跳到主要內容

臺灣博碩士論文加值系統

(44.222.104.206) 您好!臺灣時間:2024/05/23 16:56
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:黃毓輝
研究生(外文):Yu-Hui Huang
論文名稱:鍺錫多重量子井波導式紅外線光偵測器之研製
論文名稱(外文):Development GeSn/Ge multiple quantum-well waveguide infrared photodetectors
指導教授:張國恩張國恩引用關係
指導教授(外文):Guo-En Cheng
口試委員:黃俊達呂明諺
口試委員(外文):Jun-Dar HwangMing-Yen Lu
口試日期:2015-07-23
學位類別:碩士
校院名稱:國立中正大學
系所名稱:機械工程學系暨研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2015
畢業學年度:103
語文別:中文
論文頁數:85
中文關鍵詞:鍺錫合金多重量子井光偵測器波導近紅外光光纖通訊
外文關鍵詞:GeSn alloyquantum wellphtotdetectorwaveguidenear-infraredtelecommunication
相關次數:
  • 被引用被引用:2
  • 點閱點閱:247
  • 評分評分:
  • 下載下載:7
  • 收藏至我的研究室書目清單書目收藏:0
本論文利用同屬IV-IV族的新興材料-鍺錫合金材料系統及標準半導體製程發展鍺錫/鍺多重量子井波導式光偵測器。鍺錫合金與傳統半導體材料矽與鍺相比,鍺錫合金具有較小的能隙及較佳的紅外線吸收效率,同時鍺錫合金能有效整合在矽晶圓上,可用來發展新型的矽基紅外線光偵測器及有效應用於光纖通訊與短距離光連接平台。然而鍺錫光偵測器與鍺光偵測器相比,有著暗電流過大的問題。針對這個問題,本文提出的辦法為在鍺錫合金加入量子井結構,透過鍺錫量子井結構的同調成長狀態降低材料缺陷,及利用量子侷限效應使鍺錫光偵測器在長波長能保有良好的光侷限效果。目前,我們已經成功製作出全世界第一個鍺錫多重量子井波導式光偵測器。在電壓-電流特性的量測上,操作偏壓在-1V時,鍺錫多重量子井光偵測器的電流密度為0.019A/cm2,結果顯示量子井結構能有效降低鍺錫光偵測器的暗電流;在光響應度量測上,我們的偵測器響應波長截止在1635nm,可以涵蓋到部分的U band;在波長1550nm之光響應度為0.1A/W,而在波長1300nm~1560nm,光響應度衰減的十分緩慢,顯示量子井波導結構在長波長時具有良好的量子侷限效應。本研究所發展的鍺錫/鍺量子井波導式光偵測器具有高響應度、低暗電流及容易與其它元件整合的優點,可應用到下一世代之光積體電路。
In this thesis, we aim to develop Si-based GeSn multiple-quantum-well waveguide photodetectors employing GeSn alloys. Compared to Si and Ge, GeSn alloys have unique advantages of narrower bandgap, higher absorption coefficient in the infrared region, and compatibility with Si technology, thus ideal for photodetectors that are required for photonic-electronic integrated circuits. However, GeSn-based photodetectors usually exhibit dark current densities than Ge ones. To address this issue, this study proposes to use GeSn/Ge multiple-quantum-well structures as photon absorbing layer for photodetectors. By coherently growing GeSn quantum wells on Ge-buffered Si wafers, defect density is reduced, thus suppressing the dark current density. We have successfully fabricated the first GeSn/Ge multiple-quantum-well waveguide photodetectors. Current-voltage measurements show that the dark current density at -1V is reduced to 0.019A/cm2, indicating GeSn/Ge multiple-quantum-well PDs has lower dark current densities than GeSn PDs. Optical responsivity measurements the cutoff wavelength has been extended from 1550 nm to 1630 nm due to the incorporation of Sn into the active region, covering the entire telecommunication C and L abnds, and a large part of U band. The responsivity at 1550 nm is 0.1A/W and exhibits a slow decay with increasing wavelength, due to the modified density-of-states, showing good optical response in the infrared region and quantum confinement effect. With high responsivity, low dark current density, and integrability with other photonic devices, this GeSn/Ge multiple-quantum-well waveguide photodetector could be useful for applications in photonic-electronic integrated circuits.
目錄
表目錄 v
圖目錄 vi
第一章 緒論 1
1-1 前言 1
1-2 光電積體電路 3
1-3 論文架構 5
第二章 鍺錫光偵測器發展及文獻回顧 6
2-1 四族半導體材料特性介紹 6
2-2 鍺錫合金發展背景 7
2-3 光偵測器介紹 11
2-4 量子井及量子侷限史塔克效應 15
2-5 文獻回顧 17
第三章 波導型光偵測器理論計算與模擬 32
3-1 電子能帶結構及載子吸收係數之理論計算 32
3-2 波導型光偵測器之光限制因子計算 38
3-3 光偵測器之二極體特性分析 41
第四章 鍺錫波導式光偵測器樣品結構及元件製作 42
4-1 鍺錫波導式光偵測器樣品結構 42
4-2 鍺錫波導式光偵測器元件製程流程 44
4-3 光罩設計 46
4-4 元件製作相關參數 48
4-5 元件之光學及電子影像 50


第五章 量測系統與量測結果討論 51
5-1 電壓-電流量測系統 51
5-2 光電流量測系統 52
5-3 電壓-電流特性量測結果 54
5-4 光響應度量測結果 60
第六章 結論及未來工作 64
6-1 結論 64
6-2 未來研究方向 65
參考文獻 67

[1] http://www.gartner.com/newsroom/id/3027717
[2] http://www.marctomarket.com/2014/01/great-graphic-is-this-end-of-moores-law.html
[3] http://www.convergedigest.com/bp/bp1.asp?ID=242&ctgy=
[4] A. Alduino, M. Paniccia, "Interconnects: Wiring electronics with light", Nature Photonics 1 (3), 153-155 (2007).
[5] http://www.nict.go.jp/en/press/2011/12/26-01.html
[6] http://www.ioffe.rssi.ru/SVA/NSM/Semicond/SiGe/bandstr.html
[7] https://engineering.purdue.edu/gekcogrp/science-applications/ultra-scaled-FETs/mugfets/cmos/
[8] http://www.slideshare.net/chinkitkit/chapter-4b
[9] http://www.laserfocusworld.com/articles/2010/08/avalanche-photodiodes.html
[10] M. El Kurdi, H. Bertin, E. Martincic, M. de Kersauson, G. Fishman, S. Sauvage, A. Bosseboeuf and P. Boucaud, "Control of direct band gap emission of bulk germanium by mechanical tensile strain", Applied Physics Letters 96 (4), 041909 (2010).
[11] G. E. Chang, W. Y. Hsieh, J. Z. Chen and H. H. Cheng, "Quantum-confined photolumine-scence from Ge1-xSnx/Ge superlattices on Ge-buffered Si (001) substrates", Optics Letters 38 (18), 3485-3487 (2013).
[12] S. Gupta, R. Chen, B. Magyari-Kope, H. Lin, B. Yang, A. Nainani, Y. Nishi, J. S.Harris and K. C. Saraswat, "GeSn technology: Extending the Ge electronics roadmap", 2011 IEEE International, Electron Devices Meeting (IEDM) 16-6 (2011).
[13] Y. Huo, "Strained Ge and GeSn band engineering for Si photonic integrated circuits", Stanford University, PhD Dissertations, (2010).
[14] E. Kasper, J. Werner, M. Oehme, S. Escoubas, N. Burle, and J. Schulze, "Growth of sili-con based germanium tin alloys", Thin Solid Films 520 (8), 3195–3200 (2012).
[15] S. Gupta, R. Chen, Y. C. Huang, Y. Kim, E. Sanchez, J. S. Harris and K. C. Saraswat, "Hi-ghly selective dry Etching of germanium over germanium−tin (Ge1−xSnx): A Novel route for Ge1−xSnx nanostructure fabrication", Nano Letters 13 (8), 3783–3790 (2013).
[16]劉信忠,應用於光通訊 1.55 μm 波段P-I-N 及M-S-M光偵測器之設計與製作,國立中央大學,碩士論文,民國93年
[17] Y. Rong, Y. Huo, E. T. Fei, M. Fiorentino, MRT. Tan, T. Ochalski, G. Huyet, L. Thylen, M. Chacinski, T. I. Kamins and J. S. Harris, "High speed optical modulation in Ge quantum wells using quantum confined stark effect" Frontiers of Optoelectronics 5 (1), 82-89 (2012).
[18] http://www.pveducation.org/pvcdrom/materials/optical-properties-of-silicon#footnote1
_u8sckze
[19] M. Jutzi, M. Berroth, G. Wöhl, M. Oehme and E. Kasper, "Ge-on-Si vertical incidence photodiodes with 39-GHz bandwidth", IEEE, Photonics Technology Letters 17 (7), 1510-1512 (2005).
[20] D. Ahn, C-Y Hong, J. Liu, W. Giziewicz, M. Beals, L. C. Kimerling, J. Michel, J. Chen and F. X. Kärtner, "High performance, waveguide integrated Ge photodetectors", Optics Express 15 (7), 3916-3921 (2007).
[21] L. Vivien, J. Osmond, J. M. Fédéli, D. Marris-Morini, P. Crozat, J. F. Damlencourt, E. Cass-an, Y. Lecunff, and S. Laval, "42 GHz pin Germanium photodetector integrated in a silicon-on-insulator waveguide", Optics Express 17 (8), 6252-6257 (2009).
[22] P. Chaisakul, D. Marris-Morini, G. Isella, D. Chrastina, M. S. Rouifed, X. L. Roux, S. Edmond, E. Cassan, J. R. Coudevylle, and L. Vivien, "10-Gb/s Ge/SiGe multiple quantum-well waveguide photodetector", IEEE, Photonics Technology Letters, 23 (20) 1430-1432 (2011).
[23] P. Chaisakul, D. Marris-Morinia, G. Isella, D. Chrastina, M. S. Rouifed, J. Frigerio and L. Vivien, "Ge quantum well optoelectronic devices for light modulation, detection, and emission", Solid-State Electronics, 83, 92-98 (2013).
[24] J. Mathews, R. Roucka, J. Xie, S. Q. Yu, J. Menéndez and J. Kouvetakis, "Extended per-formance GeSn/Si (100) pin photodetectors for full spectral range telecommunication applications", Applied Physics Letters 95 (13), 133506 (2009).
[25] S. Su, B. Cheng, C. Xue, W. Wang, Q. Cao, H. Xue, W. Hu, G. Zhang, Y. Zuo and Q. Wang, "GeSn pin photodetector for all telecommunication bands detection", Optics Expr-ess 19 (7), 6400-6405 (2011).
[26] M. Oehme, M. Schmid, M. Kaschel, M. Gollhofer, D. Widmann, E. Kasper and J. Sch-ulze, "GeSn pin detectors integrated on Si with up to 4% Sn", Applied Physics Letters 101 (14), 141110 (2012).
[27] M. Oehme, D. Widmann, K. Kostecki, P. Zaumseil, B. Schwartz, M. Gollhofer, R. Koer-ner, S. Bechler, M. Kittler, E. Kasper and J. Schulze, "GeSn/Ge multiquantum well pho-todetectors on Si substrates", Optics Letters 39 (16), 4711-4714 (2014).
[28] H. H. Tseng, H. Li, V. Mashanov, Y. J. Yang, H. H. Cheng, G. E. Chang, R. A. Soref and G. Sun, "GeSn-based pin photodiodes with strained active layer on a Si wafer", Applied Physics Letters 103 (23), 231907 (2013).
[29] Y. H. Peng, H. H. Cheng, V. I. Mashanov and G. E. Chang, "GeSn pin waveguide photo-detectors on silicon substrates", Applied Physics Letters 105 (23), 231109 (2014).
[30] G. E. Chang, C. O. Chang, "Tensile-Strained Ge/SiGeSn Quantum Wells for Polarization -Insensitive Electro-Absorption Waveguide Modulators", IEEE Journal of Quantum Elec-tronics 48 (4), 533-541 (2012).
[31] Z. Khurelbaatar, Y. H. Kil, H. J. Yun, K. H. Shim, J. T. Namc, K. S. Kim, S. K. Lee, C. J. Choi, "Modification of Schottky barrier properties of Au/n-type Ge Schottky barrier diode using monolayer graphene interlayer", Journal of Alloys and Compounds 614, 323-329 (2014)
[32] T. Sadoh, H. Kamizuru, A. Kenjo, M. Miyao, "Ge-channel thin-film transistor with schottky source/drain fabricated by low-temperature processing", Japanese Journal of Applied Physics 46 (3S), 1250 (2007)
[33] Y. H. You, S. Y. Du, Y. H. Huang and G. E. Chang, "Room-temperature photoluminescen-ce of pseudomorphic Ge0.96Sn0.04 quantum wells grown on silicon-based germanium virtual substrate", The 4th International Conference on Engineering and Applied Science, (2014).

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊