跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.169) 您好!臺灣時間:2025/01/21 05:49
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:錢子由
研究生(外文):Tzu Yu Chien
論文名稱:探討凝血酶誘發人類心肌細胞第二型環氧化酶之表現機轉
論文名稱(外文):Mechanisms of thrombin-induced cyclooxygenase-2 expression in primary human cardiomyocytes
指導教授:楊春茂楊春茂引用關係
指導教授(外文):C. M. Yang
學位類別:博士
校院名稱:長庚大學
系所名稱:生物醫學研究所
學門:生命科學學門
學類:生物化學學類
論文種類:學術論文
論文出版年:2015
畢業學年度:103
論文頁數:168
中文關鍵詞:凝血酶心肌細胞第二型環氧化酶發炎
外文關鍵詞:thrombincardiomyocyteCOX-2inflammatioon
相關次數:
  • 被引用被引用:0
  • 點閱點閱:183
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
論文指導教授推薦書
論文口試委員審定書
致謝---------------------------------------------------------------------------iii
Abstract------------------------------------------------------------------------iv
中文摘要-------------------------------------------------------------------------vii
Abbreviations--------------------------------------------------------------------x
Pharmacological Inhibitors----------------------------------------------------xii
Tables of Contents--------------------------------------------------------------xiv
Chapter I
Introduction------------------------------------------------------------------------1
Appendix and Tables------------------------------------------------------------16
Specific aims (Part I) -----------------------------------------------------------22
Specific aims (Part II) ----------------------------------------------------------23
Specific aims (Part III) ---------------------------------------------------------24
Chapter II
Materials and methods-----------------------------------------------------25
Chapter III
PAR1-dependent COX-2/PGE2 production contributes to cell proliferation via EP2 receptors in primary human cardiomyocytes
Introduction-----------------------------------------------------------------------33
Results-----------------------------------------------------------------------------35
Discussion------------------------------------------------------------------------42
Figures and Legends-------------------------------------------------------------49
Chapter IV
c-Src/Pyk2/EGFR/PI3K/Akt/CREB-activated pathway contributes to
human cardiomyocyte hypertrophy: Role of COX-2 induction
Introduction-----------------------------------------------------------------------66
Results----------------------------------------------------------------------------69
Discussion---------------------------------------------------------------------76
Figures and Legends-------------------------------------------------------------81
Chapter V
Induction of HO-1 by Carbon Monoxide Releasing Molecule-2 attenuates thrombin-induced COX-2 expression and hypertrophy in primary human cardiomyocytes
Introduction-----------------------------------------------------------------------97
Results----------------------------------------------------------------------------99
Discussion--------------------------------------------------------------------105
Figures and Legends-----------------------------------------------------------110
Chapter VI
Conclusion and Perspectives
Conclusion and Perspectives--------------------------------------------------125
Summary------------------------------------------------------------------------129
Publications--------------------------------------------------------------------130
References----------------------------------------------------------------------131

1. Baudino, T.A., W. Carver, W. Giles and T.K. Borg, Cardiac fibroblasts: friend or foe? Am. J. Physiol. Heart. Circ. Physiol., 2006. 291(3): p. H1015-26.
2. Nag, A.C., Study of non-muscle cells of the adult mammalian heart: a fine structural analysis and distribution. Cytobios, 1980. 28(109): p. 41-61.
3. Palaniyandi, S.S., L. Sun, J.C. Ferreira and D. Mochly-Rosen, Protein kinase C in heart failure: a therapeutic target? Cardiovasc. Res., 2009. 82(2): p. 229-39.
4. Royle, N.J., D.M. Irwin, M.L. Koschinsky, R.T. MacGillivray and J.L. Hamerton, Human genes encoding prothrombin and ceruloplasmin map to 11p11-q12 and 3q21-24, respectively. Somat. Cell. Mol. Genet., 1987. 13(3): p. 285-92.
5. Steinberg, S.F., The cardiovascular actions of protease-activated receptors. Mol. Pharmacol., 2005. 67(1): p. 2-11.
6. Borissoff, J.I., H.M. Spronk and H. ten Cate, The hemostatic system as a modulator of atherosclerosis. N. Engl. J. Med., 2011. 364(18): p. 1746-60.
7. Bailey, A.L., D.C. Scantlebury and S.S. Smyth, Thrombosis and antithrombotic therapy in women. Arterioscler. Thromb. Vasc. Biol., 2009. 29(3): p. 284-8.
8. Coughlin, S.R., Thrombin signalling and protease-activated receptors. Nature, 2000. 407(6801): p. 258-64.
9. Coughlin, S.R., How the protease thrombin talks to cells. Proc. Natl. Acad. Sci. U S A, 1999. 96(20): p. 11023-7.
10. Ishihara, H., A.J. Connolly, D. Zeng, M.L. Kahn, Y.W. Zheng, C. Timmons, T. Tram and S.R. Coughlin, Protease-activated receptor 3 is a second thrombin receptor in humans. Nature, 1997. 386(6624): p. 502-6.
11. Shah, R., Protease-activated receptors in cardiovascular health and diseases. Am. Heart. J., 2009. 157(2): p. 253-62.
12. Xu, W.F., H. Andersen, T.E. Whitmore, S.R. Presnell, D.P. Yee, A. Ching, T. Gilbert, E.W. Davie and D.C. Foster, Cloning and characterization of human protease-activated receptor 4. Proc. Natl. Acad. Sci. U S A, 1998. 95(12): p. 6642-6.
13. Kahn, M.L., Y.W. Zheng, W. Huang, V. Bigornia, D. Zeng, S. Moff, R.V. Farese, Jr., C. Tam and S.R. Coughlin, A dual thrombin receptor system for platelet activation. Nature, 1998. 394(6694): p. 690-4.
14. Hollenberg, M.D. and M. Saifeddine, Proteinase-activated receptor 4 (PAR4): activation and inhibition of rat platelet aggregation by PAR4-derived peptides. Can. J. Physiol. Pharmacol., 2001. 79(5): p. 439-42.
15. Sabri, A., S.G. Alcott, H. Elouardighi, E. Pak, C. Derian, P. Andrade-Gordon, K. Kinnally and S.F. Steinberg, Neutrophil cathepsin G promotes detachment-induced cardiomyocyte apoptosis via a protease-activated receptor-independent mechanism. J. Biol. Chem., 2003. 278(26): p. 23944-54.
16. Jiang, T., P. Danilo, Jr. and S.F. Steinberg, The thrombin receptor elevates intracellular calcium in adult rat ventricular myocytes. J. Mol. Cell. Cardiol., 1998. 30(11): p. 2193-9.
17. Sabri, A., G. Muske, H. Zhang, E. Pak, A. Darrow, P. Andrade-Gordon and S.F. Steinberg, Signaling properties and functions of two distinct cardiomyocyte protease-activated receptors. Circ. Res., 2000. 86(10): p. 1054-61.
18. Moshal, K.S., N. Tyagi, V. Moss, B. Henderson, M. Steed, A. Ovechkin, G.M. Aru and S.C. Tyagi, Early induction of matrix metalloproteinase-9 transduces signaling in human heart end stage failure. J. Cell. Mol. Med., 2005. 9(3): p. 704-13.
19. Pawlinski, R., M. Tencati, C.R. Hampton, T. Shishido, T.A. Bullard, L.M. Casey, P. Andrade-Gordon, M. Kotzsch, D. Spring, T. Luther, J. Abe, T.H. Pohlman, E.D. Verrier, B.C. Blaxall and N. Mackman, Protease-activated receptor-1 contributes to cardiac remodeling and hypertrophy. Circulation, 2007. 116(20): p. 2298-306.
20. Duvivier, J., D. Wolf and C. Heusghem, Enzymatic properties of prostaglandin synthetase from bovine seminal vesicles. Biochimie, 1975. 57(5): p. 521-8.
21. DeWitt, D.L. and W.L. Smith, Primary structure of prostaglandin G/H synthase from sheep vesicular gland determined from the complementary DNA sequence. Proc. Natl. Acad. Sci. U S A, 1988. 85(5): p. 1412-6.
22. Streicher, J.M. and Y. Wang, The role of COX-2 in heart pathology. Cardiovasc. Hematol. Agents. Med. Chem., 2008. 6(1): p. 69-79.
23. Rolin, S., J. Hanson, C. Vastersaegher, C. Cherdon, D. Pratico, B. Masereel and J.M. Dogne, BM-520, an original TXA2 modulator, inhibits the action of thromboxane A2 and 8-iso-prostaglandin F2alphain vitro and in vivo on human and rodent platelets, and aortic vascular smooth muscles from rodents. Prostaglandins. Other. Lipid. Mediat., 2007. 84(1-2): p. 14-23.
24. Smith, W.L., D.L. DeWitt and R.M. Garavito, Cyclooxygenases: structural, cellular, and molecular biology. Annu. Rev. Biochem., 2000. 69: p. 145-82.
25. Chun, K.S. and Y.J. Surh, Signal transduction pathways regulating cyclooxygenase-2 expression: potential molecular targets for chemoprevention. Biochem. Pharmacol., 2004. 68(6): p. 1089-100.
26. Saito, T. and A. Giaid, Cyclooxygenase-2 and nuclear factor-kappaB in myocardium of end stage human heart failure. Congest. Heart. Fail., 1999. 5(5): p. 222-227.
27. Kotlyar, E., J.A. Vita, M.R. Winter, E.H. Awtry, D.A. Siwik, J.F. Keaney, Jr., D.B. Sawyer, L.A. Cupples, W.S. Colucci and F. Sam, The relationship between aldosterone, oxidative stress, and inflammation in chronic, stable human heart failure. J. Card. Fail., 2006. 12(2): p. 122-7.
28. Degousee, N., J. Martindale, E. Stefanski, M. Cieslak, T.F. Lindsay, J.E. Fish, P.A. Marsden, D.J. Thuerauf, C.C. Glembotski and B.B. Rubin, MAP kinase kinase 6-p38 MAP kinase signaling cascade regulates cyclooxygenase-2 expression in cardiac myocytes in vitro and in vivo. Circ. Res., 2003. 92(7): p. 757-64.
29. Wong, S.C., M. Fukuchi, P. Melnyk, I. Rodger and A. Giaid, Induction of cyclooxygenase-2 and activation of nuclear factor-kappaB in myocardium of patients with congestive heart failure. Circulation, 1998. 98(2): p. 100-3.
30. Xiao, C.Y., A. Hara, K. Yuhki, T. Fujino, H. Ma, Y. Okada, O. Takahata, T. Yamada, T. Murata, S. Narumiya and F. Ushikubi, Roles of prostaglandin I(2) and thromboxane A(2) in cardiac ischemia-reperfusion injury: a study using mice lacking their respective receptors. Circulation, 2001. 104(18): p. 2210-5.
31. Morham, S.G., R. Langenbach, C.D. Loftin, H.F. Tiano, N. Vouloumanos, J.C. Jennette, J.F. Mahler, K.D. Kluckman, A. Ledford, C.A. Lee and O. Smithies, Prostaglandin synthase 2 gene disruption causes severe renal pathology in the mouse. Cell, 1995. 83(3): p. 473-82.
32. Qi, M. and E.A. Elion, MAP kinase pathways. J. Cell. Sci., 2005. 118(Pt 16): p. 3569-72.
33. Raingeaud, J., S. Gupta, J.S. Rogers, M. Dickens, J. Han, R.J. Ulevitch and R.J. Davis, Pro-inflammatory cytokines and environmental stress cause p38 mitogen-activated protein kinase activation by dual phosphorylation on tyrosine and threonine. J. Biol. Chem., 1995. 270(13): p. 7420-6.
34. Raman, M., W. Chen and M.H. Cobb, Differential regulation and properties of MAPKs. Oncogene, 2007. 26(22): p. 3100-12.
35. Xiao, L., D.R. Pimental, J.K. Amin, K. Singh, D.B. Sawyer and W.S. Colucci, MEK1/2-ERK1/2 mediates alpha1-adrenergic receptor-stimulated hypertrophy in adult rat ventricular myocytes. J. Mol. Cell. Cardiol., 2001. 33(4): p. 779-87.
36. Lazou, A., P.H. Sugden and A. Clerk, Activation of mitogen-activated protein kinases (p38-MAPKs, SAPKs/JNKs and ERKs) by the G-protein-coupled receptor agonist phenylephrine in the perfused rat heart. Biochem. J., 1998. 332 ( Pt 2): p. 459-65.
37. Lee, J.C., J.T. Laydon, P.C. McDonnell, T.F. Gallagher, S. Kumar, D. Green, D. McNulty, M.J. Blumenthal, J.R. Heys, S.W. Landvatter and et al., A protein kinase involved in the regulation of inflammatory cytokine biosynthesis. Nature, 1994. 372(6508): p. 739-46.
38. Han, J., J.D. Lee, L. Bibbs and R.J. Ulevitch, A MAP kinase targeted by endotoxin and hyperosmolarity in mammalian cells. Science, 1994. 265(5173): p. 808-11.
39. Sugden, P.H. and A. Clerk, "Stress-responsive" mitogen-activated protein kinases (c-Jun N-terminal kinases and p38 mitogen-activated protein kinases) in the myocardium. Circ. Res., 1998. 83(4): p. 345-52.
40. Cuenda, A. and S. Rousseau, p38 MAP-kinases pathway regulation, function and role in human diseases. Biochim. Biophys. Acta., 2007. 1773(8): p. 1358-75.
41. Han, J., Y. Jiang, Z. Li, V.V. Kravchenko and R.J. Ulevitch, Activation of the transcription factor MEF2C by the MAP kinase p38 in inflammation. Nature, 1997. 386(6622): p. 296-9.
42. Pellieux, C., T. Sauthier, J.F. Aubert, H.R. Brunner and T. Pedrazzini, Angiotensin II-induced cardiac hypertrophy is associated with different mitogen-activated protein kinase activation in normotensive and hypertensive mice. J. Hypertens., 2000. 18(9): p. 1307-17.
43. Liang, Q. and J.D. Molkentin, Redefining the roles of p38 and JNK signaling in cardiac hypertrophy: dichotomy between cultured myocytes and animal models. J. Mol. Cell. Cardiol., 2003. 35(12): p. 1385-94.
44. Clerk, A., S.J. Fuller, A. Michael and P.H. Sugden, Stimulation of "stress-regulated" mitogen-activated protein kinases (stress-activated protein kinases/c-Jun N-terminal kinases and p38-mitogen-activated protein kinases) in perfused rat hearts by oxidative and other stresses. J. Biol. Chem., 1998. 273(13): p. 7228-34.
45. Nagao, M., J. Yamauchi, Y. Kaziro and H. Itoh, Involvement of protein kinase C and Src family tyrosine kinase in Galphaq/11-induced activation of c-Jun N-terminal kinase and p38 mitogen-activated protein kinase. J. Biol. Chem., 1998. 273(36): p. 22892-8.
46. Hibi, M., A. Lin, T. Smeal, A. Minden and M. Karin, Identification of an oncoprotein- and UV-responsive protein kinase that binds and potentiates the c-Jun activation domain. Genes. Dev., 1993. 7(11): p. 2135-48.
47. Wang, Y., B. Su, V.P. Sah, J.H. Brown, J. Han and K.R. Chien, Cardiac hypertrophy induced by mitogen-activated protein kinase kinase 7, a specific activator for c-Jun NH2-terminal kinase in ventricular muscle cells. J. Biol. Chem., 1998. 273(10): p. 5423-6.
48. Liang, Q., O.F. Bueno, B.J. Wilkins, C.Y. Kuan, Y. Xia and J.D. Molkentin, c-Jun N-terminal kinases (JNK) antagonize cardiac growth through cross-talk with calcineurin-NFAT signaling. EMBO. J., 2003. 22(19): p. 5079-89.
49. Bai, K.J., B.C. Chen, H.C. Pai, C.M. Weng, C.C. Yu, M.J. Hsu, M.C. Yu, H.P. Ma, C.H. Wu, C.Y. Hong, M.L. Kuo and C.H. Lin, Thrombin-induced CCN2 expression in human lung fibroblasts requires the c-Src/JAK2/STAT3 pathway. J. Leukoc. Biol., 2013. 93(1): p. 101-12.
50. Kodama, H., K. Fukuda, E. Takahashi, S. Tahara, Y. Tomita, M. Ieda, K. Kimura, K.M. Owada, K. Vuori and S. Ogawa, Selective involvement of p130Cas/Crk/Pyk2/c-Src in endothelin-1-induced JNK activation. Hypertension, 2003. 41(6): p. 1372-9.
51. Hsieh, H.L., C.C. Lin, H.J. Chan, C.M. Yang and C.M. Yang, c-Src-dependent EGF receptor transactivation contributes to ET-1-induced COX-2 expression in brain microvascular endothelial cells. J. Neuroinflammation., 2012. 9: p. 152.
52. Kodama, H., K. Fukuda, T. Takahashi, M. Sano, T. Kato, S. Tahara, D. Hakuno, T. Sato, T. Manabe, F. Konishi and S. Ogawa, Role of EGF Receptor and Pyk2 in endothelin-1-induced ERK activation in rat cardiomyocytes. J. Mol. Cell. Cardiol., 2002. 34(2): p. 139-50.
53. Hsieh, H.L., W.H. Tung, C.Y. Wu, H.H. Wang, C.C. Lin, T.S. Wang and C.M. Yang, Thrombin induces EGF receptor expression and cell proliferation via a PKC(delta)/c-Src-dependent pathway in vascular smooth muscle cells. Arterioscler. Thromb. Vasc. Biol., 2009. 29(10): p. 1594-601.
54. Shah, B.H. and K.J. Catt, Matrix metalloproteinase-dependent EGF receptor activation in hypertension and left ventricular hypertrophy. Trends. Endocrinol. Metab., 2004. 15(6): p. 241-3.
55. Chintalgattu, V., D. Ai, R.R. Langley, J. Zhang, J.A. Bankson, T.L. Shih, A.K. Reddy, K.R. Coombes, I.N. Daher, S. Pati, S.S. Patel, J.S. Pocius, G.E. Taffet, L.M. Buja, M.L. Entman and A.Y. Khakoo, Cardiomyocyte PDGFR-beta signaling is an essential component of the mouse cardiac response to load-induced stress. J. Clin. Invest., 2010. 120(2): p. 472-84.
56. Toyofuku, T., M. Yabuki, K. Otsu, T. Kuzuya, M. Tada and M. Hori, Functional role of c-Src in gap junctions of the cardiomyopathic heart. Circ. Res., 1999. 85(8): p. 672-81.
57. Oudit, G.Y., H. Sun, B.G. Kerfant, M.A. Crackower, J.M. Penninger and P.H. Backx, The role of phosphoinositide-3 kinase and PTEN in cardiovascular physiology and disease. J. Mol. Cell. Cardiol., 2004. 37(2): p. 449-71.
58. Nienaber, J.J., H. Tachibana, S.V. Naga Prasad, G. Esposito, D. Wu, L. Mao and H.A. Rockman, Inhibition of receptor-localized PI3K preserves cardiac beta-adrenergic receptor function and ameliorates pressure overload heart failure. J. Clin. Invest., 2003. 112(7): p. 1067-79.
59. Gilmore, T.D., The Rel/NF-kappaB signal transduction pathway: introduction. Oncogene, 1999. 18(49): p. 6842-4.
60. Norman, D.A., M.H. Yacoub and P.J. Barton, Nuclear factor NF-kappa B in myocardium: developmental expression of subunits and activation by interleukin-1 beta in cardiac myocytes in vitro. Cardiovasc. Res., 1998. 39(2): p. 434-41.
61. Kawamura, N., T. Kubota, S. Kawano, Y. Monden, A.M. Feldman, H. Tsutsui, A. Takeshita and K. Sunagawa, Blockade of NF-kappaB improves cardiac function and survival without affecting inflammation in TNF-alpha-induced cardiomyopathy. Cardiovasc. Res., 2005. 66(3): p. 520-9.
62. Timmers, L., J.K. van Keulen, I.E. Hoefer, M.F. Meijs, B. van Middelaar, K. den Ouden, C.J. van Echteld, G. Pasterkamp and D.P. de Kleijn, Targeted deletion of nuclear factor kappaB p50 enhances cardiac remodeling and dysfunction following myocardial infarction. Circ. Res., 2009. 104(5): p. 699-706.
63. Glover, J.N. and S.C. Harrison, Crystal structure of the heterodimeric bZIP transcription factor c-Fos-c-Jun bound to DNA. Nature, 1995. 373(6511): p. 257-61.
64. Sawada, T., T. Minamino, H.Y. Fu, M. Asai, K. Okuda, T. Isomura, S. Yamazaki, Y. Asano, K. Okada, O. Tsukamoto, S. Sanada, H. Asanuma, M. Asakura, S. Takashima, M. Kitakaze and I. Komuro, X-box binding protein 1 regulates brain natriuretic peptide through a novel AP1/CRE-like element in cardiomyocytes. J. Mol. Cell. Cardiol., 2010. 48(6): p. 1280-9.
65. Tu, V.C., J.J. Bahl and Q.M. Chen, Distinct roles of p42/p44(ERK) and p38 MAPK in oxidant-induced AP-1 activation and cardiomyocyte hypertrophy. Cardiovasc. Toxicol., 2003. 3(2): p. 119-33.
66. Ozgen, N., M. Obreztchikova, J. Guo, H. Elouardighi, G.W. Dorn, 2nd, B.A. Wilson and S.F. Steinberg, Protein kinase D links Gq-coupled receptors to cAMP response element-binding protein (CREB)-Ser133 phosphorylation in the heart. J. Biol. Chem., 2008. 283(25): p. 17009-19.
67. Chiu, Y.C., Y.C. Fong, C.H. Lai, C.H. Hung, H.C. Hsu, T.S. Lee, R.S. Yang, W.M. Fu and C.H. Tang, Thrombin-induced IL-6 production in human synovial fibroblasts is mediated by PAR1, phospholipase C, protein kinase C alpha, c-Src, NF-kappa B and p300 pathway. Mol. Immunol., 2008. 45(6): p. 1587-99.
68. Korzus, E., J. Torchia, D.W. Rose, L. Xu, R. Kurokawa, E.M. McInerney, T.M. Mullen, C.K. Glass and M.G. Rosenfeld, Transcription factor-specific requirements for coactivators and their acetyltransferase functions. Science, 1998. 279(5351): p. 703-7.
69. Morimoto, T., Y. Sunagawa, T. Kawamura, T. Takaya, H. Wada, A. Nagasawa, M. Komeda, M. Fujita, A. Shimatsu, T. Kita and K. Hasegawa, The dietary compound curcumin inhibits p300 histone acetyltransferase activity and prevents heart failure in rats. J. Clin. Invest., 2008. 118(3): p. 868-78.
70. Jenkins, C.M., A. Cedars and R.W. Gross, Eicosanoid signalling pathways in the heart. Cardiovasc. Res., 2009. 82(2): p. 240-9.
71. Harding, P. and D.B. Murray, The contribution of prostaglandins versus prostacyclin in ventricular remodeling during heart failure. Life. Sci., 2011. 89(19-20): p. 671-6.
72. Mendez, M. and M.C. LaPointe, Trophic effects of the cyclooxygenase-2 product prostaglandin E(2) in cardiac myocytes. Hypertension, 2002. 39(2 Pt 2): p. 382-8.
73. Mendez, M. and M.C. LaPointe, PGE2-induced hypertrophy of cardiac myocytes involves EP4 receptor-dependent activation of p42/44 MAPK and EGFR transactivation. Am. J. Physiol. Heart. Circ. Physiol., 2005. 288(5): p. H2111-7.
74. Qian, J.Y., P. Harding, Y. Liu, E. Shesely, X.P. Yang and M.C. LaPointe, Reduced cardiac remodeling and function in cardiac-specific EP4 receptor knockout mice with myocardial infarction. Hypertension, 2008. 51(2): p. 560-6.
75. Harding, P., X.P. Yang, J. Yang, E. Shesely, Q. He and M.C. LaPointe, Gene expression profiling of dilated cardiomyopathy in older male EP4 knockout mice. Am. J. Physiol. Heart. Circ. Physiol., 2010. 298(2): p. H623-32.
76. Takayama, K., K. Yuhki, K. Ono, T. Fujino, A. Hara, T. Yamada, S. Kuriyama, H. Karibe, Y. Okada, O. Takahata, T. Taniguchi, T. Iijima, H. Iwasaki, S. Narumiya and F. Ushikubi, Thromboxane A2 and prostaglandin F2alpha mediate inflammatory tachycardia. Nat. Med., 2005. 11(5): p. 562-6.
77. Adams, J.W., D.S. Migita, M.K. Yu, R. Young, M.S. Hellickson, F.E. Castro-Vargas, J.D. Domingo, P.H. Lee, J.S. Bui and S.A. Henderson, Prostaglandin F2 alpha stimulates hypertrophic growth of cultured neonatal rat ventricular myocytes. J. Biol. Chem., 1996. 271(2): p. 1179-86.
78. Chan, E.C., G.J. Dusting, N. Guo, H.M. Peshavariya, C.J. Taylor, R. Dilley, S. Narumiya and F. Jiang, Prostacyclin receptor suppresses cardiac fibrosis: role of CREB phosphorylation. J. Mol. Cell. Cardiol., 2010. 49(2): p. 176-85.
79. Harvey, P.A. and L.A. Leinwand, The cell biology of disease: cellular mechanisms of cardiomyopathy. J. Cell. Biol., 2011. 194(3): p. 355-65.
80. Silberbach, M., T. Gorenc, R.E. Hershberger, P.J. Stork, P.S. Steyger and C.T. Roberts, Jr., Extracellular signal-regulated protein kinase activation is required for the anti-hypertrophic effect of atrial natriuretic factor in neonatal rat ventricular myocytes. J. Biol. Chem., 1999. 274(35): p. 24858-64.
81. Glembotski, C.C., C.E. Irons, K.A. Krown, S.F. Murray, A.B. Sprenkle and C.A. Sei, Myocardial alpha-thrombin receptor activation induces hypertrophy and increases atrial natriuretic factor gene expression. J. Biol. Chem., 1993. 268(27): p. 20646-52.
82. Motterlini, R. and R. Foresti, Heme oxygenase-1 as a target for drug discovery. Antioxid. Redox. Signal., 2014. 20(11): p. 1810-26.
83. Maines, M.D., G.M. Trakshel and R.K. Kutty, Characterization of two constitutive forms of rat liver microsomal heme oxygenase. Only one molecular species of the enzyme is inducible. J. Biol. Chem., 1986. 261(1): p. 411-9.
84. Calay, D. and J.C. Mason, The multifunctional role and therapeutic potential of HO-1 in the vascular endothelium. Antioxid. Redox. Signal., 2014. 20(11): p. 1789-809.
85. Barbagallo, I., F. Galvano, A. Frigiola, F. Cappello, G. Riccioni, P. Murabito, N. D'Orazio, M. Torella, D. Gazzolo and G. Li Volti, Potential therapeutic effects of natural heme oxygenase-1 inducers in cardiovascular diseases. Antioxid. Redox. Signal., 2013. 18(5): p. 507-21.
86. Wang, G., T. Hamid, R.J. Keith, G. Zhou, C.R. Partridge, X. Xiang, J.R. Kingery, R.K. Lewis, Q. Li, D.G. Rokosh, R. Ford, F.G. Spinale, D.W. Riggs, S. Srivastava, A. Bhatnagar, R. Bolli and S.D. Prabhu, Cardioprotective and antiapoptotic effects of heme oxygenase-1 in the failing heart. Circulation, 2010. 121(17): p. 1912-25.
87. Li Volti, G., A. Zappala, G.M. Leggio, C. Mazzola, F. Drago, F. La Delia, M.F. Serapide, R. Pellitteri, I. Giannone, M. Spatuzza, V. Cicirata and F. Cicirata, Tin chloride enhances parvalbumin-positive interneuron survival by modulating heme metabolism in a model of cerebral ischemia. Neurosci. Lett., 2011. 492(1): p. 33-8.
88. Paine, A., B. Eiz-Vesper, R. Blasczyk and S. Immenschuh, Signaling to heme oxygenase-1 and its anti-inflammatory therapeutic potential. Biochem. Pharmacol., 2010. 80(12): p. 1895-903.
89. Alam, J. and J.L. Cook, How many transcription factors does it take to turn on the heme oxygenase-1 gene? Am. J. Respir. Cell. Mol. Biol., 2007. 36(2): p. 166-74.
90. Prawan, A., J.K. Kundu and Y.J. Surh, Molecular basis of heme oxygenase-1 induction: implications for chemoprevention and chemoprotection. Antioxid. Redox. Signal., 2005. 7(11-12): p. 1688-703.
91. Liu, X., J. Wei, D.H. Peng, M.D. Layne and S.F. Yet, Absence of heme oxygenase-1 exacerbates myocardial ischemia/reperfusion injury in diabetic mice. Diabetes, 2005. 54(3): p. 778-84.
92. Wegiel, B., D.W. Hanto and L.E. Otterbein, The social network of carbon monoxide in medicine. Trends. Mol. Med., 2013. 19(1): p. 3-11.
93. Otterbein, L.E., F.H. Bach, J. Alam, M. Soares, H. Tao Lu, M. Wysk, R.J. Davis, R.A. Flavell and A.M. Choi, Carbon monoxide has anti-inflammatory effects involving the mitogen-activated protein kinase pathway. Nat. Med., 2000. 6(4): p. 422-8.
94. Silva, G., A. Cunha, I.P. Gregoire, M.P. Seldon and M.P. Soares, The antiapoptotic effect of heme oxygenase-1 in endothelial cells involves the degradation of p38 alpha MAPK isoform. J. Immunol., 2006. 177(3): p. 1894-903.
95. Guo, Y., A.B. Stein, W.J. Wu, W. Tan, X. Zhu, Q.H. Li, B. Dawn, R. Motterlini and R. Bolli, Administration of a CO-releasing molecule at the time of reperfusion reduces infarct size in vivo. Am. J. Physiol. Heart. Circ. Physiol., 2004. 286(5): p. H1649-53.
96. Motterlini, R., J.E. Clark, R. Foresti, P. Sarathchandra, B.E. Mann and C.J. Green, Carbon monoxide-releasing molecules: characterization of biochemical and vascular activities. Circ. Res., 2002. 90(2): p. E17-24.
97. Wang, Y., L. Ying, Y.Y. Chen, Y.L. Shen, R. Guo, K.K. Jin and L.X. Wang, Induction of heme oxygenase-1 ameliorates vascular dysfunction in streptozotocin-induced type 2 diabetic rats. Vascul. Pharmacol., 2014. 61(1): p. 16-24.
98. Chien, P.T., C.C. Lin, L. Hsiao and C.M. Yang, c-Src/Pyk2/EGFR/PI3K/Akt/CREB-activated pathway contributes to human cardiomyocyte hypertrophy: Role of COX-2 induction. Mol. Cell. Endocrinol., 2015.
99. Tzivion, G., M. Dobson and G. Ramakrishnan, FoxO transcription factors; Regulation by AKT and 14-3-3 proteins. Biochim. Biophys. Acta., 2011. 1813(11): p. 1938-45.
100. Brunet, A., A. Bonni, M.J. Zigmond, M.Z. Lin, P. Juo, L.S. Hu, M.J. Anderson, K.C. Arden, J. Blenis and M.E. Greenberg, Akt promotes cell survival by phosphorylating and inhibiting a Forkhead transcription factor. Cell, 1999. 96(6): p. 857-68.
101. Surucu, B., L. Bozulic, D. Hynx, A. Parcellier and B.A. Hemmings, In vivo analysis of protein kinase B (PKB)/Akt regulation in DNA-PKcs-null mice reveals a role for PKB/Akt in DNA damage response and tumorigenesis. J. Biol. Chem., 2008. 283(44): p. 30025-33.
102. Lehtinen, M.K., Z. Yuan, P.R. Boag, Y. Yang, J. Villen, E.B. Becker, S. DiBacco, N. de la Iglesia, S. Gygi, T.K. Blackwell and A. Bonni, A conserved MST-FOXO signaling pathway mediates oxidative-stress responses and extends life span. Cell, 2006. 125(5): p. 987-1001.
103. Ronnebaum, S.M. and C. Patterson, The FoxO family in cardiac function and dysfunction. Annu. Rev. Physiol., 2010. 72: p. 81-94.
104. Ravingerova, T., M. Barancik and M. Strniskova, Mitogen-activated protein kinases: a new therapeutic target in cardiac pathology. Mol. Cell. Biochem., 2003. 247(1-2): p. 127-38.
105. Rochette, L., Y. Cottin, M. Zeller and C. Vergely, Carbon monoxide: mechanisms of action and potential clinical implications. Pharmacol. Ther., 2013. 137(2): p. 133-52.
106. Barnes, J.A., S. Singh and A.V. Gomes, Protease activated receptors in cardiovascular function and disease. Mol. Cell. Biochem., 2004. 263(1-2): p. 227-39.
107. Seminario-Vidal, L., S. Kreda, L. Jones, W. O'Neal, J. Trejo, R.C. Boucher and E.R. Lazarowski, Thrombin promotes release of ATP from lung epithelial cells through coordinated activation of rho- and Ca2+-dependent signaling pathways. J. Biol. Chem., 2009. 284(31): p. 20638-48.
108. Kunisch, E., A. Jansen, F. Kojima, I. Loffler, M. Kapoor, S. Kawai, I. Rubio, L.J. Crofford and R.W. Kinne, Prostaglandin E2 differentially modulates proinflammatory/prodestructive effects of TNF-alpha on synovial fibroblasts via specific E prostanoid receptors/cAMP. J. Immunol., 2009. 183(2): p. 1328-36.
109. Tung, W.H., H.L. Hsieh, I.T. Lee and C.M. Yang, Enterovirus 71 modulates a COX-2/PGE2/cAMP-dependent viral replication in human neuroblastoma cells: role of the c-Src/EGFR/p42/p44 MAPK/CREB signaling pathway. J. Cell. Biochem., 2011. 112(2): p. 559-70.
110. Heineke, J. and J.D. Molkentin, Regulation of cardiac hypertrophy by intracellular signalling pathways. Nat. Rev. Mol. Cell. Biol., 2006. 7(8): p. 589-600.
111. Ritter, O. and L. Neyses, The molecular basis of myocardial hypertrophy and heart failure. Trends. Mol. Med., 2003. 9(7): p. 313-21.
112. Ariens, R.A., Fibrin(ogen) and thrombotic disease. J. Thromb. Haemost., 2013. 11 Suppl 1: p. 294-305.
113. Moshal, K.S., N. Tyagi, B. Henderson, A.V. Ovechkin and S.C. Tyagi, Protease-activated receptor and endothelial-myocyte uncoupling in chronic heart failure. Am. J. Physiol. Heart. Circ. Physiol., 2005. 288(6): p. H2770-7.
114. Hsieh, H.L., C.C. Sun, T.S. Wang and C.M. Yang, PKC-delta/c-Src-mediated EGF receptor transactivation regulates thrombin-induced COX-2 expression and PGE(2) production in rat vascular smooth muscle cells. Biochim. Biophys. Acta., 2008. 1783(9): p. 1563-75.
115. Wang, Y., Mitogen-activated protein kinases in heart development and diseases. Circulation, 2007. 116(12): p. 1413-23.
116. Kang, Y.J., U.R. Mbonye, C.J. DeLong, M. Wada and W.L. Smith, Regulation of intracellular cyclooxygenase levels by gene transcription and protein degradation. Prog. Lipid. Res., 2007. 46(2): p. 108-25.
117. Isenovic, E.R., S. Soskic, A. Trpkovic, B. Dobutovic, M. Popovic, Z. Gluvic, B. Putnikovic and P. Marche, Insulin, thrombine, ERK1/2 kinase and vascular smooth muscle cells proliferation. Curr. Pharm. Des., 2010. 16(35): p. 3895-902.
118. Zhang, J., F. Zou, J. Tang, Q. Zhang, Y. Gong, Q. Wang, Y. Shen, L. Xiong, R.M. Breyer, M. Lazarus, C.D. Funk and Y. Yu, Cyclooxygenase-2-derived prostaglandin E(2) promotes injury-induced vascular neointimal hyperplasia through the E-prostanoid 3 receptor. Circ. Res., 2013. 113(2): p. 104-14.
119. Yang, C.M., I.T. Lee, C.C. Lin, C.H. Wang, W.J. Cherng and L.D. Hsiao, c-Src-dependent MAPKs/AP-1 activation is involved in TNF-alpha-induced matrix metalloproteinase-9 expression in rat heart-derived H9c2 cells. Biochem. Pharmacol., 2013. 85(8): p. 1115-23.
120. Li, W. and B. Olshansky, Inflammatory cytokines and nitric oxide in heart failure and potential modulation by vagus nerve stimulation. Heart. Fail. Rev., 2011. 16(2): p. 137-45.
121. Streicher, J.M., K. Kamei, T.O. Ishikawa, H. Herschman and Y. Wang, Compensatory hypertrophy induced by ventricular cardiomyocyte-specific COX-2 expression in mice. J. Mol. Cell. Cardiol., 2010. 49(1): p. 88-94.
122. Lo, H.M., C.L. Chen, Y.J. Tsai, P.H. Wu and W.B. Wu, Thrombin induces cyclooxygenase-2 expression and prostaglandin E2 release via PAR1 activation and ERK1/2- and p38 MAPK-dependent pathway in murine macrophages. J. Cell. Biochem., 2009. 108(5): p. 1143-52.
123. Kawao, N., M. Nagataki, K. Nagasawa, S. Kubo, K. Cushing, T. Wada, F. Sekiguchi, S. Ichida, M.D. Hollenberg, W.K. MacNaughton, H. Nishikawa and A. Kawabata, Signal transduction for proteinase-activated receptor-2-triggered prostaglandin E2 formation in human lung epithelial cells. J. Pharmacol. Exp. Ther., 2005. 315(2): p. 576-89.
124. Wang, H., S. Wen, N.W. Bunnett, R. Leduc, M.D. Hollenberg and W.K. MacNaughton, Proteinase-activated receptor-2 induces cyclooxygenase-2 expression through beta-catenin and cyclic AMP-response element-binding protein. J. Biol. Chem., 2008. 283(2): p. 809-15.
125. Kreda, S.M., L. Seminario-Vidal, C.A. van Heusden, W. O'Neal, L. Jones, R.C. Boucher and E.R. Lazarowski, Receptor-promoted exocytosis of airway epithelial mucin granules containing a spectrum of adenine nucleotides. J. Physiol., 2010. 588(Pt 12): p. 2255-67.
126. Jug, B., N. Vene, B.G. Salobir, M. Sebestjen, M. Sabovic and I. Keber, Procoagulant state in heart failure with preserved left ventricular ejection fraction. Int. Heart. J., 2009. 50(5): p. 591-600.
127. Soh, U.J., M.R. Dores, B. Chen and J. Trejo, Signal transduction by protease-activated receptors. Br. J. Pharmacol., 2010. 160(2): p. 191-203.
128. Ito, K., T. Date, M. Ikegami, K. Hongo, M. Fujisaki, D. Katoh, T. Yoshino, R. Anzawa, T. Nagoshi, S. Yamashita, K. Inada, S. Matsuo, T. Yamane and M. Yoshimura, An immunohistochemical analysis of tissue thrombin expression in the human atria. PLoS. One., 2013. 8(6): p. e65817.
129. Sekiguchi, F., A. Ohi, Y. Maeda, K. Takaoka, T. Sekimoto, H. Nishikawa and A. Kawabata, Delayed production of arachidonic acid contributes to the delay of proteinase-activated receptor-1 (PAR1)-triggered prostaglandin E2 release in rat gastric epithelial RGM1 cells. J. Cell. Biochem., 2011. 112(3): p. 909-15.
130. Jaffre, F., A.E. Friedman, Z. Hu, N. Mackman and B.C. Blaxall, beta-adrenergic receptor stimulation transactivates protease-activated receptor 1 via matrix metalloproteinase 13 in cardiac cells. Circulation, 2012. 125(24): p. 2993-3003.
131. Sekiguchi, F., S. Saito, K. Takaoka, H. Hayashi, M. Nagataki, K. Nagasawa, H. Nishikawa, H. Matsui and A. Kawabata, Mechanisms for prostaglandin E2 formation caused by proteinase-activated receptor-1 activation in rat gastric mucosal epithelial cells. Biochem. Pharmacol., 2007. 73(1): p. 103-14.
132. Syeda, F., J. Grosjean, R.A. Houliston, R.J. Keogh, T.D. Carter, E. Paleolog and C.P. Wheeler-Jones, Cyclooxygenase-2 induction and prostacyclin release by protease-activated receptors in endothelial cells require cooperation between mitogen-activated protein kinase and NF-kappaB pathways. J. Biol. Chem., 2006. 281(17): p. 11792-804.
133. Sabri, A., J. Short, J. Guo and S.F. Steinberg, Protease-activated receptor-1-mediated DNA synthesis in cardiac fibroblast is via epidermal growth factor receptor transactivation: distinct PAR-1 signaling pathways in cardiac fibroblasts and cardiomyocytes. Circ. Res., 2002. 91(6): p. 532-9.
134. Nadal-Ginard, B., J. Kajstura, A. Leri and P. Anversa, Myocyte death, growth, and regeneration in cardiac hypertrophy and failure. Circ. Res., 2003. 92(2): p. 139-50.
135. Herbert, J.M., E. Dupuy, M.C. Laplace, J.M. Zini, R. Bar Shavit and G. Tobelem, Thrombin induces endothelial cell growth via both a proteolytic and a non-proteolytic pathway. Biochem. J., 1994. 303 ( Pt 1): p. 227-31.
136. Vouret-Craviari, V., E. Van Obberghen-Schilling, U.B. Rasmussen, A. Pavirani, J.P. Lecocq and J. Pouyssegur, Synthetic alpha-thrombin receptor peptides activate G protein-coupled signaling pathways but are unable to induce mitogenesis. Mol. Biol. Cell., 1992. 3(1): p. 95-102.
137. Chang, K.T., G.P. Taylor, W.S. Meschino, P.F. Kantor and E. Cutz, Mitogenic cardiomyopathy: a lethal neonatal familial dilated cardiomyopathy characterized by myocyte hyperplasia and proliferation. Hum. Pathol., 2010. 41(7): p. 1002-8.
138. Xiao, C.Y., K. Yuhki, A. Hara, T. Fujino, S. Kuriyama, T. Yamada, K. Takayama, O. Takahata, H. Karibe, T. Taniguchi, S. Narumiya and F. Ushikubi, Prostaglandin E2 protects the heart from ischemia-reperfusion injury via its receptor subtype EP4. Circulation, 2004. 109(20): p. 2462-8.
139. Liu, Y., M. Rajagopal, K. Lee, L. Battini, D. Flores, G.L. Gusella, A.C. Pao and R. Rohatgi, Prostaglandin E(2) mediates proliferation and chloride secretion in ADPKD cystic renal epithelia. Am. J. Physiol. Renal. Physiol., 2012. 303(10): p. F1425-34.
140. Guo, D., N.N. Chen, L.B. Hou and L.S. Lei, [Prostaglandin E2 promotes hepatocellular carcinoma cell proliferation through EP2 prostanoid receptor]. Nan. Fang. Yi. Ke. Da. Xue. Xue. Bao., 2011. 31(9): p. 1564-7.
141. Lee, I.T., C.C. Lin, C.H. Wang, W.J. Cherng, J.S. Wang and C.M. Yang, ATP stimulates PGE(2)/cyclin D1-dependent VSMCs proliferation via STAT3 activation: role of PKCs-dependent NADPH oxidase/ROS generation. Biochem. Pharmacol., 2013. 85(7): p. 954-64.
142. Jang, M.W., S.P. Yun, J.H. Park, J.M. Ryu, J.H. Lee and H.J. Han, Cooperation of Epac1/Rap1/Akt and PKA in prostaglandin E(2) -induced proliferation of human umbilical cord blood derived mesenchymal stem cells: involvement of c-Myc and VEGF expression. J. Cell. Physiol., 2012. 227(12): p. 3756-67.
143. Hsueh, Y.C., J.M. Wu, C.K. Yu, K.K. Wu and P.C. Hsieh, Prostaglandin E2 promotes post-infarction cardiomyocyte replenishment by endogenous stem cells. EMBO. Mol. Med., 2014. 6(4): p. 496-503.
144. Kardami, E., S. Banerji, B.W. Doble, X. Dang, R.R. Fandrich, Y. Jin and P.A. Cattini, PKC-dependent phosphorylation may regulate the ability of connexin43 to inhibit DNA synthesis. Cell. Commun. Adhes., 2003. 10(4-6): p. 293-7.
145. Lu, S.Y., D.P. Sontag, K.A. Detillieux and P.A. Cattini, FGF-16 is released from neonatal cardiac myocytes and alters growth-related signaling: a possible role in postnatal development. Am. J. Physiol. Cell. Physiol., 2008. 294(5): p. C1242-9.
146. Hinrichsen, R., S. Haunso and P.K. Busk, Different regulation of p27 and Akt during cardiomyocyte proliferation and hypertrophy. Growth. Factors., 2007. 25(2): p. 132-40.
147. Hu, C.M., Y.H. Chen, M.T. Chiang and L.Y. Chau, Heme oxygenase-1 inhibits angiotensin II-induced cardiac hypertrophy in vitro and in vivo. Circulation, 2004. 110(3): p. 309-16.
148. Yang, P., Y. Han, L. Gui, J. Sun, Y.L. Chen, R. Song, J.Z. Guo, Y.N. Xie, D. Lu and L. Sun, Gastrodin attenuation of the inflammatory response in H9c2 cardiomyocytes involves inhibition of NF-kappaB and MAPKs activation via the phosphatidylinositol 3-kinase signaling. Biochem. Pharmacol., 2013. 85(8): p. 1124-33.
149. Wu, R., M.A. Laplante and J. de Champlain, Cyclooxygenase-2 inhibitors attenuate angiotensin II-induced oxidative stress, hypertension, and cardiac hypertrophy in rats. Hypertension, 2005. 45(6): p. 1139-44.
150. Canobbio, I., L. Cipolla, A. Consonni, S. Momi, G. Guidetti, B. Oliviero, M. Falasca, M. Okigaki, C. Balduini, P. Gresele and M. Torti, Impaired thrombin-induced platelet activation and thrombus formation in mice lacking the Ca(2+)-dependent tyrosine kinase Pyk2. Blood, 2013. 121(4): p. 648-57.
151. Wang, H. and G. Reiser, The role of the Ca2+-sensitive tyrosine kinase Pyk2 and Src in thrombin signalling in rat astrocytes. J. Neurochem., 2003. 84(6): p. 1349-57.
152. Block, E.R., M.A. Tolino and J.K. Klarlund, Pyk2 activation triggers epidermal growth factor receptor signaling and cell motility after wounding sheets of epithelial cells. J. Biol. Chem., 2010. 285(18): p. 13372-9.
153. Guo, J., Z. Gertsberg, N. Ozgen, A. Sabri and S.F. Steinberg, Protein kinase D isoforms are activated in an agonist-specific manner in cardiomyocytes. J. Biol. Chem., 2011. 286(8): p. 6500-9.
154. Chen, J., H. Jiang, J. Yang, S.S. Chen and L. Xu, Down-regulation of CREB-binding protein expression blocks thrombin-mediated endothelial activation by inhibiting acetylation of NF-kappaB. Int. J. Cardiol., 2012. 154(2): p. 147-52.
155. Murray, D.R., S. Mummidi, A.J. Valente, T. Yoshida, N.K. Somanna, P. Delafontaine, C.A. Dinarello and B. Chandrasekar, beta2 adrenergic activation induces the expression of IL-18 binding protein, a potent inhibitor of isoproterenol induced cardiomyocyte hypertrophy in vitro and myocardial hypertrophy in vivo. J. Mol. Cell. Cardiol., 2012. 52(1): p. 206-18.
156. Jiang, D.S., Z.Y. Bian, Y. Zhang, S.M. Zhang, Y. Liu, R. Zhang, Y. Chen, Q. Yang, X.D. Zhang, G.C. Fan and H. Li, Role of interferon regulatory factor 4 in the regulation of pathological cardiac hypertrophy. Hypertension, 2013. 61(6): p. 1193-202.
157. Xu, X.Y., Y. Nie, F.F. Wang, Y. Bai, Z.Z. Lv, Y.Y. Zhang, Z.J. Li and W. Gao, Growth differentiation factor (GDF)-15 blocks norepinephrine-induced myocardial hypertrophy via a novel pathway involving inhibition of epidermal growth factor receptor transactivation. J. Biol. Chem., 2014. 289(14): p. 10084-94.
158. Kemi, O.J., M. Ceci, U. Wisloff, S. Grimaldi, P. Gallo, G.L. Smith, G. Condorelli and O. Ellingsen, Activation or inactivation of cardiac Akt/mTOR signaling diverges physiological from pathological hypertrophy. J. Cell. Physiol., 2008. 214(2): p. 316-21.
159. Huang, C.Y., S.Y. Chen, H.C. Tsai, H.C. Hsu and C.H. Tang, Thrombin induces epidermal growth factor receptor transactivation and CCL2 expression in human osteoblasts. Arthritis. Rheum., 2012. 64(10): p. 3344-54.
160. Chien, P.T., H.L. Hsieh, P.L. Chi and C.M. Yang, PAR-1-dependent COX-2/PGE production contributes to cell proliferation via EP2 in primary human cardiomyocytes. Br. J. Pharmacol., 2014. 171(19): p. 4504-4519.
161. Otani, H., K. Yoshioka, H. Nishikawa, C. Inagaki and T. Nakamura, Involvement of protein kinase C and RhoA in protease-activated receptor 1-mediated F-actin reorganization and cell growth in rat cardiomyocytes. J. Pharmacol. Sci., 2011. 115(2): p. 135-43.
162. Antoniak, S., E.M. Sparkenbaugh, M. Tencati, M. Rojas, N. Mackman and R. Pawlinski, Protease activated receptor-2 contributes to heart failure. PLoS. One., 2013. 8(11): p. e81733.
163. Hsu, C.K., I.T. Lee, C.C. Lin, L.D. Hsiao and C.M. Yang, Sphingosine-1-Phosphate Mediates COX-2 Expression and PGE2 /IL-6 Secretion via c-Src-Dependent AP-1 Activation. J. Cell. Physiol., 2015. 230(3): p. 702-15.
164. Lin, C.C., W.N. Lin, S.E. Cheng, W.H. Tung, H.H. Wang and C.M. Yang, Transactivation of EGFR/PI3K/Akt involved in ATP-induced inflammatory protein expression and cell motility. J. Cell. Physiol., 2012. 227(4): p. 1628-38.
165. Keely, S.J., S.O. Calandrella and K.E. Barrett, Carbachol-stimulated transactivation of epidermal growth factor receptor and mitogen-activated protein kinase in T(84) cells is mediated by intracellular ca(2+), PYK-2, and p60(src). J. Biol. Chem., 2000. 275(17): p. 12619-25.
166. Chen, K., L. Gao, Y. Liu, Y. Zhang, D.S. Jiang, X. Wei, X.H. Zhu, R. Zhang, Y. Chen, Q. Yang, N. Kioka, X.D. Zhang and H. Li, Vinexin-beta protects against cardiac hypertrophy by blocking the Akt-dependent signalling pathway. Basic. Res. Cardiol., 2013. 108(2): p. 338.
167. Dworatzek, E., S. Mahmoodzadeh, C. Schubert, C. Westphal, J. Leber, A. Kusch, G. Kararigas, D. Fliegner, M. Moulin, R. Ventura-Clapier, J.A. Gustafsson, M.M. Davidson, D. Dragun and V. Regitz-Zagrosek, Sex differences in exercise-induced physiological myocardial hypertrophy are modulated by oestrogen receptor beta. Cardiovasc. Res., 2014. 102(3): p. 418-28.
168. Chen, J., L. Xu, S. Chen, J. Yang and H. Jiang, Transcriptional regulation of platelet-derived growth factor-B chain by thrombin in endothelial cells: involvement of Egr-1 and CREB-binding protein. Mol. Cell. Biochem., 2012. 366(1-2): p. 81-7.
169. Cheng, S.E., I.T. Lee, C.C. Lin, L.D. Hsiao and C.M. Yang, Thrombin induces ICAM-1 expression in human lung epithelial cells via c-Src/PDGFR/PI3K/Akt-dependent NF-kappaB/p300 activation. Clin. Sci., 2014. 127(3): p. 171-83.
170. Shanmugam, P., A.J. Valente, S.D. Prabhu, B. Venkatesan, T. Yoshida, P. Delafontaine and B. Chandrasekar, Angiotensin-II type 1 receptor and NOX2 mediate TCF/LEF and CREB dependent WISP1 induction and cardiomyocyte hypertrophy. J. Mol. Cell. Cardiol., 2011. 50(6): p. 928-38.
171. Yuan, L.W. and J.E. Gambee, Phosphorylation of p300 at serine 89 by protein kinase C. J. Biol. Chem., 2000. 275(52): p. 40946-51.
172. Yuan, L.W., J.W. Soh and I.B. Weinstein, Inhibition of histone acetyltransferase function of p300 by PKCdelta. Biochim. Biophys. Acta., 2002. 1592(2): p. 205-11.
173. Qian, J.Y., A. Leung, P. Harding and M.C. LaPointe, PGE2 stimulates human brain natriuretic peptide expression via EP4 and p42/44 MAPK. Am. J. Physiol. Heart. Circ. Physiol., 2006. 290(5): p. H1740-6.
174. Jiang, Q.S., X.N. Huang, G.Z. Yang, Z.K. Dai, Q.X. Zhou, J.S. Shi and Q. Wu, Cardiac hypertrophy induced by prostaglandin F(2alpha) may be mediated by calcineurin signal transduction pathway in rats. Sheng. Li. Xue. Bao., 2005. 57(6): p. 742-8.
175. Zhang, Z., R. Vezza, T. Plappert, P. McNamara, J.A. Lawson, S. Austin, D. Pratico, M.S. Sutton and G.A. FitzGerald, COX-2-dependent cardiac failure in Gh/tTG transgenic mice. Circ. Res., 2003. 92(10): p. 1153-61.
176. Li, H., S. Gao, J. Ye, X. Feng, Y. Cai, Z. Liu, J. Lu, Q. Li, X. Huang, S. Chen and P. Liu, COX-2 is involved in ET-1-induced hypertrophy of neonatal rat cardiomyocytes: role of NFATc3. Mol. Cell. Endocrinol., 2014. 382(2): p. 998-1006.
177. LaPointe, M.C., M. Mendez, A. Leung, Z. Tao and X.P. Yang, Inhibition of cyclooxygenase-2 improves cardiac function after myocardial infarction in the mouse. Am. J. Physiol. Heart. Circ. Physiol., 2004. 286(4): p. H1416-24.
178. Jacobshagen, C., M. Gruber, N. Teucher, A.G. Schmidt, B.W. Unsold, K. Toischer, V.P. Nguyen, L.S. Maier, H. Kogler and G. Hasenfuss, Celecoxib modulates hypertrophic signalling and prevents load-induced cardiac dysfunction. Eur. J. Heart. Fail., 2008. 10(4): p. 334-42.
179. Ritchie, R.H., A.C. Rosenkranz, L.P. Huynh, T. Stephenson, D.M. Kaye and G.J. Dusting, Activation of IP prostanoid receptors prevents cardiomyocyte hypertrophy via cAMP-dependent signaling. Am. J. Physiol. Heart. Circ. Physiol., 2004. 287(3): p. H1179-85.
180. Touchberry, C.D., N. Silswal, V. Tchikrizov, C.J. Elmore, S. Srinivas, A.S. Akthar, H.K. Swan, L.A. Wetmore and M.J. Wacker, Cardiac thromboxane A2 receptor activation does not directly induce cardiomyocyte hypertrophy but does cause cell death that is prevented with gentamicin and 2-APB. BMC. Pharmacol. Toxicol., 2014. 15(1): p. 73.
181. Brostrom, M.A., Z. Pan, S. Meiners, C. Drumm, I. Ahmed and C.O. Brostrom, Ca2+ dynamics of thrombin-stimulated rat heart-derived embryonic myocytes: relationship to protein synthesis and cell growth. Int. J. Biochem. Cell. Biol., 2003. 35(11): p. 1573-87.
182. Ide, J., T. Aoki, S. Ishivata, E. Glusa and S.M. Strukova, Proteinase-activated receptor agonists stimulate the increase in intracellular Ca2+ in cardiomyocytes and proliferation of cardiac fibroblasts from chick embryos. Bull. Exp. Biol. Med., 2007. 144(6): p. 760-3.
183. Sharma, H.S., N. Maulik, B.C. Gho, D.K. Das and P.D. Verdouw, Coordinated expression of heme oxygenase-1 and ubiquitin in the porcine heart subjected to ischemia and reperfusion. Mol. Cell. Biochem., 1996. 157(1-2): p. 111-6.
184. Brunt, K.R., M.R. Tsuji, J.H. Lai, R.T. Kinobe, W. Durante, W.C. Claycomb, C.A. Ward and L.G. Melo, Heme oxygenase-1 inhibits pro-oxidant induced hypertrophy in HL-1 cardiomyocytes. Exp. Biol. Med. (Maywood), 2009. 234(5): p. 582-94.
185. Piantadosi, C.A., M.S. Carraway, A. Babiker and H.B. Suliman, Heme oxygenase-1 regulates cardiac mitochondrial biogenesis via Nrf2-mediated transcriptional control of nuclear respiratory factor-1. Circ. Res., 2008. 103(11): p. 1232-40.
186. Exner, M., E. Minar, O. Wagner and M. Schillinger, The role of heme oxygenase-1 promoter polymorphisms in human disease. Free. Radic. Biol. Med., 2004. 37(8): p. 1097-104.
187. Kang, J., M.G. Jeong, S. Oh, E.J. Jang, H.K. Kim and E.S. Hwang, A FoxO1-dependent, but NRF2-independent induction of heme oxygenase-1 during muscle atrophy. FEBS. Lett., 2014. 588(1): p. 79-85.
188. Foresti, R., M.G. Bani-Hani and R. Motterlini, Use of carbon monoxide as a therapeutic agent: promises and challenges. Intensive. Care. Med., 2008. 34(4): p. 649-58.
189. Motterlini, R., P. Sawle, J. Hammad, S. Bains, R. Alberto, R. Foresti and C.J. Green, CORM-A1: a new pharmacologically active carbon monoxide-releasing molecule. FASEB. J., 2005. 19(2): p. 284-6.
190. Clark, J.E., P. Naughton, S. Shurey, C.J. Green, T.R. Johnson, B.E. Mann, R. Foresti and R. Motterlini, Cardioprotective actions by a water-soluble carbon monoxide-releasing molecule. Circ. Res., 2003. 93(2): p. e2-8.
191. Lee, B.S., J. Heo, Y.M. Kim, S.M. Shim, H.O. Pae, Y.M. Kim and H.T. Chung, Carbon monoxide mediates heme oxygenase 1 induction via Nrf2 activation in hepatoma cells. Biochem. Biophys. Res. Commun., 2006. 343(3): p. 965-72.
192. Kim, H.P., S.W. Ryter and A.M. Choi, CO as a cellular signaling molecule. Annu. Rev. Pharmacol. Toxicol., 2006. 46: p. 411-49.
193. Ryter, S.W., J. Alam and A.M. Choi, Heme oxygenase-1/carbon monoxide: from basic science to therapeutic applications. Physiol. Rev., 2006. 86(2): p. 583-650.
194. Motterlini, R., Carbon monoxide-releasing molecules (CO-RMs): vasodilatory, anti-ischaemic and anti-inflammatory activities. Biochem. Soc. Trans., 2007. 35(Pt 5): p. 1142-6.
195. Motterlini, R. and L.E. Otterbein, The therapeutic potential of carbon monoxide. Nat. Rev. Drug. Discov., 2010. 9(9): p. 728-43.
196. Pae, H.O., G.S. Oh, B.M. Choi, S.C. Chae, Y.M. Kim, K.R. Chung and H.T. Chung, Carbon monoxide produced by heme oxygenase-1 suppresses T cell proliferation via inhibition of IL-2 production. J. Immunol., 2004. 172(8): p. 4744-51.
197. Suliman, H.B., M.S. Carraway, A.S. Ali, C.M. Reynolds, K.E. Welty-Wolf and C.A. Piantadosi, The CO/HO system reverses inhibition of mitochondrial biogenesis and prevents murine doxorubicin cardiomyopathy. J. Clin. Invest., 2007. 117(12): p. 3730-41.
198. Lin, H.H., Y.H. Chen, M.T. Chiang, P.L. Huang and L.Y. Chau, Activator protein-2alpha mediates carbon monoxide-induced stromal cell-derived factor-1alpha expression and vascularization in ischemic heart. Arterioscler. Thromb. Vasc. Biol., 2013. 33(4): p. 785-94.
199. Ndisang, J.F. and A. Jadhav, Upregulating the heme oxygenase system suppresses left ventricular hypertrophy in adult spontaneously hypertensive rats for 3 months. J. Card. Fail., 2009. 15(7): p. 616-28.
200. Chi, P.L., C.C. Lin, Y.W. Chen, L.D. Hsiao and C.M. Yang, CO induces Nrf2-dependent heme oxygenase-1 transcription by cooperating with Sp1 and c-Jun in rat brain astrocytes. Mol. Neurobiol., 2014.
201. Shih, R.H., S.E. Cheng, L.D. Hsiao, Y.R. Kou and C.M. Yang, Cigarette smoke extract upregulates heme oxygenase-1 via PKC/NADPH oxidase/ROS/PDGFR/PI3K/Akt pathway in mouse brain endothelial cells. J. Neuroinflammation., 2011. 8: p. 104.
202. Zhou, X., L. Zhao, J. Mao, J. Huang and J. Chen, Antioxidant effects of hydrogen sulfide on left ventricular remodeling in smoking rats are mediated via PI3K/Akt-dependent activation of Nrf2. Toxicol. Sci., 2015. 144(1): p. 197-203.
203. Seo, G.S., W.Y. Jiang, P.H. Park, D.H. Sohn, J.H. Cheon and S.H. Lee, Hirsutenone reduces deterioration of tight junction proteins through EGFR/Akt and ERK1/2 pathway both converging to HO-1 induction. Biochem. Pharmacol., 2014. 90(2): p. 115-25.
204. Li, L., N. Yang, L. Nin, Z. Zhao, L. Chen, J. Yu, Z. Jiang, Z. Zhong, D. Zeng, H. Qi and X. Xu, Chinese herbal medicine formula tao hong si wu decoction protects against cerebral ischemia-reperfusion injury via PI3K/Akt and the Nrf2 signaling pathway. J. Nat. Med., 2015. 69(1): p. 76-85.
205. Rojo, A.I., M. Salina, M. Salazar, S. Takahashi, G. Suske, V. Calvo, M.R. de Sagarra and A. Cuadrado, Regulation of heme oxygenase-1 gene expression through the phosphatidylinositol 3-kinase/PKC-zeta pathway and Sp1. Free. Radic. Biol. Med., 2006. 41(2): p. 247-61.
206. Chien, P.T., C.C. Lin, L. Hsiao and C.M. Yang, c-Src/Pyk2/EGFR/PI3K/Akt/CREB-activated pathway contributes to human cardiomyocyte hypertrophy: Role of COX-2 induction. Mol. Cell. Endocrinol., 2015. 409: p. 59-72.
207. Hu, C.M., Y.H. Chen, M.T. Chiang and L.Y. Chau, Heme oxygenase-1 inhibits angiotensin II-induced cardiac hypertrophy in vitro and in vivo. Circulation., 2004. 110(3): p. 309-16.
208. Lien, G.S., M.S. Wu, M.Y. Bien, C.H. Chen, C.H. Lin and B.C. Chen, Epidermal growth factor stimulates nuclear factor-kappaB activation and heme oxygenase-1 expression via c-Src, NADPH oxidase, PI3K, and Akt in human colon cancer cells. PLoS. One., 2014. 9(8): p. e104891.
209. Lu, C.Y., Y.C. Yang, C.C. Li, K.L. Liu, C.K. Lii and H.W. Chen, Andrographolide inhibits TNFalpha-induced ICAM-1 expression via suppression of NADPH oxidase activation and induction of HO-1 and GCLM expression through the PI3K/Akt/Nrf2 and PI3K/Akt/AP-1 pathways in human endothelial cells. Biochem. Pharmacol., 2014. 91(1): p. 40-50.
210. Yeh, Y.H., C.T. Kuo, G.J. Chang, Y.H. Chen, Y.J. Lai, M.L. Cheng and W.J. Chen, Rosuvastatin suppresses atrial tachycardia-induced cellular remodeling via Akt/Nrf2/heme oxygenase-1 pathway. J. Mol. Cell. Cardiol., 2015. 82: p. 84-92.
211. Jeong, Y.H., J.S. Park, D.H. Kim and H.S. Kim, Arctigenin increases hemeoxygenase-1 gene expression by modulating PI3K/AKT signaling pathway in rat primary astrocytes. Biomol. Ther. (Seoul), 2014. 22(6): p. 497-502.
212. Zuckerbraun, B.S., B.Y. Chin, M. Bilban, J.C. d'Avila, J. Rao, T.R. Billiar and L.E. Otterbein, Carbon monoxide signals via inhibition of cytochrome c oxidase and generation of mitochondrial reactive oxygen species. FASEB. J., 2007. 21(4): p. 1099-106.
213. Spoelstra-de Man, A.M. and A.R. Girbes, Comment on "Surviving Sepsis Campaign: International guidelines for management of severe sepsis and septic shock: 2008" by Dellinger et al. Intensive. Care. Med., 2008. 34(6): p. 1160-2; author reply 1163-4.
214. Zhang, X., P. Shan, J. Alam, R.J. Davis, R.A. Flavell and P.J. Lee, Carbon monoxide modulates Fas/Fas ligand, caspases, and Bcl-2 family proteins via the p38alpha mitogen-activated protein kinase pathway during ischemia-reperfusion lung injury. J. Biol. Chem., 2003. 278(24): p. 22061-70.
215. Conde de la Rosa, L., T.E. Vrenken, R.A. Hannivoort, M. Buist-Homan, R. Havinga, D.J. Slebos, H.F. Kauffman, K.N. Faber, P.L. Jansen and H. Moshage, Carbon monoxide blocks oxidative stress-induced hepatocyte apoptosis via inhibition of the p54 JNK isoform. Free. Radic. Biol. Med., 2008. 44(7): p. 1323-33.
216. Yang, C.M., C.C. Lin, I.T. Lee, C.K. Hsu, Y.C. Tai, H.L. Hsieh, P.L. Chi and A. Hsiao, c-Src-dependent transactivation of EGFR mediates CORM-2-induced HO-1 expression in human tracheal smooth muscle cells. J. Cell. Physiol., 2015.
217. Furuyama, T., T. Nakazawa, I. Nakano and N. Mori, Identification of the differential distribution patterns of mRNAs and consensus binding sequences for mouse DAF-16 homologues. Biochem. J., 2000. 349(Pt 2): p. 629-34.
218. van der Horst, A. and B.M. Burgering, Stressing the role of FoxO proteins in lifespan and disease. Nat. Rev. Mol. Cell. Biol., 2007. 8(6): p. 440-50.
219. Caporali, A., G.B. Sala-Newby, M. Meloni, G. Graiani, E. Pani, B. Cristofaro, A.C. Newby, P. Madeddu and C. Emanueli, Identification of the prosurvival activity of nerve growth factor on cardiac myocytes. Cell. Death. Differ., 2008. 15(2): p. 299-311.
220. Lin, H.H., S.C. Lai and L.Y. Chau, Heme oxygenase-1/carbon monoxide induces vascular endothelial growth factor expression via p38 kinase-dependent activation of Sp1. J. Biol. Chem., 2011. 286(5): p. 3829-38.
221. Bani-Hani, M.G., D. Greenstein, B.E. Mann, C.J. Green and R. Motterlini, Modulation of thrombin-induced neuroinflammation in BV-2 microglia by carbon monoxide-releasing molecule 3. J. Pharmacol. Exp. Ther., 2006. 318(3): p. 1315-22.
222. Kramkowski, K., A. Leszczynska, A. Mogielnicki, S. Chlopicki, A. Fedorowicz, E. Grochal, B. Mann, T. Brzoska, T. Urano, R. Motterlini and W. Buczko, Antithrombotic properties of water-soluble carbon monoxide-releasing molecules. Arterioscler. Thromb. Vasc. Biol., 2012. 32(9): p. 2149-57.
223. Clark, J.E., R. Foresti, P. Sarathchandra, H. Kaur, C.J. Green and R. Motterlini, Heme oxygenase-1-derived bilirubin ameliorates postischemic myocardial dysfunction. Am. J. Physiol. Heart. Circ. Physiol., 2000. 278(2): p. H643-51.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊