跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.168) 您好!臺灣時間:2025/01/16 18:05
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:張景涵
研究生(外文):Chang, Ching-Han
論文名稱:MIMO-OFDM系統下使用ML接收機之鏈路淬取演算法
論文名稱(外文):Link Level Abstraction for MIMO-OFDM Systems with Maximum Likelihood Receiver
指導教授:邱茂清邱茂清引用關係
指導教授(外文):Chiu, Mao-Ching
口試委員:沈文和陳喬恩王忠炫
口試委員(外文):Shen, Wen-HanChen, Chiao-EnWang, Chung-Hsuan
口試日期:2015-07-08
學位類別:碩士
校院名稱:國立中正大學
系所名稱:通訊工程研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2015
畢業學年度:103
語文別:中文
論文頁數:34
中文關鍵詞:最大相似接收機鏈路淬取多輸入多輸出正交分頻多工
外文關鍵詞:Maximum Likelihood receiverLink level abstractionMIMOOFDM
相關次數:
  • 被引用被引用:2
  • 點閱點閱:303
  • 評分評分:
  • 下載下載:11
  • 收藏至我的研究室書目清單書目收藏:0
為了降低系統模擬的複雜度,鏈路至系統的映射(limk-to-system mapping)被廣泛的運用以便估計系統的效能,同此模型更可進一步應用在實際的系統上,例如:用以改善適應性鏈路(link adaptation)的正確性以及更有效地做無線資源管理(radio-resource-management)。傳統上所使用的訊雜比(Signal to Noise Ratio, SNR)平均已不足以用來描述衰退通道(fading channel)的特性。因為在變動衰退通到下,一樣的訊雜比平均值可能會導致錯誤率的表現有很大的差異。
本文主要探討一個以互消息量為基準的映射模型,其中包含了可以被分離的兩個模型,調變模型及編碼模型。調變模型針對每個接收到的符號將訊雜比轉換為互消息;而編碼模型則將每個編碼方塊的平均互消息量轉換為錯誤率。與現行的模型相比,以互消息量為基準的模型在計算上較為簡單且在預估系統效能方便更為準確,並且更容易應用在混合式的調變系統下。最後透過驗證比較實際模擬的區塊錯誤率以及利用鏈路淬取所預測的區塊錯誤率。結果顯示兩者SNR的差距能夠被壓抑在0.4dB之內。

Link-to-system mapping is widely used in system evaluations to reduce the simulation complexity. It is also important in practical systems for improving the accuracy of the link adaptation and the efficiency of radio-resource-management. Conventional methods using linear average of signal-to-noise-ratios (SNR) may not work well over fading channels, since the same SNR may lead to drastic error rate due to different fading characteristics.
This paper studies a mutual-information-based (MI-based) link-to-system mapping method, which contains separate modulation and coding models. The modulation model maps the symbol-by-symbol received SNR to the mutual information and take the arithmetic average of mutual information. The coding model maps the averaged mutual information to decoding performance for each coding block. Compared with the existing methods, the MI-model is more accurate and easier to apply to mixed-modulation cases. Finally, we use simulation and to verify the accuracy of the low-complexity link abstraction algorithm by comparing BLERs from simulation and those predicted by the link abstraction. The results show that the SNR gaps between the predicted BLERs and simulated BLERs are within 0.4dB.

誌謝辭 I
中文摘要 II
英文摘要 III
目錄 IV
圖目錄 VI
第一章 簡介 P.1
1.1 前言 P.1
1.2 研究動機 P.1
1.3 論文架構 P.2
第二章 MIMO多天線通訊系統 P.3
2.1 多天線通訊系統簡介 P.3
2.2 MIMO系統模型 P.5
2.3 MIMO偵測器 P.6
2.3.1 最小均方誤差 P.7
2.3.2 最大相似 P.7
第三章 Received Bit Mutual Information Rate的基本原理 P.9
3.1 SISO系統下RBIR之計算 P.9
3.2 MIMO通道模型下互消息之計算 P.10
3.3 預測MI的低複雜度演算法 P.11
3.3.1 MLD接收機下MI內插進似法 P.11
3.3.2 對Beta最佳化過程 P.13
3.4 MI與BLER的轉換 P.16
3.5 渦輪碼解碼基本原理 P.17
3.6 MI對應到BLER P.19
第四章 鏈路層模擬器架構 P.21
4.1 鏈路層模擬器簡介 P.21
第五章 驗證與分析 P.23
5.1 驗證結果 P.23
5.2 結論 P.32
參考文獻 P.33
[1] A. Paulraj, R. Nabar, and D. Gore, “Introduction to Space-Time Wireless Communication.” Cambridge, England: Cambridge University Press, 2003.

[2] R. Srinivasan, J. Zhuang, L. Jalloul, R. Novak, J. Park, “IEEE 802.16m Evaluation Methodology Document (EMD),” IEEE C802.16m-08/004r5, 15 Jan
2009.

[3] Hongming Zheng et al. , “Link Performance Abstraction for ML Receivers based on RBIR Metrics,” IEEE C802.16m-08/119, 4 Mar 2008.

[4] L. Wan, S. Tsai, M. Almgren, “A Fading-Insensitive Performance Metric for aUnified Link Quality Model”, IEEE Wireless Communications and Networking
Conference, Vol.4, pp.2110-2114, Apr 2006.

[5] Y. Levinbook, R. Khalona, “Correction to RBIR Link-to-System Mapping in 802.16m Evaluation Methodology,” IEEE C802.16m-08/543r1, 11 Jul 2008.

[6] U. Wachsmann, M. Pauli, and S. Tsai, “Quality Determination for a Communications Link,” U.S. Patent Office publication No. US 2004/0219883 A1,
Nov 2004.

[7] S. Tsai, “Effective-SNR Mapping for Modeling Frame Error Rates in Multiple-State channels”, 3GPP2-C30-20030429-010, Apr 2003.

[8] “Multiplexing and channel coding (Release 9)”, 3GPP Technical Specification Group Radio Access Network, Evolved Universal Terrestrial Radio Access
(E-UTRA)

[9] 陳後守、邱茂清、王忠炫、吳昭明, “錯誤更正碼”, 無線網路教學推動中心,2007

[10] C. Berrou, A. Glavieux, P. Thitimajshima, “Near Shannon limit error-correcting Coding and decoding: Turbo Codes,” Proc. IEEE Intl. Conf. Commun.,
pp.1064-70, Geneva, Switzerland, May 1993.

[11] S. M. Alamouti, “A simple transmit diversity technique for wirelesscommunications,” IEEE Journal on Selected Areas in Communications, Vol.16, no.8,
pp.1451-1458, Oct 1998.

[12] G. D. Golden, C. J. Foschini, R. A. Valenzuela and P. W. Wolniansky, “Detection algorithm and initial laboratory results using V-BLAST space-time
communication architecture,” Electronics Letters, Vol.35, no.1, pp.14-16, 7 Jan 1999.

[13] J. Hagenauer, “The turbo principle: Tutorial introduction and state of the art.” International Symposium on Turbo Codes. ENST de Bretagne, pp.1-11,
Sept 1997.

[14] P. W. Wolniansky, G. J. Foschini, G. D. Golden and R. A. Valenzuela, “V-BLAST: an architecture for realizing very high data rates over the rich-
scattering wireless channel,” in Proc. URSI ISSSE, pp.295-300, Sept 1998.

[15] D. Tse and P. Viswanath, Fundamentals of Wireless Communications. New York: Cambridge University Press, 2005

[16] “Study on Network-Assisted interference Cancellation and Suppression (NAIC) for LTE (Release 12)”, 3GPP 36.866 Technical Specification Group Radio
Access Network.

[17] H. Lee, T. Kim, W. Park and J. Lim, “Link Performance Abstraction for Interference Aware Communications(IAC)”, arXiv e-print(arXiv:1310.0872),
October 2013.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊