跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.169) 您好!臺灣時間:2025/01/21 07:27
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:江睿軒
研究生(外文):Ray-Xuan Jiang
論文名稱:以冷凍乾燥法製備雷射印表機之導電碳粉
論文名稱(外文):Preparation of Conductive Toner for Laser Printer by Freeze Drying Method
指導教授:陳建忠陳建忠引用關係
指導教授(外文):Chien-Chong Chen
口試委員:王崇人李弘斌李茂田
口試委員(外文):Churng-Ren WangHung-pin LiMaw-Tien Lee
口試日期:2015-07-16
學位類別:碩士
校院名稱:國立中正大學
系所名稱:化學工程研究所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2015
畢業學年度:103
語文別:中文
論文頁數:113
中文關鍵詞:奈米碳管導電碳黑樹脂外部添加劑碳粉電阻雷射印表機薄膜
外文關鍵詞:CNTSuper PResinExternal additivesTonerResistanceLaser printerFilm
相關次數:
  • 被引用被引用:0
  • 點閱點閱:417
  • 評分評分:
  • 下載下載:11
  • 收藏至我的研究室書目清單書目收藏:0
在本研究中,主要是想嘗試以一個創新且低成本的方法,製備具可撓曲性的導電薄膜。一開始,將已製備好的奈米碳管懸浮液與電荷控制劑/離型劑/樹脂懸浮液進行混合,製作出奈米碳管/電荷控制劑/離型劑/樹脂懸浮液。利用噴槍,並配合冷凍乾燥法將懸浮液乾燥,得到固態的粉末。
欲使奈米碳管/電荷控制劑/離型劑/樹脂粉末粒徑大小與市售碳粉相近,以確保與預拌槽載珠摩擦後能產生足夠的靜電量及圖形的完整性,將奈米碳管/電荷控制劑/離型劑/樹脂粉末經球磨機球磨,再以500 mesh篩網過篩後得奈米碳管/電荷控制劑/離型劑/樹脂碳粉顆粒,粒徑大小在6 ~ 8 μm之間。製作出的碳粉表面有大量的碳管裸露,並可同時兼顧粒徑大小與產量。將奈米碳管/電荷控制劑/離型劑/樹脂粉末熱壓在紙張上,可獲得導電紙張,最低的片電阻值為299.93 ± 53.92 Ω/sq,表示奈米碳管/電荷控制劑/離型劑/樹脂粉末是具有導電性的。
為增加碳粉顆粒的流動性及摩擦帶電後電荷的穩定性,對碳粉顆粒進行表面改性,透過球磨的方式使外部添加劑(疏水性二氧化矽與二氧化鈦)附在碳粉顆粒的表面,獲得最後的奈米碳管/電荷控制劑/離型劑/樹脂碳粉。另外,本研究也使用導電碳黑(Super P)作為材料製備導電碳粉。以自製的導電碳粉,透過雷射印表機,在影印紙上列印出圖形後,經電子顯微鏡觀察,可確認自製的導電碳粉能夠透過雷射印表機列印至紙上。

In this study, we tried to use a novel, simple and low cost method to fabricate a flexible and electrically conductive thin film. First, the suspension of the as-prepared CNT and Charge Controlling Agent (CCA)/release agent/resin were blending by mechanical stirring to obtain CNT/CCA/release agent/resin suspension, then using the spray gun to spray the suspension with the Freeze-drying method to dry the sample to obtain the solid powder.
We used planetary ball mill and sieve to make the size of CNT/CCA/release agent/resin toner being similar to commercial toner, ensuring that it has enough static electricity and the integrity of pattern after frictioning with the toner. The particle size of the toner we produced is situated between 6 ~ 8 μm and there are lots of CNT bared on the surface. Also, we can not only control the particle size but the yield of the toner. The sheet resistance of the conductive paper prepared by Hot-pressing is 299.93 ± 53.92 Ω/sq.
In order to increase the fluidity and charge stability of toner particle, we do the surface treatment to let the external additives attached to the surface of the toner particles via all-milling. Then, we obtained the conductive toner. Also, we use Super P as our material. Finally, using the laser printer to print the pattern on the copy paper to ensure that the toner we made can be used.

摘要....................................................................................I
Abstract..............................................................................III
致謝....................................................................................V
目錄...................................................................................VI
圖目錄..................................................................................X
表目錄................................................................................XIV
第一章文獻回顧.........................................................................1
1.1 奈米碳管薄膜 .......................................................................1
1.1.1 直接生長法 (Direct growth).......................................................2
1.1.2 懸浮溶液沉澱法 (Solution-based deposition)........................................3
1.1.3 噴墨印刷法.......................................................................4
1.1.4 雷射印刷.........................................................................9
1.2 雷射印表機........................................................................13
1.2.1 運作原理........................................................................13
1.2.1.1 佈電(Charging).................................................................13
1.2.1.1.1 非接觸式電暈佈電.............................................................14
1.2.1.1.2 接觸式佈電滾輪 ..............................................................14
1.2.1.2 曝光(Exposure)................................................................14
1.2.1.3 顯像(Developing)..............................................................15
1.2.1.3.1 單成份顯像系統 (Mono-component development system)...........................15
1.2.1.3.2 雙成份顯像系統 (Dual-component development system)...........................15
1.2.1.4 轉寫(Transferring)............................................................16
1.2.1.5 定影(Fusing)..................................................................16
1.2.1.6 清除(Cleaning)................................................................16
1.2.1.7 除電(Erasing).................................................................17
1.2.1.7.1 再次曝光.....................................................................17
1.2.1.7.2 佈電滾筒.....................................................................17
1.2.2 碳粉種類.........................................................................17
1.2.2.1 非接觸式單成份磁性顯像碳粉.......................................................18
1.2.2.2 接觸式單成份非磁性顯像碳粉.......................................................18
1.2.2.3 雙成份顯像碳粉..................................................................19
1.2.3 碳粉製備方法......................................................................19
1.2.3.1 傳統粉碎法......................................................................19
1.2.3.2 化學式碳粉......................................................................20
1.3 研究動機............................................................................21
1.4 研究目標............................................................................22

第二章 實驗方法與步驟實驗材料.............................................................23
2.1 實驗藥品............................................................................23
2.2 實驗儀器............................................................................25
2.3 實驗流程圖..........................................................................26
2.3.1 CNT/CCA/Resin/Wax Toner(Toner A).................................................26
2.3.2 Super P/CCA/Resin/Wax Toner(Toner B).............................................27
2.4 實驗步驟............................................................................28
2.4.1 CNT/CCA/Wax/Resin Toner(Toner A) 製備薄膜.........................................28
2.4.2 Super P/CCA/Resin/Wax Toner(Toner B) 製備薄膜.....................................30
2.4.3 分離原廠載珠與碳粉 ................................................................32
第三章 結果與討論........................................................................33
3.1 CNT/CCA/Resin/Wax與Super P/CCA/Resin/Wax 透過熱壓製備薄膜............................35
3.1.1 CNT/CCA/Resin/Wax Toner(Toner A)製備薄膜..........................................35
3.1.2 Super P/CCA/Resin/Wax Toner(Toner B)製備薄膜......................................50
3.2 CNT/CCA/Resin/Wax與Super P/CCA/Resin/Wax透過雷射印表機列印...........................57
3.2.1 碳粉與載珠的最低可列印量............................................................57
3.2.2 使用Super P/CCA/Resin/Wax碳粉與副廠載珠進行列印.....................................60
3.2.3 分離原廠載珠與碳粉.................................................................65
3.2.4 使用CNT/CCA/Resin/Wax與Super P/CCA/Resin/Wax碳粉配合副廠載珠或分離後的原廠載珠進行列印..........71
第四章 結論與未來展望.....................................................................80
4.1 結論................................................................................80
4.2 未來展望.............................................................................81
參考文獻..................................................................................82
附錄一 奈米碳管簡介.......................................................................85
附錄二 文獻回顧圖片.......................................................................91
附錄三 結果與討論圖表.....................................................................105
附錄四 四點探針電阻值換算公式推導..........................................................112
[1]S. Iijima, Helical microtubules of graphitic carbon. Nature 1991, 354, 56-58.
[2]S. Iijima, and T. Ichihashi, Single-shell carbon nanotubes of 1-nm diameter. Nature 1993, 363, 603-605.
[3]D. S. Bethune, C. H. Kiang, M. S. D. Vries, G. Gorman, R. Savoy, J. Vazquez, and R. Beyers, Cobalt-catalysed growth of carbon nanotubes with single-atomic-layer walls. Nature 1993, 363, 605-607.
[4]A. C. Dillon, K. M. Jones, T. A. Bekkedahl, C. H. Kiang, D. S. Bethune, and M. J. Heben, Storage of hydrogen in single-walled carbon nanotubes. Nature 1997, 386, 377-379.
[5]W. A. D. Heer, A. Chatelain, and D. Ugarte, A carbon nanotube field-emission electron source. Science 1995, 270, 1179-1180.
[6]R. Martel, T. Schmidt, H. R. Shea, T. Hertel, and P. Avouris, Single-and multi-wall carbon nanotube field-effect transistors. Applied Physics Letters 1998, 73, 2447-2449.
[7]D. Y. Cho, K. Eun, S. H. Choa, and H. K. Kim, Highly flexible and stretchable carbon nanotube network electrodes prepared by simple brush painting for cost-effective flexible organic solar cells. Carbon 2014, 66, 530-538.
[8]Q. Cheng, Z. Song, T. Ma, B. B. Smith, R. Tang, H. Yu, H. Jiang, and C. K. Chan, Folding Paper-Based Lithium-Ion Batteries for Higher Areal Energy Densities. Nano Lett. 2013, 13, 4969 – 4974.
[9]K. H. An, W. S. Kim, Y. S. Park, J. M. Moon, D. J. Bae, S. C. Lim, Y. S. Lee, and Y. H. Lee, Electrochemical properties of high-power supercapacitors using single-walled carbon nanotube electrodes. Advanced Functional Materials 2001, 11, 387-392.
[10]M. Wang, H. Chen, W. Lin, Z. Li, Q. Li, M. Chen, F. Meng, Y. Xing, Y. Yao, C. P. Wong, and Q. Li, Crack-Free and Scalable Transfer of Carbon Nanotube Arrays into Flexible and Highly Thermal Conductive Composite Film. ACS Appl. Mater. Interfaces 2014, 6, 539-544.
[11]D. Qian, W. K. Liu, and R. S. Ruoff, Load transfer and deformation mechanisms in carbon nanotube-polystyrene composites. Applied Physics Letters 2000, 76, 2868-2870.
[12]Z. P. Wu, and J. N. Wang, Preparation of large-area double-walled carbon nanotube films application as film heater. Physica E 2009, 42, 77-81.
[13]E. Y. Jang, T. J. Kang, H. W. Im, D. W. Kim, and Y. H. Kim, Single-Walled Carbon-Nanotube Networks on Large-Area Glass Substrate by the Dip-Coating Method. Small 2008, 12, 2255-2261.
[14]L. Hu, J. W. Choi, Y. Yang, S. Jeong, F. L. Mantia, L. F. Cui, and Y. Cui, Highly conductive paper for energy-storage devices. PNAS 2009, 106, 21490-21494.
[15]A. Shimoni, S. Azoubel, and S. Magdassi, Inkjet printing of flexible high-performance carbon nanotube transparent conductive films by “ coffee ring effect ”. Nanoscale 2014, 6, 11084-11089.
[16]O. S. Kwon, H. Kim, H. Ko, J. Lee, B. Lee, C. H. Jung, J. H. Choi, and K. Shin, Fabrication and characterization of inkjet-printed carbon nanotube electrode patterns on paper. Carbon 2013, 58, 116-127.
[17]A. Denneulin, J. Bras, F. Carcone, C. Neuman, and A. Blayo, Impact of ink formulation on carbon nanotube network organization within inkjet printed conductive films. Carbon 2011, 49, 2603-2614.
[18]Y. I. Lee, S. Kim, K. J. Lee, N. V. Myung, and Y. H. Choa, Inkjet printed transparent conductive films using water-dispersible single-walled carbon nanotubes treated by UV/ozone irradiation. Thin Solid Films 2013, 536, 160-165.
[19]L. B. Hu, H. Wu, and Y. Cui, Printed energy storage devices by integration of electrodes and separators into single sheets of paper. Applied Physics Letters 2010, 96, 183502-183504.
[20]P. Chen, H. Chen, J. Qiu, and C. Zhou, Inkjet printing of single-walled carbon nanotube/RuO2 nanowire supercapacitors on cloth fabrics and flexible substrates. Nano Research 2010, 3, 594-603.
[21]D. Büttner, K. Krüger, A. Schönberger, D. Jung, and B. Zobrist, Laser Printing of Conductive Silver Lines. Society for Imaging Science and Technology 2010, 139-142.
[22]劉正川, 雷射印表機原理選購指南與碳粉卡匣填充DIY. 全華 2005.
[23]A. A. Kalam, and J. Bae, Low-Cost, High-Efficiency Conductive Papers Fabricated Using Multi-Walled Carbon Nanotubes, Carbon Blacks and Polyvinyl Alcohol as Conducting Agents. ECS Journal of Solid State Science and Technology 2015, 4, M41-M45.
[24]P. Kossyrev, Carbon black supercapacitors employing thin electrodes. Journal of Power Sources 2012, 201, 347–352.
[25]Fuji Xerox Co., Ltd., Material Safety Data Sheet. 2012.
[26]T. Mizuguchi, and H. Takano, Electrostatic Latent Image Developing Toner, Electrostatic Latent Image Eveloper, Image Forming Apparatus, And Apparatus For Manufacturing Electrostatic Latent Image Developing Toner. United States Patent Application Publication, 2013. US 2013/0089359 A1.
[27]K. Kitajima, Y. Saito, and M. Takahashi, Electrostatic Charge Image Developing Toner, Electrostatic Charge Image Developer, Toner Cartridge, Process Cartridge, Image F orming Apparatus, And Image Forming Method Cartridge, Proces. United States Patent Application Publication, 2013. US 2013/0108949 A1.
[28]S. Yoshida, T. Murakami, E. Iwazaki, and S. Sakamoto, Electrostatic Charge Image Developing Toner, Electrostatic Charging Image Developer, Toner Cartridge, Process Cartridge, Method Of Producing Electrostatic Charge Image Developing Toner, And Image Forming Apparatus. United States Patent Application Publication, 2013. US 2013/0078565 A1.
[29]H. Matsuoka, S. Yamasaki, S. Hiraoka, Y. Sasaki, and S. Yoshino, Electrostatic Image Developing Toner, Electrostatic Developer, Toner Cartridge, Process Cartridge, Image Forming Apparatus, And Image Forming Method. United States Patent Application Publication, 2013. US 2013/0029264 A1.
[30]Y. L. Liu, and C. W. Chuang, Chemical developer and method for fabricating the same. 中華民國智慧財產局發明專利說明書 2012. 201211706.
[31]M. S. Dresselhaus, G. Dresselhaus, and R. Saito, Physics of carbon nanotubes. Carbon 1995, 33, 883-891.
[32]D. H. Oh, and Y. H. Lee, Stability and cap formation mechanism of single-walled carbon nanotubes. Physical Review B 1998, 58, 7407.
[33]M. Terrones, W. K. Hsu, H. W. Kroto, and D. R. M. Walton Nanotubes: a revolution in materials science and electronics, in Fullerenes and related structures. Springer 1999, 189-234.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊