跳到主要內容

臺灣博碩士論文加值系統

(44.221.70.232) 您好!臺灣時間:2024/05/30 22:06
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:林鴻棋
研究生(外文):Hong-Chi Lin
論文名稱:利用軟模板與自組裝揮發法製備有序中孔洞碳材料 及其超級電容器之應用
論文名稱(外文):Formation of ordered mesoporous carbon by evaporation-induced self-assembly and its application in supercapacitor
指導教授:李元堯李元堯引用關係
指導教授(外文):Yuan-Yao Li
口試委員:陳建忠王崇人游孟潔
口試委員(外文):Chien-Chung ChenChurng-Ren WangMeng-Jey Youh
口試日期:2015-07-01
學位類別:碩士
校院名稱:國立中正大學
系所名稱:化學工程研究所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2015
畢業學年度:103
語文別:中文
論文頁數:183
中文關鍵詞:酚醛樹酯自組裝揮發中孔洞碳材
外文關鍵詞:phenolic resinself-assemblymesoporous carbon
相關次數:
  • 被引用被引用:0
  • 點閱點閱:166
  • 評分評分:
  • 下載下載:5
  • 收藏至我的研究室書目清單書目收藏:0
本論文為利用軟模板及自組裝揮發的方式製備有序中孔洞碳材,並對其進行多項分析以推論成長機制,另外合成摻雜硼的中孔洞碳材與金屬氧化物複合材料,並進行材料電化學特性的探討,實驗主要分為四大部分。
第一部分為利用酚醛樹酯作為碳源合成有序中孔洞碳材,其孔洞直徑約7至9 nm、排列單元約11.56 nm、整體表面積約為694 m2/g,此多孔洞的碳材為非結晶的結構,此外我們對不同處理溫度對中孔洞碳材的影響進行研究,發現升高燒結溫度會使中孔洞碳材去除氧鍵結而產生結構收縮現象。
第二部分為在碳源中加入少量的硼酸合成摻雜硼元素的中孔洞碳材,發現其孔洞尺寸隨硼酸比例增加而擴大,並且孔洞間的有序結構也隨之破壞,此外片電阻值由沒加硼酸時的85654 ohm/square降低至最低1459 ohm/square。
第三部分為合成二氧化釕(一氧化錳)與中孔洞碳才的複合材料,觀察金屬前驅物含量增加時對材料的影響,並利用不同的特性分析來確認金屬氧化物的狀態。
第四部分為電化學量測,我們將碳材與複合材料的前驅物塗佈於石墨電極,經過碳化製成中孔洞碳材的薄膜型元件,再進行超級電容器電化學性能的量測,中孔洞碳材薄膜最佳電容值可達166 F/g,說明我們利用不同的製成方式的元件電容值相比於文獻顯示的電容值(約66至151 F/g)還要高,再比較不同金屬含量所對應的電化學效能,最後我們得到RuO2與MnO製備的複合材料最佳電容值在2 mV/s下分別為378.2 F/g與284.9 F/g。

Ordered mesoporous cartbon (OMC) particles and film were fabricated by evaporation-induced self-assembly (EISA) techniques. Factors auch as thermal treatment at various temperatures, the compositions of the precursors and post-treatment by HCl aqueous solution were investigated for the optimization of the OMC in terms of crystallinity pore size and specific surface area. In addition, boron dopping OMC and, RuO2/OMC and MnO/OMC were synthesized for the electrochemical studies.
The characterization of the OMC, boron doped OMC and OMC composite were conducted by SEM, EDS, TEM, Raman, XPS, XRD, BET and TGA in order to understand the structure and properties of the OMCs. The studies on the OMCs for supercapacitor found that a maximum capacitance of 378.2 F/g in 2mV/s and 284.7 F/g in 2mV/s can be obtained by RuO2/OMC and MnO/OMC, respectively.

目錄
誌謝 I
中文摘要 II
Abstract IV
目錄 V
表目錄 IX
圖目錄 X
第一章 緒論 1
1-1 材料簡介 1
1-1-1 孔洞材料的介紹 1
1-1-2 中孔洞奈米材料的介紹 2
1-1-3 中孔洞材料的種類 4
1-2 模板與自組裝揮發法的簡介 11
1-2-1軟模板(Soft template) 11
1-2-2 硬模板 (Hard template) 12
1-2-3 自組裝揮發法(Evaporation-Induced Self-Assembly) 13
1-3 超級電容器簡介 15
1-3-1 超級電容器種類說明 15
1-3-2 超級電容器電極材料 16
第二章 文獻回顧 17
2-1 有序中孔洞碳材料的合成 17
2-2 摻雜元素於中孔洞碳材的合成 25
2-2-1 摻雜氮元素之中孔洞碳材 25
2-2-2 摻雜硼元素之中孔洞碳材 29
2-2-3 摻雜磷元素之中孔洞碳材 31
2-3 中孔洞碳材之複合材料 36
2-3-1 四氧化三鐵與中孔洞碳材複合材料 36
2-3-2 二氧化錳與中孔洞碳材複合材料 37
2-3-3 二氧化釕與中孔洞碳材複合材料 40
2-3-4 矽與中孔洞碳材之複合材料 43
2-4 中孔洞碳材之電化學應用 50
2-4-1 中孔洞碳材應用於超級電容器 50
2-4-4 中孔洞碳材應用於鋰離子電池 53
2-5 研究動機與目的 58
第三章 實驗步驟與方法 59
3-1實驗架構 59
3-2 實驗裝置、藥品與耗材 61
3-2-1 製備材料的實驗裝置 61
3-2-2 製備材料的實驗藥品與耗材 62
3-2-3 電化學量測實驗裝置 63
3-2-4 電化學量測實驗藥品與耗材 63
3-3 中孔洞碳材製作 64
3-3-1 實驗步驟 64
3-4 功能化之中孔洞碳材製作 67
3-4-1 實驗步驟 67
3-5 薄膜型超級電容器工作電極之製作 69
3-5-1 實驗步驟 69
3-6 檢測儀器 71
3-7 超級電容器之量測 73
3-7-1 實驗步驟 73
第四章 結果與討論 75
4-1 有序中孔洞碳材OMC之合成 76
4-1-1 有序中孔洞碳材粉體與薄膜特性分析 77
4-1-1-1 OMC粉體與薄膜之FESEM檢測 77
4-1-1-2 不同轉速合成之OMC薄膜FESEM比較 81
4-1-1-3 OMC之TEM檢測 83
4-1-1-4 OMC之XPS檢測 85
4-1-1-5 OMC之BET檢測 87
4-1-1-6 OMC之SAXS檢測 89
4-1-1-7 OMC之TGA檢測 91
4-1-1-8 OMC的成長機制推論 93
4-1-2 不同溫度鍛燒後有序中孔洞碳材特性分析 94
4-1-2-1 不同溫度處理之OMC的SEM檢測 94
4-1-2-2 不同溫度處理後OMC的SAXS檢測 97
4-1-2-3 經過1000 oC與1400 oC處理後OMC的TEM檢測 101
4-1-2-4 不同溫度處理後OMC的拉曼檢測 102
4-1-2-5 1000 oC與1400 oC處理後OMC的XPS檢測 105
4-1-3 實驗小結 109
4-2 摻混硼元素中孔洞碳材B-OMC合成 110
4-2-1 摻混不同比例硼元素之B-OMC粉體特性分析 110
4-2-1-1 不同硼酸含量之B-OMC 的SEM檢測 110
4-2-1-2不同硼酸含量之B-OMC 的XPS檢測 115
4-2-1-3不同硼酸含量之B-OMC 的TEM檢測 116
4-2-1-4不同硼酸含量之B-OMC 的Raman檢測 118
4-2-1-5不同硼酸含量之B-OMC 的BET檢測 120
4-2-2 摻混不同比例硼元素之B-OMC薄膜特性分析 123
4-2-2-1 摻混不同比例硼元素之B-OMC薄膜SEM檢測 123
4-2-2-2 摻雜不同硼酸重量之OMC片電阻值量測 125
4-2-3 實驗小結 126
4-3 金屬氧化物與中孔洞碳材之複合材料合成 127
4-3-1 二氧化釕與中孔洞碳材之複合材料(RuO2/OMC) 127
4-3-1-1 不同RuCl3含量之RuO2/OMC的FESEM檢測 128
4-3-1-2 RuO2/OMC的XRD檢測 130
4-3-1-3 RuO2/OMC的XPS檢測 132
4-3-1-4 RuO2/OMC的TEM檢測 134
4-3-1-5 不同氯化釕含量之RuO2/OMC的TGA檢測 136
4-3-2 氧化錳與中孔洞碳才之複合材料(MnO/OMC) 138
4-3-2-1 不同氯化錳含量之MnO/OMC的SEM檢測 138
4-3-2-2 MnO/OMC TEM檢測 140
4-3-2-3 MnO/OMC Raman與XRD檢測 141
4-4-3 實驗小結 143
4-4 中孔洞碳材於超級電容器之應用 144
4-4-1 OMC之超級電容器量測 144
4-4-2 RuO2 / OMC之超級電容器量測 149
4-4-2-1 RuO2 / OMC循環伏安量測 149
4-4-2-2 RuO2 / OMC定電流充放電量測 152
4-4-2-3 RuO2 / OMC電化學阻抗圖譜量測 153
4-4-2-4 RuO2 / OMC元件蝕刻說明 156
4-4-2-5 RuO2 / OMC蝕刻前後與升溫後電化學量測 159
4-4-2-6 RuO2 / OMC中RuO2自身的電容值 162
4-4-2-7 RuO2/OMC薄膜型元件的循環穩定度測試 163
4-4-3 MnO/OMC之超級電容器量測 165
4-4-3-1 MnO/OMC的循環伏安量測 165
4-4-3-2 MnO/ OMC定電流充放電量測 168
4-4-4 實驗小結 169
第五章 結論與未來展望 170
5-1 結論 170
5-2 未來展望 172
參考文獻 173

參考文獻
[1]Soler-illia GJD, Sanchez C, Lebeau B, Patarin J. Chemical strategies to design textured materials: From microporous and mesoporous oxides to nanonetworks and hierarchical structures. Chemical Reviews. 2002;102(11):4093-138.
[2]Yanagisawa T, Shimizu T, Kuroda K, Kato C. The preparation of Alkytrimethylammonium-Kanemite Complexes and Their Conversion to Microporous Materials. The Chemical Society of Japan. 1990;63(4):988-92.
[3]C.T. K, M.E. L, W.J. R, J.C. V, J.S. B. Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism. Letters to Nature 1992;359:710-2.
[4]D. Z, Y. W, W. Z. Ordered mesoporous materials. Wiley. 2013.
[5]Yang PD, Zhao DY, Margolese DI, Chmelka BF, Stucky GD. Generalized syntheses of large-pore mesoporous metal oxides with semicrystalline frameworks. Nature. 1998;396(6707):152-5.
[6]Trikalitis PN, Rangan KK, Bakas T, Kanatzidis MG. Varied pore organization in mesostructured semiconductors based on the SnSe4 (4-) anion. Nature. 2001;410(6829):671-5.
[7]Landskron K, Ozin GA. Periodic mesoporous dendrisilicas. Science. 2004;306(5701):1529-32.
[8]Meng Y, Gu D, Zhang FQ, Shi YF, Yang HF, Li Z, et al. Ordered mesoporous polymers and homologous carbon frameworks: Amphiphilic surfactant templating and direct transformation. Angewandte Chemie-International Edition. 2005;44(43):7053-9.
[9]Zhao DY, Feng JL, Huo QS, Melosh N, Fredrickson GH, Chmelka BF, et al. Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300 angstrom pores. Science. 1998;279(5350):548-52.
[10]Ying JY, Mehnert CP, Wong MS. Synthesis and applications of supramolecular-templated mesoporous materials. Angewandte Chemie-International Edition. 1999;38(1-2):56-77.
[11]Hoffmann F, Cornelius M, Morell J, Froba M. Silica-based mesoporous organic-inorganic hybrid materials. Angewandte Chemie-International Edition. 2006;45(20):3216-51.
[12]王書駿,MCM-41孔徑控制之研究,國立中央大學化學工程與材料工程研究所碩士論文,2005.
[13]Huirache-Acuna R, Nava R, Peza-Ledesma CL, Lara-Romero J, Alonso-Nunez G, Pawelec B, et al. SBA-15 Mesoporous Silica as Catalytic Support for Hydrodesulfurization Catalysts-Review. Materials. 2013;6(9):4139-67.
[14]張簡君,多功能之高分子組成應用於中孔洞氧化矽與中孔洞碳材的合成研究,國立成功大學化學系研究所碩士論文,2005.
[15]曾健文,中孔洞奈米二氧化鈦薄膜與粉體應用於染料敏化太陽能電池之研究,國立中正大學化學工程研究所碩士論文,2009.
[16]Liu KS, Fu HG, Shi KH, Xin BF, Jing LQ, Zhou W. Hydrophilicity and formation mechanism of large-pore mesoporous TiO2 thin films with tunable pore diameters. Nanotechnology. 2006;17(15):3641-8.
[17]Kim YJ, Lee YH, Lee MH, Kim HJ, Pan JH, Lim GI, et al. Formation of Efficient Dye-Sensitized Solar Cells by Introducing an Interfacial Layer of Long-Range Ordered Mesoporous TiO2 Thin Film. Langmuir. 2008;24(22):13225-30.

[18]Knox JH, Kaur B, Millward GR. Structure and performance of porous graphitic carbon in liquid chromatography. Journal of Chromatography A. 1986;352:3-25.
[19]Ryoo R, Joo SH, Jun S. Synthesis of highly ordered carbon molecular sieves via template-mediated structural transformation. J Phys Chem B. 1999;103(37):7743-6.
[20]Jun S, Joo SH, Ryoo R, Kruk M, Jaroniec M, Liu Z, et al. Synthesis of new, nanoporous carbon with hexagonally ordered mesostructure. J Am Chem Soc. 2000;122(43):10712-3.
[21]Yuan X, Zhuo SP, Xing W, Cui HY, Dai XD, Liu XM, et al. Aqueous dye adsorption on ordered mesoporous carbons. J Colloid Interface Sci. 2007;310(1):83-9.
[22]Ohkubo T, Miyawaki J, Kaneko K, Ryoo R, Seaton NA. Adsorption properties of templated mesoporous carbon (CMK-1) for nitrogen and supercritical methane - Experiment and GCMC simulation. J Phys Chem B. 2002;106(25):6523-8.
[23]Gor GY, Thommes M, Cychosz KA, Neimark AV. Quenched solid density functional theory method for characterization of mesoporous carbons by nitrogen adsorption. Carbon. 2012;50(4):1583-90.
[24]Alvarez S, Blanco-Lopez MC, Miranda-Ordieres AJ, Fuertes AB, Centeno TA. Electrochemical capacitor performance of mesoporous carbons obtained by templating technique. Carbon. 2005;43(4):866-70.
[25]Zhou HS, Zhu SM, Hibino M, Honma I, Ichihara M. Lithium storage in ordered mesoporous carbon (CMK-3) with high reversible specific energy capacity and good cycling performance. Adv Mater. 2003;15(24):2107-11.
[26]Soler-Illia G, Crepaldi EL, Grosso D, Sanchez C. Block copolymer-templated mesoporous oxides. Curr Opin Colloid Interface Sci. 2003;8(1):109-26.
[27]陳世冠,中孔洞碳材之合成及應用,國立成功大學化學系研究所碩士論文,2006.
[28]Schuth F. Non-siliceous mesostructured and mesoporous materials. Chem Mat. 2001;13(10):3184-95.
[29]Wan Y, Yang HF, Zhao DY. "Host-guest" chemistry in the synthesis of ordered nonsiliceous mesoporous materials. Accounts Chem Res. 2006;39(7):423-32.
[30]Yang HF, Zhao DY. Synthesis of replica mesostructures by the nanocasting strategy. J Mater Chem. 2005;15(12):1217-31.
[31]Beck JS, Vartuli JC, Roth WJ, Leonowicz ME, Kresge CT, Schmitt KD, et al. A New Family of Mesoporous Molecular Sieves Prepared with Liquid Crystal Templates. J Am Chem Soc. 1992 ;114:10834-43.
[32]張嘉軒,利用直鏈醇提升揮發誘導自組裝法製備的規則中孔洞二氧化鈦之規則度,國立清華大學化學工程研究所碩士論文,2012.
[33]Brinker CJ, Lu YF, Sellinger A, Fan HY. Evaporation-induced self-assembly: Nanostructures made easy. Adv Mater. 1999;11(7):579-583.
[34]Pan JH, Zhao XS, Lee WI. Block copolymer-templated synthesis of highly organized mesoporous TiO2-based films and their photoelectrochemical applications. Chem Eng J. 2011;170(2-3):363-80.
[35]Mahoney L, Koodali RT. Versatility of Evaporation-Induced Self-Assembly (EISA) Method for Preparation of Mesoporous TiO2 for Energy and Environmental Applications. Materials. 2014;7(4):2697-746.
[36]Zhao X, Sanchez BM, Dobson PJ, Grant PS. The role of nanomaterials in redox-based supercapacitors for next generation energy storage devices. Nanoscale. 2011;3(3):839-55.
[37]Zhao XC, Wang AQ, Yan JW, Sun GQ, Sun LX, Zhang T. Synthesis and Electrochemical Performance of Heteroatom-Incorporated Ordered Mesoporous Carbons. Chem Mat. 2010;22(19):5463-73.
[38]Wan Y, Shi YF, Zhao DY. Supramolecular aggregates as templates: Ordered mesoporous polymers and carbons. Chem Mat. 2008;20(3):932-45.
[39]Tanaka S, Nishiyama N, Egashira Y, Ueyama K. Synthesis of ordered mesoporous carbons with channel structure from an organic-organic nanocomposite. Chem Commun. 2005(16):2125-7.
[40]Chu PP, Wu HD. Solid state NMR studies of hydrogen bonding network formation of novolac type phenolic resin and poly(ethylene oxide) blend. Polymer. 2000;41(1):101-9.
[41]Zhang FQ, Meng Y, Gu D, Yan Y, Chen ZX, Tu B, et al. An aqueous cooperative assembly route to synthesize ordered mesoporous carbons with controlled structures and morphology. Chem Mat. 2006;18(22):5279-88.
[42]劉玉榮(2012).介孔碳材料的合成及應用.中國,國防工業出版社.
[43]Fang Y, Gu D, Zou Y, Wu ZX, Li FY, Che RC, et al. A Low-Concentration Hydrothermal Synthesis of Biocompatible Ordered Mesoporous Carbon Nanospheres with Tunable and Uniform Size. Angewandte Chemie-International Edition. 2010;49(43):7987-91.
[44]Fuertes AB, Centeno TA. Mesoporous carbons with graphitic structures fabricated by using porous silica materials as templates and iron-impregnated polypyrrole as precursor. J Mater Chem. 2005;15(10):1079-83.
[45]Wang JC, Liu Q. An ordered mesoporous aluminosilicate oxynitride template to prepare N-incorporated ordered mesoporous carbon. J Phys Chem C. 2007;111(20):7266-72.
[46]Wei J, Zhou DD, Sun ZK, Deng YH, Xia YY, Zhao DY. A Controllable Synthesis of Rich Nitrogen-Doped Ordered Mesoporous Carbon for CO2 Capture and Supercapacitors. Adv Funct Mater. 2013;23(18):2322-8.
[47]Li M, Xue JM. Integrated Synthesis of Nitrogen-Doped Mesoporous Carbon from Melamine Resins with Superior Performance in Supercapacitors. J Phys Chem C. 2014;118(5):2507-17.
[48]Wang DW, Li F, Chen ZG, Lu GQ, Cheng HM. Synthesis and Electrochemical Property of Boron-Doped Mesoporous Carbon in Supercapacitor. Chem Mat. 2008;20(22):7195-200.
[49]Zhao XC, Zhang Q, Zhang BS, Chen CM, Xu JM, Wang AQ, et al. Decorated resol derived mesoporous carbon: highly ordered microstructure, rich boron incorporation, and excellent electrochemical capacitance. RSC Adv. 2013;3(11):3578-84.
[50]Yang DS, Bhattacharjya D, Inamdar S, Park J, Yu JS. Phosphorus-Doped Ordered Mesoporous Carbons with Different Lengths as Efficient Metal-Free Electrocatalysts for Oxygen Reduction Reaction in Alkaline Media. J Am Chem Soc. 2012;134(39):16127-30.
[51]Zhu SM, Zhou HA, Hibino M, Honma I, Ichihara M. Synthesis of MnO2 nanoparticles confined in ordered mesoporous carbon using a sonochemical method. Adv Funct Mater. 2005;15(3):381-6.
[52]Liang L, Zhu QC, Wang TB, Wang FX, Ma J, Jing LQ, et al. The synthesis of core-shell Fe3O4@mesoporous carbon in acidic medium and its efficient removal of dye. Microporous Mesoporous Mat. 2014;197:221-8.

[53]Li GR, Feng ZP, Ou YN, Wu DC, Fu RW, Tong YX. Mesoporous MnO2/Carbon Aerogel Composites as Promising Electrode Materials for High-Performance Supercapacitors. Langmuir. 2010;26(4):2209-13.
[54]Zhao JC, Tang B, Cao J, Feng JC, Liu P, Zhao J, et al. Effect of Hydrothermal Temperature on the Structure and Electrochemical Performance of Manganese Compound/Ordered Mesoporous Carbon Composites for Supercapacitors. Mater Manuf Process. 2012;27(2):119-24.
[55]Yan YF, Cheng QL, Pavlinek V, Saha P, Li CZ. Fabrication of polyaniline/mesoporous carbon/MnO2 ternary nanocomposites and their enhanced electrochemical performance for supercapacitors. Electrochim Acta. 2012;71:27-32.
[56]Jang JH, Han S, Hyeon T, Oh SM. Electrochemical capacitor performance of hydrous ruthenium oxide/mesoporous carbon composite electrodes. J Power Sources. 2003;123(1):79-85.
[57]Pico F, Morales E, Fernandez JA, Centeno TA, Ibanez J, Rojas RM, et al. Ruthenium oxide/carbon composites with microporous or mesoporous carbon as support and prepared by two procedures. A comparative study as supercapacitor electrodes. Electrochim Acta. 2009;54(8):2239-45.
[58]Xu YH, Zhu YJ, Wang CS. Mesoporous carbon/silicon composite anodes with enhanced performance for lithium-ion batteries. J Mater Chem A. 2014;2(25):9751-7.
[59]Xia KS, Gao QM, Jiang JH, Hu J. Hierarchical porous carbons with controlled micropores and mesopores for supercapacitor electrode materials. Carbon. 2008;46(13):1718-26.
[60]Cai TW, Zhou M, Han GS, Guan SY. Phenol-formaldehyde carbon with ordered/disordered bimodal mesoporous structure as high-performance electrode materials for supercapacitors. J Power Sources. 2013;241:6-11.
[61]Guo BK, Wang XQ, Fulvio PF, Chi MF, Mahurin SM, Sun XG, et al. Soft-Templated Mesoporous Carbon-Carbon Nanotube Composites for High Performance Lithium-ion Batteries. Adv Mater. 2011;23(40):4661-8.
[62]Song JX, Xu T, Gordin ML, Zhu PY, Lv DP, Jiang YB, et al. Nitrogen- Doped Mesoporous Carbon Promoted Chemical Adsorption of Sulfur and Fabrication of High- Areal- Capacity Sulfur Cathode with Exceptional Cycling Stability for Lithium- Sulfur Batteries. Adv Funct Mater. 2014;24(9):1243-50.
[63]張洪濤(2011), 水性樹酯製備與應用, 中國, 化學工業出版社.
[64]Vinu A, Mori T, Ariga K. New families of mesoporous materials. Sci Technol Adv Mater. 2006;7(8):753-71.
[65]Feng D, Lv YY, Wu ZX, Dou YQ, Han L, Sun ZK, et al. Free-Standing Mesoporous Carbon Thin Films with Highly Ordered Pore Architectures for Nanodevices. J Am Chem Soc. 2011;133(38):15148-56.
[66]Huang Y, Yang JP, Cai HQ, Zhai YP, Feng D, Deng YH, et al. A curing agent method to synthesize ordered mesoporous carbons from linear novolac phenolic resin polymers. J Mater Chem. 2009;19(36):6536-41.
[67]Mane GP, Dhawale DS, Anand C, Ariga K, Ji QM, Wahab MA, et al. Selective sensing performance of mesoporous carbon nitride with a highly ordered porous structure prepared from 3-amino-1,2,4-triazine. J Mater Chem A. 2013;1(8):2913-20.
[68]Pacheco-Catalan DE, Smit MA, Morales E. Characterization of Composite Mesoporous Carbon/Conducting Polymer Electrodes Prepared by Chemical Oxidation of Gas-Phase Absorbed Monomer for Electrochemical Capacitors. Int J Electrochem Sci. 2011;6(1):78-90.
[69]Wang JX, Xue CF, Lv YY, Zhang F, Tu B, Zhao DY. Kilogram-scale synthesis of ordered mesoporous carbons and their electrochemical performance. Carbon. 2011;49(13):4580-8.
[70]Wang KL, Huang BC, Liu DM, Ye DQ. Ordered mesoporous carbons with various pore sizes: Preparation and naphthalene adsorption performance. J Appl Polym Sci. 2012;125(5):3368-75.
[71]Werner JG, Hoheisel TN, Wiesner U. Synthesis and Characterization of Gyroidal Mesoporous Carbons and Carbon Monoliths with Tunable Ultralarge Pore Size. ACS Nano. 2014;8(1):731-43.
[72]余樹貞(1993).晶體之結構與性質.台灣.渤海堂文化公司.
[73]W. D. Kingery, H. K. Bowen, D. R. Uhlmann.(1976).Introduction to ceramics.New York.Wiley.
[74]Wang K, Zhang L. Synthesis of Ordered Mesoporous Carbon and Its Electrochemical Performances. Int J Electrochem Sci. 2013;8(2):2892-7.
[75]Abe T, Inoue S, Watanabe K. XRD and electrochemical measurements of RuO2 powder treated by using a mechanical grinding method. J Alloy Compd. 2003;358(1-2):177-81.
[76]Gopiraman M, Karvembu R, Kim IS. Highly Active, Selective, and Reusable RuO2/SWCNT Catalyst for Heck Olefination of Aryl Halides. ACS Catal. 2014;4(7):2118-29.
[77]Paoli EA, Masini F, Frydendal R, Deiana D, Schlaup C, Malizia M, et al. Oxygen evolution on well-characterized mass-selected Ru and RuO2 nanoparticles. Chem Sci. 2015;6(1):190-6.
[78]Li HF, Wang RD, Cao R. Physical and electrochemical characterization of hydrous ruthenium oxide/ordered mesoporous carbon composites as supercapacitor. Microporous Mesoporous Mat. 2008;111(1-3):32-8.
[79]Li XN, Zhu YC, Zhang X, Liang JW, Qian YT. MnO@1-D carbon composites from the precursor C4H4MnO6 and their high-performance in lithium batteries. RSC Adv. 2013;3(25):10001-6.
[80]Wang TY, Peng Z, Wang YH, Tang J, Zheng GF. MnO Nanoparticle@Mesoporous Carbon Composites Grown on Conducting Substrates Featuring High-performance Lithium-ion Battery, Supercapacitor and Sensor. Sci Rep. 2013;3.
[81]Kiani MA, Khani H, Mohammadi N. MnO2/ordered mesoporous carbon nanocomposite for electrochemical supercapacitor. J Solid State Electrochem. 2014;18(4):1117-25.
[82]Xiao Y, Dong HW, Lei BF, Qiu HH, Liu YL, Zheng MT. Ordered mesoporous carbons with fiber-and rod-like morphologies for supercapacitor electrode materials. Mater Lett. 2015;138:37-40.
[83]Zhang YX, Zhu SJ, Hao XD, Liu CP, Wen ZQ. Rational design of manganese dioxide decorated skeleton of colloidal mesoporous carbon nanocomposites for supercapacitors. Ceram Int. 2014;40(8):13381-8.
[84]鄭浩昇,加壓型固態氧化物燃料電池量測與分析:壓力、溫度與質量流率效應,國立中央大學機械工程研究所碩士論文,2012.
[85]Kim CH, Pyun S, Kim JH. An investigation of the capacitance dispersion on the fractal carbon electrode with edge and basal orientations. Electrochim Acta. 2003;48(23):3455-63.
[86]Wu C, Gao J, Zhao QL, Zhang YW, Bai YS, Wang XY, et al. Preparation and supercapacitive behaviors of the ordered mesoporous/microporous chromium carbide-derived carbons. J Power Sources. 2014;269:818-24.

[87]Huang HS, Chang KH, Suzuki N, Yamauchi Y, Hu CC, Wu KCW. Evaporation-Induced Coating of Hydrous Ruthenium Oxide on Mesoporous Silica Nanoparticles to Develop High-Performance Supercapacitors. Small. 2013;9(15):2520-6.
[88]Dong XP, Shen WH, Gu JL, Xiong LM, Zhu YF, Li Z, et al. MnO2-embedded-in-mesoporous-carbon-wall structure for use as electrochemical capacitors. J Phys Chem B. 2006;110(12):6015-9.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊