跳到主要內容

臺灣博碩士論文加值系統

(44.222.104.206) 您好!臺灣時間:2024/05/29 23:51
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:王少君
研究生(外文):Shao-Jyun, Wang
論文名稱:大高加索山的剝蝕歷史
論文名稱(外文):Exhumation History of the Greater Caucasus
指導教授:李元希李元希引用關係
指導教授(外文):Yuan-Hsi, Lee
口試委員:鍾孫霖呂學諭
口試委員(外文):Sun-Lin, ChungHsueh-Yu, Lu
口試日期:2015-07-24
學位類別:碩士
校院名稱:國立中正大學
系所名稱:應用地球物理研究所
學門:自然科學學門
學類:地球科學學類
論文種類:學術論文
論文出版年:2015
畢業學年度:103
語文別:中文
論文頁數:207
中文關鍵詞:大高加索鈾-鉛定年核飛跡鈾-釷/氦定年
外文關鍵詞:Greater Caucasusfission trackzircon U-Th/He
相關次數:
  • 被引用被引用:0
  • 點閱點閱:196
  • 評分評分:
  • 下載下載:3
  • 收藏至我的研究室書目清單書目收藏:0
歐亞大陸板塊-阿拉伯板塊於晚始新世至早中新世開始碰撞,其所擠壓成的造山帶為非單一縫合帶,而是由許多微地塊、島弧及增積岩體拼貼而成的。在碰撞前,曾存在的新特提斯洋約於晚始新世開始關閉,至漸新世-早中新世海洋才完全消滅,而兩陸塊間的海洋沉積物持續至中新世中期,而後造成許多複雜的區域地質構造出現。
大高加索造山帶為雙向楔形體模式 ( bivegent-wedge shape ),其岩石基盤為古生代-中生代,過去研究顯示附近的小高加索和札格羅斯造山帶於新生代有活躍的構造活動,且大高加索的相關研究文獻皆集中於東、西和北大高加索,而南大高加索卻較缺乏良好的熱定年分析結果,因此本研究主要採集南大高加索的花崗岩、砂岩與變質砂岩進行熱定年分析,並結合前人相關研究結果,探討大高加索在新生代時期的活動構造趨勢與快速抬升機制。
本研究熱定年結果顯示鋯石鈾-鉛年代分散為古生代 ( ~ 488-261 Ma ) 與中生代 ( 177-160Ma ),鋯石核飛跡結果為白堊紀 ( ~ 118-77 Ma ),而鋯石鈾-釷/氦結果為中新世 ( ~ 11.5-5.3 Ma ),磷灰石核飛跡主要集中在中新世晚期-上新世 ( ~ 9-1.2 Ma ),並利用磷灰石核飛跡長度進行熱模擬顯示南大高加索在20-10 Ma和8-5 Ma有抬升作用外,約在2 Ma亦發生劇烈的快速抬升,導致此地區在新生代有明顯活動構造發生。並且推測其快速抬升的形成機制是由於大高加索屬陸-陸聚合的狀態,但在大高加索中段由於隱沒的板塊發生斷裂及部分拆解,產生地殼反彈與向上推擠的作用力,導致此地區持續有快速的抬升。

The Arabia-Eurasia collision propagates from south to north which results in the south Caspian Sea northward subducting and rapid exhumation in the Greater Caucasus. Previous study has mainly focused on the north side of the Greater Caucasus and show about 5Ma beginning rapid uplift. In this study, we conduct the apatite fission track and Zircon U-Th/He dating to analyze rock from the southern Greater Caucasus, and combining with previous thermochronolgy data to reveal the comprehensive exhumation history of the Greater Caucasus.
The Greater Caucasus shows the bivegent-wedge shape and the highest metamorphic grade shows in the central axis area and decreases to northward and southward. Most of the zircon fission track shows Mesozoic ages indicates the Cenozoic exhumation amount is less than ca. 8 km. Two zircon U-Th/He dating shows 11.5-5.3 Ma indicates the maximum exhumation amount is ca. 6-8 km and the rapid exhumation could start from those ages. All the apatite ages ranges from 9-1.2 Ma, and also infers the rapid exhumation since 9-6 Ma.
Variation the exhumation amount and rate along the strike of mountain infers different convergence process. To the eastern side the transition or oceanic North Anatolia crust subduct to the Eurasia plate and the North Anatolia continent crust subduct and collide with the Eurasia plate that result in high exhumation rate in the central Greater Caucasus.

致謝 I
中文摘要 II
英文摘要 III
目錄 IV
圖目錄 VI
表目錄 VIII
第一章 緒論 1
1.1 前言 1
1.2 研究地區概述 2
1.3 前人研究 4
1.3.1 區域地質背景 4
1.3.2 區域資料分析 7
1.4 研究動機與目的 11
第二章 研究方法 12
2.1 放射性定年 12
2.1.1 放射性定年原理 12
2.2岩樣前置處理 13
2.3 核飛跡定年 15
2.3.1 核飛跡定年原理 15
2.3.2 核飛跡定年分析方法 17
2.3.3年代計算公式 21
2.3.4 樣本製作與分析流程 24
2.3.5 核飛跡年代之意義 28
2.4 鈾-鉛定年 30
2.4.1 鈾-鉛定年原理 30
2.4.2 樣本靶製作 31
2.4.3 分析儀器與設備 32
2.4.4 分析流程 34
2.5 鈾-釷/氦定年 35
2.5.1 鈾-釷/氦定年原理 35
2.6 熱模擬 36
2.6.1 核飛跡長度定義與量測 36
2.6.2 熱模擬原理與模型 39
2.6.3 熱模擬操作與應用 41
2.7 熱定年的封存溫度 42
第三章 研究結果 44
3.1 野外觀察與採樣位置 44
3.2 鋯石鈾-鉛定年結果 48
3.3 鋯石核飛跡定年結果 53
3.4 鋯石鈾-釷/氦定年結果 57
3.5 磷灰石核飛跡定年結果 60
3.6 熱模擬結果 68
第四章 討論 73
4.1 整體抬升的說明 73
4.2抬升剝蝕的時間點 75
4.3 剝蝕與冷卻速率的多樣貌 77
4.4 快速抬升的機制 79
第五章 結論 81
參考文獻 82
附錄 88

中文文獻
周南、劉聰桂 ( 1997 ),核飛跡 ( FT ) 定年法。地質,卷16,1-2期,97-111頁。
陳震東( 2014 ),小高加索山之剝蝕歷史與東安納托利亞高原之抬升機制。國立中正大學地球與環境科學系應用地球物理與環境科學碩士班碩士論文,共143頁。
杨波、丁俊、杜谷、陈智梁、胡志中、王杰、陶成 ( 2013 ),( U-Th)/He 低温热年代学技术方法在造山带隆升-剥蚀过程研究中的应用。地质学报,第87卷,359-360頁。

英文文獻
Agard, P., Omrani, J., Jolivet, L., & Mouthereau, F. (2005). Convergence history across Zagros (Iran): constraints from collisional and earlier deformation. International Journal of Earth Sciences, 94(3), 401-419.
Allen, M. B., Jones, S., Ismail-Zadeh, A., Simmons, M., & Anderson, L. (2002). Onset of subduction as the cause of rapid Pliocene-Quaternary subsidence in the South Caspian basin. Geology, 30(9), 775-778.
Allen, M., Jackson, J., & Walker, R. (2004). Late Cenozoic reorganization of the Arabia‐Eurasia collision and the comparison of short‐term and long‐term deformation rates. Tectonics, 23(2). Allmendinger, R. W., Reilinger, R., & Loveless, J. (2007). Strain and rotation rate from GPS in Tibet, Anatolia, and the Altiplano. Tectonics, 26(3).
Armstrong, P. A. (2005). Thermochronometers in sedimentary basins. Reviews in mineralogy and geochemistry, 58(1), 499-525.
Avdeev, B., & Niemi, N. A. (2011). Rapid Pliocene exhumation of the central Greater Caucasus constrained by low‐temperature thermochronometry. Tectonics, 30(2).
Bochud, M. (2011). Tectonics of the Eastern Greater Caucasus in Azerbaijan. Département de géosciences, sciences de la terre, Université de Fribourg.

Bochud, M., Mosar, J., Glasmacher, U. A., Kissner, T., Otto Kraft, Rast, A., Kangarli, T., (2011), BURIAL AND EXHUMATION:FISSION TRACKS, ILLITE CRYSTALLINITY AND SUBSIDENCE CURVE STUDY IN THE EGC. Département de géosciences, sciences de la terre, Université de Fribourg. 109-132
Brandon, M.T., (1992), Decomposition of fission-track grain-age distributions. American Journal of Science, v. 292, 535-564.
Crowhurst, P. V., Green, P. F., & Kamp, P. J. J. (2002). Appraisal of (U-Th)/He apatite thermochronology as a thermal history tool for hydrocarbon exploration: An example from the Taranaki Basin, New Zealand. AAPG bulletin, 86(10).
Crowley, K. D., Cameron, M., & Schaefer, R. L. (1991). Experimental studies of annealing of etched fission tracks in fluorapatite. Geochimica et Cosmochimica Acta, 55(5), 1449-1465.
Dèzes, P., & Steck, A. (1999). Tectonic and metamorphic evolution of the central Himalayan domain in southeast Zanskar (Kashmir, India).
Dotduyev, S. I. (1987). Nappe structure of the Greater Caucasus range. Geotectonics, 20(5), 420-430.
Duddy, I. R., Green, P. F., & Laslett, G. M. (1988). Thermal annealing of fission tracks in apatite 3. Variable temperature behaviour. Chemical Geology: Isotope Geoscience section, 73(1), 25-38.
Farley, K. A. (2002). (U-Th)/He dating: Techniques, calibrations, and applications. Reviews in Mineralogy and Geochemistry, 47(1), 819-844.
Fleischer, R. L., & Price, P. B. (1964). Decay Constant for Spontaneous Fission of U238. Physical Review, 133(1B), B63.
Fleischer, R. L., Naeser, C. W., Price, P. B., Walker, R. M., & Maurette, M. (1965a). Cosmic ray exposure ages of tektites by the fission‐track technique. Journal of Geophysical Research, 70(6), 1491-1496.
Fleischer, R. L., Price, P. B., & Walker, R. M. (1965b). Effects of temperature, pressure, and ionization of the formation and stability of fission tracks in minerals and glasses. Journal of geophysical research, 70(6), 1497-1502.
Fleischer, R. R. L., Price, P. B., & Walker, R. M. (1975). Nuclear tracks in solids: principles and applications. Univ of California Press.
Gallagher, K. (1995). Evolving temperature histories from apatite fission-track data. Earth and Planetary Science Letters, 136(3), 421-435.
Gallagher, K., Brown, R., & Johnson, C. (1998). Fission track analysis and its applications to geological problems. Annual Review of Earth and Planetary Sciences, 26(1), 519-572.
Gelati, R. O. M. A. N. O. (1975). Miocene marine sequence from Lake Van, eastern Turkey. Riv. Ital. Paleontol. Stratigr, 81, 477-490.
Ghent, E. D., Stout, M. Z., & Parrish, R. R. (1988). Determination of metamorphic pressure-temperature-time (PTt) paths. Heat Flow, Metmorphism and Tectonics, 14, 155-188.
Gleadow, A. J. W., Duddy, I. R., Green, P. F., & Lovering, J. F. (1986). Confined fission track lengths in apatite: a diagnostic tool for thermal history analysis. Contributions to Mineralogy and Petrology, 94(4), 405-415.
Golonka, J. (2004), Plate tectonic evolution of the southern margin of Eurasia in the Mesozoic and Cenozoic, Tectonophysics, 381(1 – 4), 235 – 273.
Green, P. F. (1981). A new look at statistics in fission-track dating. Nuclear tracks, 5(1), 77-86.
Green, P. F. (1985). Comparison of zeta calibration baselines for fission-track dating of apatite, zircon and sphene. Chemical Geology: Isotope Geoscience section, 58(1), 1-22.
Green, P. F., Duddy, I. R., Gleadow, A. J. W., Tingate, P. R., & Laslett, G. M. (1986). Thermal annealing of fission tracks in apatite: 1. A qualitative description. Chemical Geology: Isotope Geoscience section, 59, 237-253.
Gudjabidze and Gramkrelidze, (2003), Geological map of Georgia
Haack, U. (1977). The closing temperature for fission track retention in minerals. American Journal of Science, 277(4), 459-464.
Hatzfeld, D., & Molnar, P. (2010). Comparisons of the kinematics and deep structures of the Zagros and Himalaya and of the Iranian and Tibetan plateaus and geodynamic implications. Reviews of Geophysics, 48(2).
Hasebe, N., Tagami, T., & Nishimura, S. (1994). Towards zircon fission-track thermochronology: Reference framework for confined track length measurements. Chemical geology, 112(1), 169-178.
Hurford, A. J., & Green, P. F. (1982). A users' guide to fission track dating calibration. Earth and Planetary Science Letters, 59(2), 343-354.
Hurford, A. J., Fitch, F. J., & Clarke, A. (1984). Resolution of the age structure of the detrital zircon populations of two Lower Cretaceous sandstones from the Weald of England by fission track dating. Geological Magazine, 121(4), 269-277.
Ketcham, R. A., Donelick, R. A., & Carlson, W. D. (1999). Variability of apatite fission-track annealing kinetics: III. Extrapolation to geological time scales. American Mineralogist, 84, 1235-1255.
Ketcham, R. A., Donelick, R. A., & Donelick, M. B. (2000). AFTSolve: A program for multi-kinetic modeling of apatite fission-track data. Geological Materials Research, 2(1), 1-32.
Koop, W. J., Stoneley, R., Ridd, M. F., Murphy, R. W., Osmaston, M. F., & Kholief, M. M. (1982). Subsidence history of the Middle East Zagros basin, Permian to Recent [and discussion]. Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences, 305(1489), 149-168.
Laslett, G. M., Green, P. F., Duddy, I. R., & Gleadow, A. J. W. (1987). Thermal annealing of fission tracks in apatite 2. A quantitative analysis. Chemical Geology: Isotope Geoscience Section, 65(1), 1-13.
Moores, E. M., & Fairbridge, R. W. (Eds.). (1997). Encyclopedia of European and Asian regional geology (Vol. 19). Springer.
Mosar, J., Kangarli, T., Bochud, M., Glasmacher, U. A., Rast, A., Brunet, M. F., & Sosson, M. (2010). Cenozoic-Recent tectonics and uplift in the Greater Caucasus: a perspective from Azerbaijan. Geological Society, London, Special Publications, 340(1), 261-280.
Mumladze, T., Forte, A. M., Cowgill, E. S., Trexler, C. C., Niemi, N. A., Yıkılmaz, M. B., & Kellogg, L. H. (2015). Subducted, detached, and torn slabs beneath the Greater Caucasus. GeoResJ, 5, 36-46.
Okay, A. I., Zattin, M., & Cavazza, W. (2010). Apatite fission-track data for the Miocene Arabia-Eurasia collision. Geology, 38(1), 35-38.
Pearce, J., Bender, J., De Long, S., Kidd, W., Low, P., Guner, Y., Saroglu, F., Yilmaz, Y., Moorbath, S. and Mitchell, J., (1990). Genesis of collision volcanism in Eastern Anatolia, Turkey. Journal of Volcanology and Geothermal Research, 44(1-2): 189-229.
Price, P. B., & Walker, R. M. (1962a). A new track detector for heavy particle studies. Physics Letters, 3(3), 113-115.
Price, P. B., & Walker, R. M. (1962b). Observations of Charged‐Particle Tracks in Solids. Journal of Applied Physics, 33(12), 3400-3406.
Reilinger, R., S. McClusky, P. Vernant, S. Lawrence, S. Ergintav, R. Cakmak, H. Ozener, F. Kadirov, I. Guliev, R. Stepanyan, M. Nadariya, G. Hahubia, S. Mahmoud, K. Sakr, A. ArRajehi, D. Paradissis, A. Al-Aydrus, M. Prilepin, T. Guseva, E. Evren, A. Dmitrotsa, S. V. Filikov, F. Gomez, R. Al-Ghazzi, and G. Karam, (2006). GPS constraints on continental deformation in the Africa-Arabia-Eurasia continental collision zone and implications for the dynamics of plate interactions, J. Geophys. Res.-Solid Earth, 111(B5), B05411, doi: 10.1029/2005jb004051.
Şengör, A. M. C., Özeren, S., Genç, T., & Zor, E. (2003). East Anatolian high plateau as a mantle‐supported, north‐south shortened domal structure. Geophysical Research Letters, 30(24).
Seward, D., & Rhoades, D. A. (1986). A clustering technique for fission track dating of fully to partially annealed minerals and other non-unique populations. International Journal of Radiation Applications and Instrumentation. Part D. Nuclear Tracks and Radiation Measurements, 11(4), 259-268.
Suess, E., & Waagen, L. (1888). Das antlitz der erde (Vol. 2). F. Tempsky.
Tagami, T., & O’Sullivan, P. B. (2005). Fundamentals of fission-track thermochronology. Reviews in Mineralogy and Geochemistry, 58(1), 19-47.
Taymaz, T., Yilmaz, Y., & Dilek, Y. (2007). The geodynamics of the Aegean and Anatolia: introduction. Geological Society, London, Special Publications,291(1), 1-16.
Vincent, S. J., Carter, A., Lavrishchev, V. A., Rice, S. P., Barabadze, T. G., & Hovius, N. (2010). The exhumation of the western Greater Caucasus: a thermochronometric study. Geological Magazine, 148(01), 1-21.
Vrolijk, P., Donelick, R. A., Queng, J., & Cloos, M. (1992). Testing models of fission track annealing in apatite in a simple thermal setting: site 800, leg 129. In Proceedings of the Ocean Drilling Program, Scientific Results (Vol. 129, pp. 169-176).
Wagner, G. A., Reimer, G. M., & Jäger, E. (1977). Cooling ages derived by apatite fission-track, mica Rb-Sr and K-Ar dating: The uplift and cooling history of the Central Alps. Società cooperativa tipografica.
Wagner, G. A. (1981). Fission-track ages and their geological interpretation. Nuclear Tracks, 5(1), 15-25.
Wagner, G., & Van den Haute, P. (1992). Fission track dating. Kluwer Academic Publishers.
Willett, S. D. (1997). Inverse modeling of annealing of fission tracks in apatite; 1, A controlled random search method. American Journal of Science, 297(10), 939-969.
Zaun, P. E., & Wagner, G. A. (1985). Fission-track stability in zircons under geological conditions. Nuclear Tracks and Radiation Measurements (1982), 10(3), 303-307.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top