跳到主要內容

臺灣博碩士論文加值系統

(3.229.142.104) 您好!臺灣時間:2021/07/28 12:24
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:王昭閔
研究生(外文):Chao-Min Wang
論文名稱:多巴胺神經元細胞代謝網路重建與其探討帕金森氏症現象
論文名稱(外文):Reconstruction of Dopaminergic neurons Metabolic Network with Application to Parkinson's Disease
指導教授:王逢盛
指導教授(外文):Feng-sheng Wang
口試委員:鄒安平黃奇英
口試委員(外文):Ann-Ping TsouChi-Ying F. Huang
口試日期:2015-07-14
學位類別:碩士
校院名稱:國立中正大學
系所名稱:化學工程研究所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2015
畢業學年度:103
語文別:中文
論文頁數:74
中文關鍵詞:最適化模擬神經退化性疾病腦部代謝網絡
外文關鍵詞:OptimizationBrain metabolic networkNeurodegenerative Disease
相關次數:
  • 被引用被引用:0
  • 點閱點閱:137
  • 評分評分:
  • 下載下載:3
  • 收藏至我的研究室書目清單書目收藏:0
人類的大腦常伴隨著大量的能量消耗,當能量的供需平衡發生異常時,勢必會造成神經系統地損害,也使其原本所負責的功能喪失,逐漸演變成神經退化性疾病(Neurodegenerative Disease) 。然而研究神經退化性疾病在臨床上需耗費長久的時間,故希望藉由代謝網路模型的建立來模擬出其代謝網絡的通量分布。
本研究利用各個生物資訊庫所提供的資料,建造出屬於人類大腦的多巴胺神經元細胞代謝網路模型(Dopaminergic neurons model) ,此模型包含1022個代謝物、1131條反應式、48個代謝途徑(如醣酵解、檸檬酸循環、過氧化物質的代謝、酪氨酸代謝系統等)以及六個胞器間隔。
為了探討能量代謝與疾病的關係,我們選用三種目標函數的組合,提供維持神經元細胞所需要的營養攝取物(氧氣、葡萄糖、必需胺基酸…等),且使用通量均衡分析方法(Flux balance analysis, FBA) 得到正常狀態下的通量分布。再利用突變通量均衡分析(Mutant-Flux Balance Analysis, mFBA) 模擬出抑制酪胺酸代謝系統酵素的通量分布,並比較正常與異常情況下通量分布的差異性。
我們發現當酪胺酸代謝系統發生異常的時候,會導致整個神經元細胞生成能量的能力會有所下降,且過氧化物質的合成速率上升,也觀察到二氧化碳的排放量下降。

Human brain often associate with massive energy dissipation. When an exception of the energy demand and supply occurs, it is bound to damage the nervous system. Also, it will lose the original function and evolve into Neurodegenerative Disease. Therefore, it takes plenty of time to study this disease. As a result, we hope that we can simulate metabolic flux distribution network by a Genome-scale metabolic model of brain. This research reconstructed the Dopaminergic neurons model by collecting data from bioinformatics database. This model includes 1022 metabolites, 1131 chemical reaction equations, and 48 metabolic pathways. In order to discuss the relationship between the energy metabolism and disease, we provided the nutrients to Dopaminergic neurons to maintain its physiological function. Under these circumstances, we set the three types objective functions, which consists of maximize the flux of ATP synthesis, maximize the flux of NADPH synthesis and minimize the internal flux. We used Flux balance analysis and Mutant-Flux balance analysis to get the flux distribution of network at steady state. We compared the results of perturbations to the fluxes of normal condition, then observed the fluxes with significant difference. We found that the tyrosine metabolism getting abnormal, it will lead the ability of generate energy to decline in the neuronal cells. Also, we observed the flux of Carbon dioxide will be decreased, and the flux of Reactive oxygen species will be increased.
誌謝 I
摘要 II
ABSTRACT III
表目錄 VII
圖目錄 VIII
第一章 緒論 1
1.1前言 1
1.2文獻回顧 5
1.2.1帕金森氏症 5
1.2.2代謝網路模型 9
1.3 研究動機 13
1.4 組織章節 14
第二章 代謝網路生物資料庫及工具程式簡介 16
2.1生物資料庫簡介 16
2.1.1 Kyoto Encyclopedia of Genes and Genomes (KEGG) 16
2.1.2 ExPASy (Expert Protein Analysis System) 19
2.1.3 Recon X 20
2.2工具程式簡介 21
第三章 重建多巴胺神經元細胞代謝網路模型 23
第四章 基於限制條件之代謝模型分析方法 29
4.1數學方法描述 29
4.1.1代謝網路最佳化目標 30
4.1.2代謝網路生理功能目標設定 (Targets setting) 33
4.1.3 內部通量限制 35
4.2 分析方法之介紹 35
4.2.1邊界値上下限之分析(Min-Max bound Analysis) 35
4.2.2通量均衡分析(Flux Balance Analysis, FBA) 37
4.2.3突變通量均衡分析(Mutant-Flux Balance Analysis, mFBA) 38
第五章 多巴胺神經元細胞模型及其應用之結果 39
5.1 酪胺酸系統酵素剔除之模擬結果 39
5.1.1 第一型目標函數 41
5.1.2 第二型目標函數 44
5.1.3 第三型目標函數 47
5.2 模擬結果討論 50
第六章 結論與未來展望 53
6.1 結論 53
6.2 未來展望與建議 53
第七章 參考文獻 55

[1]A. P. Alivisatos, M. Chun, G. M. Church, R. J. Greenspan, M. L. Roukes, and R. Yuste, "The brain activity map project and the challenge of functional connectomics," Neuron, vol. 74, pp. 970-4, Jun 21 2012.
[2]E. R. Kandel, H. Markram, P. M. Matthews, R. Yuste, and C. Koch, "Neuroscience thinks big (and collaboratively)," Nat Rev Neurosci, vol. 14, pp. 659-64, Sep 2013.
[3]B. R. t. A. I. N. B. W. Group, "BRAIN 2025 - A SCIENTIFIC VISION," N. I. o. Health, Ed., ed, 2014.
[4]World Health Organization., "World health statistics," ed. Geneva, Switzerland: World Health Organization, 2014, p. v.
[5]World Health Organization., Neurological disorders : public health challenges. Geneva: World Health Organization, 2006.
[6]J.-P. Bach, U. Ziegler, G. Deuschl, R. Dodel, and G. Doblhammer-Reiter, "Projected numbers of people with movement disorders in the years 2030 and 2050," Movement Disorders, vol. 26, pp. 2286-2290, 2011.
[7]J. Wancata, M. Musalek, R. Alexandrowicz, and M. Krautgartner, "Number of dementia sufferers in Europe between the years 2000 and 2050," European Psychiatry, vol. 18, pp. 306-313, Oct 2003.
[8]M. S. Forman, J. Q. Trojanowski, and V. M. Lee, "Neurodegenerative diseases: a decade of discoveries paves the way for therapeutic breakthroughs," Nat Med, vol. 10, pp. 1055-63, Oct 2004.
[9]M. Gourie-Devi, M. G. Ramu, and B. S. Venkataram, "Treatment of Parkinson's disease in 'Ayurveda' (ancient Indian system of medicine): discussion paper," Journal of the Royal Society of Medicine, vol. 84, pp. 491-492, 1991.
[10]N. Nagashayana, P. Sankarankutty, M. R. V. Nampoothiri, P. K. Mohan, and K. P. Mohanakumar, "Association of l-DOPA with recovery following Ayurveda medication in Parkinson’s disease," Journal of the Neurological Sciences, vol. 176, pp. 124-127, 6/15/ 2000.
[11]A. Carlsson, "A half-century of neurotransmitter research: impact on neurology and psychiatry. Nobel lecture," Biosci Rep, vol. 21, pp. 691-710, Dec 2001.
[12]K. Fuxe, "Evidence for the existence of monoamine neurons in the central nervous system," Zeitschrift für Zellforschung und Mikroskopische Anatomie, vol. 65, pp. 573-596, 07/01/1965.
[13]K. M. Semchuk, E. J. Love, and R. G. Lee, "Parkinson's disease: a test of the multifactorial etiologic hypothesis," Neurology, vol. 43, pp. 1173-80, Jun 1993.
[14]S. K. Van Den Eeden, C. M. Tanner, A. L. Bernstein, R. D. Fross, A. Leimpeter, D. A. Bloch, et al., "Incidence of Parkinson's disease: variation by age, gender, and race/ethnicity," Am J Epidemiol, vol. 157, pp. 1015-22, Jun 1 2003.
[15]M. D. Mesarović, Systems theory and biology—view of a theoretician: Springer, 1968.
[16]E. A. Schon and S. Przedborski, "Mitochondria: the next (neurode)generation," Neuron, vol. 70, pp. 1033-53, 06/23/2011.
[17]S. H. Lecker, A. L. Goldberg, and W. E. Mitch, "Protein degradation by the ubiquitin-proteasome pathway in normal and disease states," J Am Soc Nephrol, vol. 17, pp. 1807-19, Jul 2006.
[18]K. Ueda, H. Fukushima, E. Masliah, Y. Xia, A. Iwai, M. Yoshimoto, et al., "Molecular cloning of cDNA encoding an unrecognized component of amyloid in Alzheimer disease," Proc Natl Acad Sci U S A, vol. 90, pp. 11282-6, Dec 1 1993.
[19]A. Vazquez, "Metabolic States Following Accumulation of Intracellular Aggregates: Implications for Neurodegenerative Diseases," PLoS ONE, vol. 8, p. e63822, 2013.
[20]W. H. Koppenol, P. L. Bounds, and C. V. Dang, "Otto Warburg's contributions to current concepts of cancer metabolism," Nat Rev Cancer, vol. 11, pp. 325-337, May 2011.
[21]M. Cloutier and P. Wellstead, "Dynamic modelling of protein and oxidative metabolisms simulates the pathogenesis of Parkinson's disease," IET Syst Biol, vol. 6, pp. 65-72, Jun 2012.
[22]G. Drion, V. Seutin, and R. Sepulchre, "Mitochondrion- and Endoplasmic Reticulum-Induced SK Channel Dysregulation as a Potential Origin of the Selective Neurodegeneration in Parkinson’s Disease," in Systems Biology of Parkinson's Disease, P. Wellstead and M. Cloutier, Eds., ed: Springer New York, 2012, pp. 57-79.
[23]Z. Qi, G. Miller, and E. Voit, "Mathematical Models of Dopamine Metabolism in Parkinson’s Disease," in Systems Biology of Parkinson's Disease, P. Wellstead and M. Cloutier, Eds., ed: Springer New York, 2012, pp. 151-171.
[24]"Drugs for Parkinson's disease," Treat Guidel Med Lett, vol. 11, pp. 101-6, Nov 2013.
[25]A.-L. Barabasi and Z. N. Oltvai, "Network biology: understanding the cell's functional organization," Nat Rev Genet, vol. 5, pp. 101-113, Feb 2004.
[26]J. L. Reed and B. Ø. Palsson, "Thirteen Years of Building Constraint-Based In Silico Models of Escherichia coli," Journal of Bacteriology, vol. 185, pp. 2692-2699, 2003.
[27]J. M. G. Vilar, C. C. Guet, and S. Leibler, "Modeling network dynamics: the lac operon, a case study," The Journal of Cell Biology, vol. 161, pp. 471-476, 03/17/2003.
[28]A. Chatziioannou, G. Palaiologos, and F. N. Kolisis, "Metabolic flux analysis as a tool for the elucidation of the metabolism of neurotransmitter glutamate," Metabolic Engineering, vol. 5, pp. 201-210, Jul 2003.
[29]A. Aubert and R. Costalat, "Interaction between astrocytes and neurons studied using a mathematical model of compartmentalized energy metabolism," J Cereb Blood Flow Metab, vol. 25, pp. 1476-1490, 06/01/2005.
[30]N. C. Duarte, S. A. Becker, N. Jamshidi, I. Thiele, M. L. Mo, T. D. Vo, et al., "Global reconstruction of the human metabolic network based on genomic and bibliomic data," Proceedings of the National Academy of Sciences of the United States of America, vol. 104, pp. 1777-1782, 10/09/ 2007.
[31]N. E. Lewis, G. Schramm, A. Bordbar, J. Schellenberger, M. P. Andersen, J. K. Cheng, et al., "Large-scale in silico modeling of metabolic interactions between cell types in the human brain," Nat Biotech, vol. 28, pp. 1279-1285, Dec 2010.
[32]K. A. Fujita, M. Ostaszewski, Y. Matsuoka, S. Ghosh, E. Glaab, C. Trefois, et al., "Integrating Pathways of Parkinson's Disease in a Molecular Interaction Map," Molecular Neurobiology, vol. 49, pp. 88-102, 06/13/2014.
[33]M. Kanehisa, S. Goto, Y. Sato, M. Furumichi, and M. Tanabe, "KEGG for integration and interpretation of large-scale molecular data sets," Nucleic Acids Research, vol. 40, pp. D109-D114, 10/17/ 2012.
[34]E. Gasteiger, A. Gattiker, C. Hoogland, I. Ivanyi, R. D. Appel, and A. Bairoch, "ExPASy: the proteomics server for in-depth protein knowledge and analysis," Nucleic Acids Research, vol. 31, pp. 3784-3788, 04/02/ 2003.
[35]I. Thiele, N. Swainston, R. M. T. Fleming, A. Hoppe, S. Sahoo, M. K. Aurich, et al., "A community-driven global reconstruction of human metabolism," Nat Biotech, vol. 31, pp. 419-425, May 2013.
[36]H. Ma, A. Sorokin, A. Mazein, A. Selkov, E. Selkov, O. Demin, et al., "The Edinburgh human metabolic network reconstruction and its functional analysis," Molecular Systems Biology, vol. 3, pp. 135-135, 07/30/ 2007.
[37]C. Gille, C. Bölling, A. Hoppe, S. Bulik, S. Hoffmann, K. Hübner, et al., "HepatoNet1: a comprehensive metabolic reconstruction of the human hepatocyte for the analysis of liver physiology," Molecular Systems Biology, vol. 6, 2010.
[38]S. Sahoo, L. Franzson, J. J. Jonsson, and I. Thiele, "A compendium of inborn errors of metabolism mapped onto the human metabolic network," Molecular BioSystems, vol. 8, pp. 2545-2558, 2012.
[39]T. Rutherford, "Applied General Equilibrium Modeling with MPSGE as a GAMS Subsystem: An Overview of the Modeling Framework and Syntax," Computational Economics, vol. 14, pp. 1-46, 10/01/1999.
[40]E. R. Kandel, J. H. Schwartz, and T. M. Jessell, Principles of neural science vol. 4: McGraw-Hill New York, 2000.
[41]T. Hiroi, S. Imaoka, and Y. Funae, "Dopamine Formation from Tyramine by CYP2D6," Biochemical and Biophysical Research Communications, vol. 249, pp. 838-843, 8/28/1998.
[42]E. Meléndez-Hevia and A. Isidoro, "The game of the pentose phosphate cycle," Journal of theoretical biology, vol. 117, pp. 251-263, 1985.
[43]D. A. Fell and J. R. Small, "Fat synthesis in adipose tissue. An examination of stoichiometric constraints," Biochem. J, vol. 238, pp. 781-786, 1986.
[44]W. M. van Gulik and J. J. Heijnen, "A metabolic network stoichiometry analysis of microbial growth and product formation," Biotechnology and Bioengineering, vol. 48, pp. 681-698, 1995.
[45]E. Meléndez‐Hevia, T. G. Waddell, R. Heinrich, and F. Montero, "Theoretical approaches to the evolutionary optimization of glycolysis," European Journal of Biochemistry, vol. 244, pp. 527-543, 1997.
[46]J. S. Edwards and B. O. Palsson, "The Escherichia coli MG1655 in silico metabolic genotype: Its definition, characteristics, and capabilities," Proceedings of the National Academy of Sciences, vol. 97, pp. 5528-5533, May 9, 2000.
[47]O. Ebenhöh and R. Heinrich, "Evolutionary optimization of metabolic pathways. Theoretical reconstruction of the stoichiometry of ATP and NADH producing systems," Bulletin of mathematical biology, vol. 63, pp. 21-55, 2001.
[48]R. Ramakrishna, J. S. Edwards, A. McCulloch, and B. O. Palsson, Flux-balance analysis of mitochondrial energy metabolism: consequences of systemic stoichiometric constraints vol. 280, 2001.
[49]H. G. Holzhütter, "The principle of flux minimization and its application to estimate stationary fluxes in metabolic networks," European Journal of Biochemistry, vol. 271, pp. 2905-2922, 2004.
[50]N. D. Price, J. L. Reed, and B. O. Palsson, "Genome-scale models of microbial cells: evaluating the consequences of constraints," Nat Rev Micro, vol. 2, pp. 886-897, Nov 2004.
[51]L. M. Blank, F. Lehmbeck, and U. Sauer, "Metabolic‐flux and network analysis in fourteen hemiascomycetous yeasts," FEMS yeast research, vol. 5, pp. 545-558, 2005.
[52]A. P. Oliveira, J. Nielsen, and J. Förster, "Modeling Lactococcus lactis using a genome-scale flux model," BMC microbiology, vol. 5, p. 39, 2005.
[53]J. E. Beasley and F. J. Planes, "Recovering metabolic pathways via optimization," Bioinformatics, vol. 23, pp. 92-98, 2007.
[54]T. Çakιr, S. Alsan, H. Saybaşιlι, A. Akιn, and K. Ö. Ülgen, "Reconstruction and flux analysis of coupling between metabolic pathways of astrocytes and neurons: application to cerebral hypoxia," Theoretical Biology & Medical Modelling, vol. 4, pp. 48-48, 12/10/ 2007.
[55]A. L. Knorr, R. Jain, and R. Srivastava, "Bayesian-based selection of metabolic objective functions," Bioinformatics, vol. 23, pp. 351-357, 2007.
[56]J. M. Savinell and B. O. Palsson, "Network analysis of intermediary metabolism using linear optimization. I. Development of mathematical formalism," Journal of Theoretical Biology, vol. 154, pp. 421-454, 2/21/1992.
[57]R. Gruetter, E. R. Seaquist, and K. Ugurbil, A mathematical model of compartmentalized neurotransmitter metabolism in the human brain vol. 281, 2001.
[58]J. Shen, K. F. Petersen, K. L. Behar, P. Brown, T. W. Nixon, G. F. Mason, et al., "Determination of the rate of the glutamate/glutamine cycle in the human brain by in vivo (13)C NMR," Proceedings of the National Academy of Sciences of the United States of America, vol. 96, pp. 8235-8240, 05/06/1999.
[59]A. B. Patel, R. A. de Graaf, G. F. Mason, D. L. Rothman, R. G. Shulman, and K. L. Behar, "The contribution of GABA to glutamate/glutamine cycling and energy metabolism in the rat cortex in vivo," Proceedings of the National Academy of Sciences of the United States of America, vol. 102, pp. 5588-5593, 04/04/2005.
[60]A. D. Purdon and S. I. Rapoport, "Energy requirements for two aspects of phospholipid metabolism in mammalian brain," Biochemical Journal, vol. 335, pp. 313-318, 1998.
[61]M. L. Rizk and J. C. Liao, "Ensemble modeling and related mathematical modeling of metabolic networks," Journal of the Taiwan Institute of Chemical Engineers, vol. 40, pp. 595-601, Nov 2009.
[62]L. M. Tran, M. L. Rizk, and J. C. Liao, "Ensemble modeling of metabolic networks," Biophysical journal, vol. 95, pp. 5606-5617, 2008.
[63]Z. Qi, G. W. Miller, and E. O. Voit, "Computational Systems Analysis of Dopamine Metabolism," PLoS ONE, vol. 3, p. e2444, 2008.
[64]S. Freson, B. De Baets, and H. De Meyer, "Linear optimization with bipolar max–min constraints," Information Sciences, vol. 234, pp. 3-15, 6/10/2013.
[65]U. Lying-Tunell, B. S. Lindblad, H. O. Malmlund, and B. Persson, "Cerebral blood flow and metabolic rate of oxygen, glucose, lactate, pyruvate, ketone bodies and amino acids," Acta Neurol Scand, vol. 62, pp. 265-75, Nov 1980.
[66]U. Lying-Tunell, B. S. Lindblad, H. O. Malmlund, and B. Persson, "Cerebral blood flow and metabolic rate of oxygen, glucose, lactate, pyruvate, ketone bodies and amino acids," Acta Neurologica Scandinavica, vol. 63, pp. 337-350, 1981.
[67]S. T. Brady, G. J. Siegel, R. W. Albers, D. L. Price, and J. Benjamins, Basic neurochemistry : principles of molecular, cellular, and medical neurobiology, 8th ed. Amsterdam ; Boston: Elsevier/Academic Press, 2012.
[68]K. J. Kauffman, P. Prakash, and J. S. Edwards, "Advances in flux balance analysis," Current Opinion in Biotechnology, vol. 14, pp. 491-496, Oct 2003.
[69]J. D. Orth, I. Thiele, and B. O. Palsson, "What is flux balance analysis?," Nat Biotech, vol. 28, pp. 245-248, Mar 2010.
[70]D. Segrè, D. Vitkup, and G. M. Church, "Analysis of optimality in natural and perturbed metabolic networks," Proceedings of the National Academy of Sciences of the United States of America, vol. 99, pp. 15112-15117, 06/10/2002.
[71]K. F. Winklhofer and C. Haass, "Mitochondrial dysfunction in Parkinson's disease," Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease, vol. 1802, pp. 29-44, Jan 2010.
[72]J. T. Greenamyre, T. B. Sherer, R. Betarbet, and A. V. Panov, "Complex I and Parkinson's Disease," IUBMB Life, vol. 52, pp. 135-141, 2001.
[73]J. Haavik and K. Toska, "Tyrosine hydroxylase and Parkinson's disease," Molecular neurobiology, vol. 16, pp. 285-309, 1998.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top