
Nistor, N., & Neubauer, K. (2010). From participation to dropout: Quantitative participation patterns in online university courses. Computers & Education, 55(2), 663-672.
Ong, C. S., & Lai, J. Y. (2006). Gender differences in perceptions and relationships among dominants of e-learning acceptance. Computers in Human Behavior, 22(5), 816-829.
Ong, C. S., Lai, J. Y., & Wang, Y. S. (2004). Factors affecting engineers’ acceptance of asynchronous e-learning systems in high-tech companies. Information & management, 41(6), 795-804.
Park, J. H., & Choi, H. J. (2009). Factors Influencing Adult Learners' Decision to Drop Out or Persist in Online Learning. Educational Technology & Society, 12(4), 207-217.
Peltier, J. W., Drago, W., & Schibrowsky, J. A. (2003). Virtual communities and the assessment of online marketing education. Journal of Marketing Education, 25(3), 260-276.
Petter, S., DeLone, W., & McLean, E. (2008). Measuring information systems success: models, dimensions, measures, and interrelationships. European Journal of Information Systems, 17(3), 236-263.
Pituch, K. A., & Lee, Y. K. (2006). The influence of system characteristics on e-learning use. Computers & Education, 47(2), 222-244.
Rai, A., Lang, S. S., & Welker, R. B. (2002). Assessing the validity of IS success models: An empirical test and theoretical analysis. Information systems research, 13(1), 50-69.
Roca, J. C., Chiu, C. M., & Martínez, F. J. (2006). Understanding e-learning continuance intention: An extension of the Technology Acceptance Model. International Journal of Human-Computer Studies, 64(8), 683-696.
Rust Roland, T., & Oliver, R. L. (1994). Service Quality: Insights and Managerial Implication from the Frontier New York: Sage Publications.
Saadé, R. G., & Kira, D. (2009). Computer anxiety in e-learning: The effect of computer self-efficacy. Journal of Information Technology Education, 8(177-191).
Saba, T. (2012). Implications of E-learning systems and self-efficiency on students outcomes: a model approach. Human-centric Computing and Information Sciences, 2(1), 1-11.
Schermelleh-Engel, K., Moosbrugger, H., & Müller, H. (2003). Evaluating the fit of structural equation models: Tests of significance and descriptive goodness-of-fit measures. Methods of psychological research online, 8(2), 23-74.
Seddon, P. B. (1997). A respecification and extension of the DeLone and McLean model of IS success. Information systems research, 8(3), 240-253.
Selim, H. M. (2007). Critical success factors for e-learning acceptance: Confirmatory factor models. Computers & Education, 49(2), 396-413.
Singh, R. (2009). Does my structural model represent the real phenomenon?: a review of the appropriate use of Structural Equation Modelling (SEM) model fit indices. Marketing Review, 9(3).
Sørebø, Ø., Halvari, H., Gulli, V. F., & Kristiansen, R. (2009). The role of self-determination theory in explaining teachers’ motivation to continue to use e-learning technology. Computers & Education, 53(4), 1177-1187.
Sun, P. C., Tsai, R. J., Finger, G., Chen, Y. Y., & Yeh, D. (2008). What drives a successful e-Learning? An empirical investigation of the critical factors influencing learner satisfaction. Computers & Education, 50(4), 1183-1202.
Tang, Ling-Lang, Che-Han Hsu, and Oanh Chau Kiet, (2014). E-learning Use Behavior: Intention to Use and Impact. In International Conference on Innovation and Management, Bangkok, Thailand.
Tavangarian, D., Leypold, M. E., Nölting, K., Röser, M., & Voigt, D. (2004). Is e-learning the Solution for Individual Learning. Electronic Journal of E-learning, 2(2), 273-280.
Triacca, L., Bolchini, D., Botturi, L., & Inversini, A. (2004). MiLE: systematic usability evaluation for e-learning Web applications. In World Conference on Educational Multimedia, Hypermedia and Telecommunications (Vol. 2004, No. 1, pp. 4398-4405).
Tyler-Smith, K. (2006). Early attrition among first time eLearners: A review of factors that contribute to drop-out, withdrawal and non-completion rates of adult learners undertaking eLearning programmes. Journal of Online learning and Teaching, 2(2), 73-85.
Udo, G. J., Bagchi, K. K., & Kirs, P. J. (2011). Using SERVQUAL to assess the quality of e-learning experience. Computers in Human Behavior, 27(3), 1272-1283.
Van Raaij, E. M., & Schepers, J. J. (2008). The acceptance and use of a virtual learning environment in China. Computers & Education, 50(3), 838-852.
Venkatesh, V., & Bala, H. (2008). Technology acceptance model 3 and a research agenda on interventions. Decision sciences, 39(2), 273-315.
Venkatesh, V., Morris, M. G., Davis, G. B., & Davis, F. D. (2003). User acceptance of information technology: Toward a unified view. MIS quarterly, 425-478.
Wagner, N., Hassanein, K., & Head, M. (2008). Who is responsible for E-Learning Success in Higher Education? A Stakeholders' Analysis. Journal of Educational Technology & Society, 11(3).
Wang, H. C., & Chiu, Y. F. (2011). Assessing e-learning 2.0 system success. Computers & Education, 57(2), 1790-1800.
Wang, W. T., & Wang, C. C. (2009). An empirical study of instructor adoption of web-based learning systems. Computers & Education, 53(3), 761-774.
Ware Jr, J. E., & Gandek, B. (1998). Methods for testing data quality, scaling assumptions, and reliability: the IQOLA Project approach. Journal of clinical epidemiology, 51(11), 945-952.
Wixom, B. H., & Todd, P. A. (2005). A theoretical integration of user satisfaction and technology acceptance. Information systems research, 16(1), 85-102.
Yi, M. Y., & Hwang, Y. (2003). Predicting the use of web-based information systems: self-efficacy, enjoyment, learning goal orientation, and the technology acceptance model. International journal of human-computer studies, 59(4), 431-449.
Yukselturk, E., & Inan, F. A. (2006). Examining the factors affecting student dropout in an online certificate program. Turkish Online Journal of Distance Education, 7(3), 76-88.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊