跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.173) 您好!臺灣時間:2025/01/18 03:01
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:楊朝富
研究生(外文):Chao Fu Yang
論文名稱:Tetraspanin C189參與登革二型病毒於蚊子細胞間傳遞
論文名稱(外文):Tetraspanin C189-involved cell-to-cell transmission of dengue virus type II in mosquito cells
指導教授:陳維鈞陳維鈞引用關係
指導教授(外文):W. J. Chen
學位類別:博士
校院名稱:長庚大學
系所名稱:生物醫學研究所
學門:生命科學學門
學類:生物化學學類
論文種類:學術論文
論文出版年:2015
畢業學年度:103
論文頁數:77
中文關鍵詞:登革病毒蚊子細胞間傳遞Tetraspanin
外文關鍵詞:Dengue virusMosquitocell-to-cell transmissionTetraspanin
相關次數:
  • 被引用被引用:0
  • 點閱點閱:302
  • 評分評分:
  • 下載下載:21
  • 收藏至我的研究室書目清單書目收藏:0
登革病毒是最重要的蚊媒病毒之一,每年威脅超過三分之一的全球人口。到目前為止仍沒有有效的臨床疫苗或藥物可對抗登革病毒,因此控制登革病毒傳染媒介變成降低登革病毒疫情的主要公共衛生策略。然而登革病毒在蚊子裡的傳播方式目前仍不清楚。在本篇的研究裡我們發現,高細胞密度與細胞間的接觸可有效提高登革二型病毒於蚊子細胞間的傳染效率。利用 methylcellulose 和登革病毒中和血清限制與抑制登革病毒細胞外傳播,登革病毒仍可有效的在蚊子細胞間傳遞。登革病毒感染蚊子細胞後會大量表現tetraspanin C189 蛋白質,抑制 C189蛋白質表現會降低登革病毒細胞間傳遞的效率,但不會影響細胞外傳遞。利用共軛焦顯微鏡及細胞胞器分離實驗發現,登革病毒在感染晚期會被包裹在由C189蛋白質組成的液泡 (C189-VCs) 裡。登革病毒被包裹在 C189-VCs 後會沿著含有大量 f-actin的細胞觸手移動,並在與細胞接觸後一起被運送至鄰近細胞裡。我們的研究發現登革病毒在蚊子細胞裡的另一種傳染途徑,並發現C189蛋白質在其中扮演重要的角色。我們的研究提供了新的策略去控制登革病毒在蚊子間的傳遞。
Dengue virus (DV) is the most important mosquito-borne virus that threatens over one third of the world’s population. Since there are no clinical vaccines or antiviral drugs for DVs, the control of DV vectors becomes the major public health policy to reduce dengue epidemics. However, the knowledge of DV transmission in mosquitoes is still poorly understood. In this study, we found dengue virus type II (DV2) transmission efficiency was promoted under the high cell-density condition and cell contact significantly enhanced DV2 spread among mosquito cells. The high efficient cell-to-cell transmission of DV2 was presented in mosquito cells while cell-free transmission was limited or blocked by methylcellulose and anti-DV2 serum. Knockdown of C189, a tetraspanin protein upregulated in response to DV infection, was shown to inhibit cell-to-cell transmission but did not affect cell-free transmission of DV2. Confocal microscopy images and organelle-separation analysis pointed out DV2 particles were incorporated into C189-bound vesicles (C189-VCs) during late infection stage. After incorporation of DV2 into C189-VCs, DV-C189-VCs complexes were transported into the actin-enriched filopodia and delivered to neighboring cells upon cell-cell contact. Our study discovered an alternative transmission pathway of DVs between mosquito cells and demonstrated that the tetraspanin C189 is involved in this pathway. These findings provided insights into the development of DV vector control strategies.
指導教授推薦書
口試委員會審定書
ACKNOWLEDGMENT……………………..………….……………iii
中文摘要………………………………..……….…………………….…v
ABSTRATE……………………….…………………………………….vii
TABLE OF CONTENTS…………………………..…..………………...ix
LIST OF TABLES………………..………………….…………….…….xii
LIST OF FIGURES……………..……………………….……….……..xiii
INTRODUCTION…………………..………………………….………..1
DENGUE VIRUS…………………….………………………………….1
The virion and genome structure of dengue viruses……...………………..1
The function of viral proteins……………………….………………....….2
Structural proteins………………………….……………………..…2
Non-structural proteins…………………….…………………..…….3
The replication cycle of dengue viruses……………..…………………….3
Intercellular transmission of dengue viruses…………...………………….4
TETRASPANIN……………………………………………………..…..5
STUDY PURPOSE………………………….……………………….…..7
MATERIALS AND METHODS……………….………………….……8
Cells, viruses and antibodies……………………..………………………..8
Construction and transfection of expression vectors in C6/36 cells…….…8
Stably knockdown system in C6/36 cells………………..…………….…..9
Extracting RNA and quantitating gene expression level……..……..……10
Immunofluorescence (IF) assay……………………….…………...……10
Flow cytometry analysis………………………...…..……………….…..11
Immunoprecipitation (IP) and western blot…………….………………..11
Methylcellulose-containing-medium (MCM) overlay assay………....….12
Titration of viral titers……………………..……………………….…….12
DV transmission assay………………….………………………….……13
Separation of organelles……………….…………………………….…..16
RESULTS………………………….………………………………..…..17
Cell contact increased DV2 transmission efficiency in mosquito cells…..17
DV2 cell-to-cell transmission in mosquito cells was neutralizing-antibody resistant………………………………………………………………….18
C189 was involved in cell-to-cell transmission rather than cell-free transmission of DVs in mosquito cells……………...……….……….…..20
DV2 particles were incorporated into C189-bound vesicles (C189-VCs)........................................................................................................22
DV-containing C189-bound vesicles (DV-C189-VCs) were transported into f-actin enriched filopodia at late infection stage of DV2……………23
DV-C189-VCs were transported along the filopodia into the recipient cells…………………………………………………………………24
DISCUSSION…………………………………………………...…..26
REFERENCES………………..……………………………..…….30
TABLES………………………………………………………..……37
FIGURES…………………………..…………………………………..40


LIST OF TABLES
Table 1. A list of primer sequences used in this study…………..…….….37
Table 2. Parameters and annotations of primers in this study……..…..…38
Table 3. A list of antibodies used in this study………………………..….39


LIST OF FIGURES
Figure 1. Cell-density influenced DV2 transmission efficiency in mosquito
cells…………………………………………………………………...40
Figure 2. Cell contact promoted DV2 transmission in mosquito cells…..41
Figure 3. DV2 efficiently disseminated among mosquito cells when cellfree
transmission has been limited………………………..…..…………42
Figure 4. Blocking DV cell-free transmission by neutralizing
antiserum……………………………………..…………………………43
Figure 5. Neutralizing-antibody resistant cell-to-cell transmission of DV2
in mosquito cells…………………………………………………...……45
Figure 6. The efficiencies of DV cell-free transmission and cell-to-cell
transmission in mosquito cells………………………………….……..47
Figure 7. Construction of stable knockdown vector for mosquito cells....49
Figure 8. C189 was not involved in cell-free transmission of DVs in
mosquito cells……………………………………………………...……51
Figure 9. C189 was involved in cell-to-cell transmission of DVs in
mosquito cells………………………………………………..………...53
Figure 10. DV2 were incorporated into C189-bound vesicles (C189-
VCs)………………………………………………………………..…55
Figure 11. DV-C189-VC complexes were transported into filopodia at late
infection stage of DVs………………………………………………….57
Figure 12. DV-C189-VC complexes were transported along f-actin in
filopodia………………………………………………………….....59
Figure 13. The movement of DV-C189-VC-like structures in live C6/36
cells….……………………………………………………………....60
Figure 14. DV-C189-VC complexes were transported along the filopodia into the recipient cells………………………………………….……..61


1. Gubler DJ. 1998. Dengue and dengue hemorrhagic fever. Clin. Microbiol. Rev. 11:480-496.
2. Gubler DJ, Clark GG. 1995. Dengue/dengue hemorrhagic fever: the emergence of a global health problem. Emerg. Infect. Dis. 1:55-57.
3. Bhatt S, Gething PW, Brady OJ, Messina JP, Farlow AW, Moyes CL, Drake JM, Brownstein JS, Hoen AG, Sankoh O, Myers MF, George DB, Jaenisch T, Wint GR, Simmons CP, Scott TW, Farrar JJ, Hay SI. 2013. The global distribution and burden of dengue. Nature 496:504-507.
4. Zhang Y, Corver J, Chipman PR, Zhang W, Pletnev SV, Sedlak D, Baker TS, Strauss JH, Kuhn RJ, Rossmann MG. 2003. Structures of immature flavivirus particles. EMBO J. 22:2604-2613.
5. Zhang W, Chipman PR, Corver J, Johnson PR, Zhang Y, Mukhopadhyay S, Baker TS, Strauss JH, Rossmann MG, Kuhn RJ. 2003. Visualization of membrane protein domains by cryo-electron microscopy of dengue virus. Nat. Struct. Biol. 10:907-912.
6. Dejnirattisai W, Wongwiwat W, Supasa S, Zhang X, Dai X, Rouvinsky A, Jumnainsong A, Edwards C, Quyen NT, Duangchinda T, Grimes JM, Tsai WY, Lai CY, Wang WK, Malasit P, Farrar J, Simmons CP, Zhou ZH, Rey FA, Mongkolsapaya J, Screaton GR. 2015. A new class of highly potent, broadly neutralizing antibodies isolated from viremic patients infected with dengue virus. Nat. Immunol. 16:170-177.
7. Gebhard LG, Filomatori CV, Gamarnik AV. 2011. Functional RNA elements in the dengue virus genome. Viruses 3:1739-1756.
8. Pong WL, Huang ZS, Teoh PG, Wang CC, Wu HN. 2011. RNA binding property and RNA chaperone activity of dengue virus core protein and other viral RNA-interacting proteins. FEBS Lett. 585:2575-2581.
9. Lopez C, Gil L, Lazo L, Menendez I, Marcos E, Sanchez J, Valdes I, Falcon V, de la Rosa MC, Marquez G, Guillen G, Hermida L. 2009. In vitro assembly of nucleocapsid-like particles from purified recombinant capsid protein of dengue-2 virus. Arch. Virol. 154:695-698.
10. Modis Y, Ogata S, Clements D, Harrison SC. 2004. Structure of the dengue virus envelope protein after membrane fusion. Nature 427:313-319.
11. Zheng A, Umashankar M, Kielian M. 2010. In vitro and in vivo studies identify important features of dengue virus pr-E protein interactions. PLoS Pathog. 6:e1001157.
12. Tsai WY, Hsieh SC, Lai CY, Lin HE, Nerurkar VR, Wang WK. 2012. C-terminal helical domains of dengue virus type 4 E protein affect the expression/stability of prM protein and conformation of prM and E proteins. PLoS One 7:e52600.
13. Yu IM, Zhang W, Holdaway HA, Li L, Kostyuchenko VA, Chipman PR, Kuhn RJ, Rossmann MG, Chen J. 2008. Structure of the immature dengue virus at low pH primes proteolytic maturation. Science 319:1834-1837.
14. Pryor MJ, Gualano RC, Lin B, Davidson AD, Wright PJ. 1998. Growth restriction of dengue virus type 2 by site-specific mutagenesis of virus-encoded glycoproteins. J. Gen. Virol. 79 ( Pt 11):2631-2639.
15. Somnuke P, Hauhart RE, Atkinson JP, Diamond MS, Avirutnan P. 2011. N-linked glycosylation of dengue virus NS1 protein modulates secretion, cell-surface expression, hexamer stability, and interactions with human complement. Virology 413:253-264.
16. Wu RH, Tsai MH, Chao DY, Yueh A. 2015. Scanning mutagenesis studies reveal a potential intramolecular interaction within the C-terminal half of dengue virus NS2A involved in viral RNA replication and virus assembly and secretion. J. Virol. 89:4281-4295.
17. Falgout B, Miller RH, Lai CJ. 1993. Deletion analysis of dengue virus type 4 nonstructural protein NS2B: identification of a domain required for NS2B-NS3 protease activity. J. Virol. 67:2034-2042.
18. Nemesio H, Palomares-Jerez F, Villalain J. 2012. NS4A and NS4B proteins from dengue virus: membranotropic regions. Biochim. Biophys. Acta 1818:2818-2830.
19. Stern O, Hung YF, Valdau O, Yaffe Y, Harris E, Hoffmann S, Willbold D, Sklan EH. 2013. An N-terminal amphipathic helix in dengue virus nonstructural protein 4A mediates oligomerization and is essential for replication. J. Virol. 87:4080-4085.
20. Dalrymple NA, Cimica V, Mackow ER. 2015. Dengue Virus NS Proteins Inhibit RIG-I/MAVS Signaling by Blocking TBK1/IRF3 Phosphorylation: Dengue Virus Serotype 1 NS4A Is a Unique Interferon-Regulating Virulence Determinant. mBio 6(3):e00553-15.
21. Bartholomeusz AI, Wright PJ. 1993. Synthesis of dengue virus RNA in vitro: initiation and the involvement of proteins NS3 and NS5. Arch. Virol. 128:111-121.
22. Egloff MP, Benarroch D, Selisko B, Romette JL, Canard B. 2002. An RNA cap (nucleoside-2'-O-)-methyltransferase in the flavivirus RNA polymerase NS5: crystal structure and functional characterization. EMBO J. 21:2757-2768.
23. van der Schaar HM, Rust MJ, Chen C, van der Ende-Metselaar H, Wilschut J, Zhuang X, Smit JM. 2008. Dissecting the cell entry pathway of dengue virus by single-particle tracking in living cells. PLoS Pathog. 4:e1000244.
24. Acosta EG, Castilla V, Damonte EB. 2008. Functional entry of dengue virus into Aedes albopictus mosquito cells is dependent on clathrin-mediated endocytosis. J. Gen. Virol. 89:474-484.
25. Zhang L, Mohan PM, Padmanabhan R. 1992. Processing and localization of Dengue virus type 2 polyprotein precursor NS3-NS4A-NS4B-NS5. J. Virol. 66:7549-7554.
26. Welsch S, Miller S, Romero-Brey I, Merz A, Bleck CK, Walther P, Fuller SD, Antony C, Krijnse-Locker J, Bartenschlager R. 2009. Composition and three-dimensional architecture of the dengue virus replication and assembly sites. Cell host microbe 5:365-375.
27. Uchil PD, Satchidanandam V. 2003. Architecture of the flaviviral replication complex. Protease, nuclease, and detergents reveal encasement within double-layered membrane compartments. J. Biol. Chem. 278:24388-24398.
28. Sattentau Q. 2008. Avoiding the void: cell-to-cell spread of human viruses. Nat. Rev. Microbiol. 6:815-826.
29. Jessie K, Fong MY, Devi S, Lam SK, Wong KT. 2004. Localization of dengue virus in naturally infected human tissues, by immunohistochemistry and in situ hybridization. J. Infect. Dis. 189:1411-1418.
30. Black WCt, Bennett KE, Gorrochotegui-Escalante N, Barillas-Mury CV, Fernandez-Salas I, de Lourdes Munoz M, Farfan-Ale JA, Olson KE, Beaty BJ. 2002. Flavivirus susceptibility in Aedes aegypti. Arch. Med. Res. 33:379-388.
31. Passarelli AL. 2011. Barriers to success: how baculoviruses establish efficient systemic infections. Virology 411:383-392.
32. Salazar MI, Richardson JH, Sanchez-Vargas I, Olson KE, Beaty BJ. 2007. Dengue virus type 2: replication and tropisms in orally infected Aedes aegypti mosquitoes. BMC Microbiol. 7:9.
33. Levy S, Shoham T. 2005. The tetraspanin web modulates immune-signalling complexes. Nat. Rev. Immunol. 5:136-148.
34. Hemler ME. 2003. Tetraspanin proteins mediate cellular penetration, invasion, and fusion events and define a novel type of membrane microdomain. Annu. Rev. Cell. Dev. Biol. 19:397-422.
35. Pileri P, Uematsu Y, Campagnoli S, Galli G, Falugi F, Petracca R, Weiner AJ, Houghton M, Rosa D, Grandi G, Abrignani S. 1998. Binding of hepatitis C virus to CD81. Science 282:938-941.
36. Catanese MT, Loureiro J, Jones CT, Dorner M, von Hahn T, Rice CM. 2013. Different requirements for scavenger receptor class B type I in hepatitis C virus cell-free versus cell-to-cell transmission. J. Virol. 87:8282-8293.
37. Ho SH, Martin F, Higginbottom A, Partridge LJ, Parthasarathy V, Moseley GW, Lopez P, Cheng-Mayer C, Monk PN. 2006. Recombinant extracellular domains of tetraspanin proteins are potent inhibitors of the infection of macrophages by human immunodeficiency virus type 1. J. Virol. 80:6487-6496.
38. Krementsov DN, Weng J, Lambele M, Roy NH, Thali M. 2009. Tetraspanins regulate cell-to-cell transmission of HIV-1. Retrovirology 6:64.
39. Lin CC, Yang CF, Tu CH, Huang CG, Shih YT, Chuang CK, Chen WJ. 2007. A novel tetraspanin C189 upregulated in C6/36 mosquito cells following dengue 2 virus infection. Virus Res. 124:176-183.
40. Chung KH, Hart CC, Al-Bassam S, Avery A, Taylor J, Patel PD, Vojtek AB, Turner DL. 2006. Polycistronic RNA polymerase II expression vectors for RNA interference based on BIC/miR-155. Nucleic Acids Res. 34:e53.
41. Wang WK, Sung TL, Tsai YC, Kao CL, Chang SM, King CC. 2002. Detection of dengue virus replication in peripheral blood mononuclear cells from dengue virus type 2-infected patients by a reverse transcription-real-time PCR assay. J. clin. microbiol. 40:4472-4478.
42. Leparc-Goffart I, Baragatti M, Temmam S, Tuiskunen A, Moureau G, Charrel R, de Lamballerie X. 2009. Development and validation of real-time one-step reverse transcription-PCR for the detection and typing of dengue viruses. J. clin. Virol. 45:61-66.
43. Qattan AT, Mulvey C, Crawford M, Natale DA, Godovac-Zimmermann J. 2010. Quantitative organelle proteomics of MCF-7 breast cancer cells reveals multiple subcellular locations for proteins in cellular functional processes. J. proteome Re. 9:495-508.
44. Masciopinto F, Giovani C, Campagnoli S, Galli-Stampino L, Colombatto P, Brunetto M, Yen TS, Houghton M, Pileri P, Abrignani S. 2004. Association of hepatitis C virus envelope proteins with exosomes. Eur. J. Immunol. 34:2834-2842.
45. Drummer HE, Boo I, Maerz AL, Poumbourios P. 2006. A conserved Gly436-Trp-Leu-Ala-Gly-Leu-Phe-Tyr motif in hepatitis C virus glycoprotein E2 is a determinant of CD81 binding and viral entry. J. Virol. 80:7844-7853.
46. Sato K, Aoki J, Misawa N, Daikoku E, Sano K, Tanaka Y, Koyanagi Y. 2008. Modulation of human immunodeficiency virus type 1 infectivity through incorporation of tetraspanin proteins. J. Virol. 82:1021-1033.
47. Grigorov B, Attuil-Audenis V, Perugi F, Nedelec M, Watson S, Pique C, Darlix JL, Conjeaud H, Muriaux D. 2009. A role for CD81 on the late steps of HIV-1 replication in a chronically infected T cell line. Retrovirology 6:28.
48. Carloni G, Crema A, Valli MB, Ponzetto A, Clementi M. 2012. HCV infection by cell-to-cell transmission: choice or necessity? Curr. Mol. Med. 12:83-95.
49. Garcia E, Pion M, Pelchen-Matthews A, Collinson L, Arrighi JF, Blot G, Leuba F, Escola JM, Demaurex N, Marsh M, Piguet V. 2005. HIV-1 trafficking to the dendritic cell-T-cell infectious synapse uses a pathway of tetraspanin sorting to the immunological synapse. Traffic 6:488-501.
50. Yu HJ, Reuter MA, McDonald D. 2008. HIV traffics through a specialized, surface-accessible intracellular compartment during trans-infection of T cells by mature dendritic cells. PLoS Pathog. 4:e1000134.
51. Gluschankof P, Mondor I, Gelderblom HR, Sattentau QJ. 1997. Cell membrane vesicles are a major contaminant of gradient-enriched human immunodeficiency virus type-1 preparations. Virology 230:125-133.
52. Fais S, Logozzi M, Lugini L, Federici C, Azzarito T, Zarovni N, Chiesi A. 2013. Exosomes: the ideal nanovectors for biodelivery. Biol. Chem. 394:1-15.
53. Bang C, Thum T. 2012. Exosomes: new players in cell-cell communication. Int. J. Biochem. Cell Biol. 44:2060-2064.
54. Boete C, Agusto FB, Reeves RG. 2014. Impact of mating behaviour on the success of malaria control through a single inundative release of transgenic mosquitoes. J. Theor. Biol. 347:33-43.
55. Fuchs S, Nolan T, Crisanti A. 2013. Mosquito transgenic technologies to reduce Plasmodium transmission. Methods Mol. Biol. 923:601-622.
56. Sumitani M, Kasashima K, Yamamoto DS, Yagi K, Yuda M, Matsuoka H, Yoshida S. 2013. Reduction of malaria transmission by transgenic mosquitoes expressing an antisporozoite antibody in their salivary glands. Insect Mol. Biol. 22:41-51.
57. Carvalho DO, Costa-da-Silva AL, Lees RS, Capurro ML. 2014. Two step male release strategy using transgenic mosquito lines to control transmission of vector-borne diseases. Acta Trop. 132 Suppl:S170-177.
58. Biedler JK, Qi Y, Pledger D, James AA, Tu Z. 2015. Maternal germline-specific genes in the Asian malaria mosquito Anopheles stephensi: characterization and application for disease control. G3 5:157-166.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top