跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.89) 您好!臺灣時間:2025/01/26 03:26
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:黃御書
研究生(外文):Yu Shu Huang
論文名稱:研究鋱鉭氧化層與鐿鉭氧化層作為感測膜在酸鹼感測器與生物感測器的應用
論文名稱(外文):Development of TbTaxOy and YbTaxOy sensing membranes for pH sensor and biosensor applications
指導教授:潘同明
指導教授(外文):T. M. Pan
學位類別:碩士
校院名稱:長庚大學
系所名稱:電子工程學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2015
畢業學年度:103
論文頁數:95
中文關鍵詞:感測器葡萄糖
外文關鍵詞:EISSensorBiosensorGlucose
相關次數:
  • 被引用被引用:0
  • 點閱點閱:161
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
指導教授推薦書
口試委員審定書
致謝 iii
摘要 iv
Abstrsct v
Contents vi
Figure Caption ix
Table Caption xiv
Chatper 1 - 1 -
Introduction - 1 -
1.1 Background - 1 -
1.2 Motivation and Objective - 3 -
1.3 EIS and ISFET - 4 -
Chapter 2 - 6 -
Theory Description - 6 -
2.1 EIS structure - 6 -
2.2 Site binding model - 7 -
2.3 pH-ISFET operation mechanism - 11 -
Chapter 3 - 16 -
Physical and Electrical Properties of TbTaxOy/Si EIS structure - 16 -
3.1. Material - 16 -
3.2. The fabrication process of EIS sensor - 17 -
3.3. Physical Properties of sensing membrane - 18 -
3.3.1. XRD of TbTaxOy film analysis - 18 -
3.3.2. AFM of TbTaxOy film analysis - 18 -
3.3.3. Contact Angle of TbTaxOy - 19 -
3.3.4. Depth Profile of TbTaxOy - 20 -
3.4. Sensing characteristics of EIS structure - 20 -
3.4.1. Sensitivity of sensing membrane - 20 -
3.4.2. Drift of sensing membrane - 22 -
3.4.3. Hysteresis of sensing membrane - 23 -
Chapter 4 - 38 -
Physical and Electrical Properties of YbTaxOy/Si EIS structure - 38 -
4.1. Material - 38 -
4.2. The fabrication process of EIS sensor - 39 -
4.3. Physical Properties of sensing membrane - 40 -
4.3.1. XRD of YbTaxOy film analysis - 40 -
4.3.2. AFM of YbTaxOy film analysis - 40 -
4.3.3. Contact Angle of YbTaxOy - 41 -
4.3.4. Depth Profile of YbTaxOy - 42 -
4.4. Sensing characteristics of EIS structure - 42 -
4.4.1. Sensitivity of sensing membrane - 42 -
4.4.2. Drift of sensing membrane - 44 -
4.4.3. Hysteresis of sensing membrane - 45 -
Chapter 5 - 58 -
TbTaxOy/Si and TbTaxOy/Si EIS structure for biosensor applications - 58 -
5.1. Introduction - 58 -
5.2. Biosensor for EIS base glucose biosensor - 59 -
5.3. Experiment - 60 -
5.3.1. Regents - 60 -
5.3.2. Agarose - 60 -
5.3.3. Enzyme immobilization - 61 -
5.4.1. TbTaxOy EIS based glucose biosensor - 61 -
5.4.2. YbTaxOy EIS based glucose biosensor - 62 -
Chapter 6 - 71 -
Conclusions and Future Works - 71 -
6.1. Conclusions - 71 -
6.2. Future works - 72 -
Reference - 73 -


Fig. 1- 1 The picture shows the Schematic cross-section of the ISFET. - 5 -
Fig. 1- 2 Comparison of EIS and ISFET structures. - 5 -

Fig. 2- 1 Basic and multi-phase diagram of EIS structure. - 13 -
Fig. 2- 2 Typical C-V curves for electrolyte-SiO2-Si EIS structure. Silicon dioxide thickness is 560Å on a (100) 10Ω-cm p-type. - 13 -
Fig. 2- 3 Schematic representation of the site binding model. - 14 -
Fig. 2- 4 Experimental results of the surface potential ( ) on the SiO2 surface, using the theoretical parameters 〖pH〗_pzc=2.2, β=0.14, pK_a=5.7, pK_b=1.3, Ns=5×〖10〗^14 〖cm〗^2 and C_DL=20 μF/〖cm〗^2[10]. - 14 -
Fig. 2- 5 Experimental results of the threshold voltage variation of the Al2O3 gate ISFET, using the theoretical parameters 〖pH〗_pzc=8, β=4.8, pK_a=10, pK_b=-6, Ns=8×〖10〗^14 〖cm〗^2 and C_DL=20 μF/〖cm〗^2[10]. - 15 -

Fig. 3- 1 EIS structure with TbTaxOy sensing membrane. - 25 -
Fig. 3- 2 Flow chart of TbTaxOy EIS process. - 26 -
Fig. 3- 3 Photo of EIS device. - 27 -
Fig. 3- 4 XRD analysis of TbTaxOy films with RF sputter 120:80 W and different annealing temperatures - 27 -
Fig. 3- 5 XRD analysis of TbTaxOy films with RF sputter 120:120 W and different annealing temperatures - 28 -
Fig. 3- 6 XRD analysis of TbTaxOy films with RF sputter 120:160 W and different annealing temperatures - 28 -
Fig. 3- 7 3x3μm AFM three domain image of TbTaxOy 120:120 film with 900°С RTA(Rrms = 0.817 nm). - 29 -
Fig. 3- 8 Surface roughness of TbTaxOy sensing membrane with different RTA conditions. - 29 -
Fig. 3- 9 The contact angle θ_C. - 30 -
Fig. 3- 10 Contact angle of TbTaxOy 120:80 and RTA annealing temperature at 700°C. - 31 -
Fig. 3- 11 The depth profile of TbTaxOy 120:80 - 32 -
Fig. 3- 12 The depth profile of TbTaxOy 120:120 - 33 -
Fig. 3- 13 The depth profile of TbTaxOy 120:160 - 33 -
Fig. 3- 14 Photo of measuring C-V curve in pH6 buffer solution. - 34 -
Fig. 3- 15 C-V curves of TbTaxOy 120:120 EIS RTA at 900°C for all standard pH buffer solution - 34 -
Fig. 3- 16 Extracted response voltages for varied pH with fitting the sensitivity and linearity of TbTaxOy 120:120 and anneal with 900°C - 35 -
Fig. 3- 17 Drift rates of TbTaxOy 120:120 layer after RTA at different temperatures - 36 -
Fig. 3- 18 Hysteresis voltages of TbTaxOy 120:120 on various RTA temperatures. - 37 -


Fig. 4- 1 EIS structure with YbTaxOy sensing membrane. - 46 -
Fig. 4- 2 Flow chart of YbTaxOy EIS process. - 47 -
Fig. 4- 3 XRD analysis of YbTaxOy films with RF sputter 120:80 W and different annealing temperatures - 48 -
Fig. 4- 4 XRD analysis of YbTaxOy films with RF sputter 120:120 W and different annealing temperatures - 48 -
Fig. 4- 5 XRD analysis of YbTaxOy films with RF sputter 120:160 W and different annealing temperatures - 49 -
Fig. 4- 6 3x3μm AFM three domain image of YbTaxOy 120:160 film with 900°С RTA(Rrms = 0.727 nm) - 49 -
Fig. 4- 7 Surface roughness of YbTaxOy sensing membrane with different RTA conditions - 50 -
Fig. 4- 8 The contact angle θ_C. - 51 -
Fig. 4- 9 Contact angle of YbTaxOy 120:80 and RTA annealing temperature at 700°C. - 51 -
Fig. 4- 10 The depth profile of YbTaxOy 120:80 - 53 -
Fig. 4- 11 The depth profile of YbTaxOy 120:120 - 53 -
Fig. 4- 12 The depth profile of YbTaxOy 120:160 - 54 -
Fig. 4- 13 C-V curves of YbTaxOy 120:160 EIS RTA at 900°C for all standard pH buffer solution - 54 -
Fig. 4- 14 Extracted response voltages for varied pH with fitting the sensitivity and linearity of YbTaxOy 120:160 and anneal with 900°C - 55 -
Fig. 4- 15 Drift rates of YbTaxOy 120:160 layer after RTA at different temperatures - 56 -
Fig. 4- 16 Hysteresis voltages of YbTaxOy 120:120 on various RTA temperatures. - 57 -

Fig. 5- 1 The C-V curves of TbTaxOy/Si-EIS 120:80 structure for different glucose concentration annealed at 900˚C. - 65 -
Fig. 5- 2 Sensitivity and linearity of TbTaxOy/Si-EIS 120:160 structure for different glucose concentration annealed at 900˚C. - 65 -
Fig. 5- 3 The C-V curves of TbTaxOy/Si-EIS 120:120 structure for different glucose concentration annealed at 900˚C. - 66 -
Fig. 5- 4 Sensitivity and linearity of TbTaxOy/Si-EIS 120:120 structure for different glucose concentration annealed at 900˚C. - 66 -
Fig. 5- 5 The C-V curves of TbTaxOy/Si-EIS 120:160 structure for different glucose concentration annealed at 700˚C. - 67 -
Fig. 5- 6 Sensitivity and linearity of TbTaxOy/Si-EIS 120:160 structure for different glucose concentration annealed at 700˚C. - 67 -
Fig. 5- 7 The C-V curves of YbTaxOy/Si-EIS 120:80 structure for different glucose concentration annealed at 900˚C. - 68 -
Fig. 5- 8 Sensitivity and linearity of YbTaxOy/Si-EIS 120:80 structure for different glucose concentration annealed at 900˚C. - 68 -
Fig. 5- 9 The C-V curves of YbTaxOy/Si-EIS 120:120 structure for different glucose concentration annealed at 700˚C. - 69 -
Fig. 5- 10 Sensitivity and linearity of YbTaxOy/Si-EIS 120:120 structure for different glucose concentration annealed at 700˚C. - 69 -
Fig. 5- 11 The C-V curves of YbTaxOy/Si-EIS 120:160 structure for different glucose concentration annealed at 900˚C. - 70 -
Fig. 5- 12 Sensitivity and linearity of YbTaxOy/Si-EIS 120:160 structure for different glucose concentration annealed at 900˚C. - 70 -


[1] P. Bergveld, “Development of an ion-sensitive solid state device for neurophysiological measurement,” IEEE Trans. Biomed. Eng., vol. 17 , pp. 70–71, 1970.
[2] P. Bergveld, “Development, operation and application of the ion sensitive field effect transistor as a tool fro electrophysiology,” IEEE Trans. Biomed. Eng., BME-19, pp. 342, 1972.
[3] D. E. Yates, S. Levine and T. W. Healy, “Site-binding model of the electrical double layer at the oxide/water interface,” J. Chem. Soc., Faraday Trans., 70, pp. 1807, 1974.
[4] W. M. Siu and R. S. C. Cobbold, “Basic properties of the electrolyte-SiO2-Si system: Physical and theoretical aspects,” IEEE Trans. Electron Devices, ED-26, pp. 1805, 1979.
[5] L. Bousse, “The chemical sensitivity of electrolyte/insulator/ semiconductor structures,” Ph.D. Thesis, Enschede, 1982.
[6] P. Bergveld, “Development of an ion-sensitive solid state device for neurophysiological measurement,” IEEE Trans. Biomed. Eng. BME-21 (1974) 485–487.
[7] S. Nakamoto, N. Ito, T. Kuriyama, J. Kimura, “A lift-off method for patterning enzyme-immobilized membranes in multibiosensors,” Sens. Actuators 1 13 (1988) 165–172.
[8] S. Jamasb, S. Collins, R.L. Smith, “A physical model for drift in pH ISFETs,” Sens. Actuators, B 49 (1998) 146–155.
[9] Hung-Kwei Liao, Jung-Chuan Chou, Wen-Yaw Chung, Tai-Ping Sun and Shen-Kan Hsiung, “The influence of isothermal annealing on tin oxide thin film for pH-ISFET sensor,” Sensors and Actuators B, vol. 65, pp. 23-25, 2000.
[10] A.S. Poghossian, “The super-nernstian pH sensitivity of Ta2O5 gate ISFETs,” Sensors and Actuators B, pp. 367-370, 1992.
[11] L. Bousse, H.H. Van Den Vlekkert and +N.F. De Rooij, “Hysteresis in Al2O3 gate ISFETs,” Sensors and Actuators B, vol. Ⅱ, pp. 103-110, 1990.
[10] Y. H. Wu, M. Y. Yang, A. Chin, W. T. Chen and C. M. Kwei. IEEE Electron. Device Lett., Vol. 21, pp. 241, 2000.
[11] J. Y. Oh, H. J. Jang, W. J. Cho, M. Saif Islam, “Highly sensitive electrolyte-insulator-semiconductor pH sensors enabled by silicon nanowires with Al2O3/SiO2 sensing membrane, “Sens. Actuators, B, vol. 171-172. pp. 238-243, 2012.
[12] H. V. D. Vlekkert, L. Bousse and N. D. Rooij, “The temperature dependence of the surface potential at the Al2O3/electrolyte interface,” J. Of Colloid and Interface Science, vol. 122, pp. 336-345, 1988.
[13] A. Garde, J. Alderman and W. Lane, “Development of a pH-sensitive ISFET suitable for fabrication in a volume production environment,” Sensors and Actuators B, vol. 26-27, pp. 341-344, 1995.
[14] J.L. Diot, J. Joseph, J.R. Martin and P. Clechet, “pH dependence of the Si/SiO2 interface state density for EOS systems,” J. Electroanal. Chem., vol. 193, pp. 75-88, 1985.
[15] P. Bergveled and A. Sibbald, “Analytical and biomedical applications of ion-sensitive field-effect transistors,” Elsevier Science Publishing Company Inc., New York, 1988.
[16] T. M. Pan, C. W. Wang, S. Mondal, Y. H. Chang, “Effect of Titanium Content on the Sensing and Impedance Characteristics of High‑κ TbTixOy Electrolyte−Insulator− Semiconductor pH Sensors, ”J. Phys. Chem., vol 118. pp 4501-4508, 2014.
[17] P. C. Yao, J. L. Chiang, M. C. Lee,” Application of solegel TiO2 film for an extended-gate H+ ion-sensitive field-effect transistor,” Solid State Sci., vol 28. pp 47-54, 2014.
[18] T. M. Pan, C. W. Lin, “Structural and Sensing Characteristics of Dy2O3 and Dy2TiO5 Electrolyte-Insulator-Semiconductor pH Sensors, ”J. Phys. Chem., vol 114. pp 17914-17919, 2010.
[19] L.B. Chang, H.H.Ko,Y.L. Lee, C.S. Lai, C.Y.Wang, “The electrical and pH sensitive characteristics of thermal Gd2O3/SiO2-stacked oxide capacitors,” J. Electrochem. Soc., vol. 153, pp. 330-332, 2006.
[20] T. M. Pan, P. Y. Liao, K. Y. Chang, Lifeng Chi, “Structural and sensing characteristics of Gd2Ti2O7, Er2TiO5 and Lu2Ti2O7 sensing membrane electrolyte-insulator semiconductor for bio-sensing applications,” Electrochim. Acta, vol. 89, no. 1, pp. 798-806, 2013.
[21] T. M. Pan, M. D. Huang, C. W. Lin, M. H. Wu, “Development of high-k HoTiO3 sensing membrane for pH detection and glucose biosensor,” Sensors and Actuators B, Vol. 144, pp.139-145, 2010.
[22] Y. H. Wu, M. Y. Yang, A. Chin, W. T. Chen and C. M. Kwei, “Electrical characteristics of high quality La2O3 gate dielectric with equivalent oxide thickness of 5 angstrom,” IEEE Electron. Device Lett., vol. 21, pp. 341-343, 2000.
[23] J. Kwo, M. Hong, A. R. Kortan, K. T. Queeney, Y. J. Chabal, J. P. Mannaerts, T. Boone, J. J. Krajewski, A. M. Sergent and J. M. Rosamilia, “High ε gate dielectrics Gd2O3 and Y2O3 for silicon,” Appl. Phys. Lett., vol. 77, pp. 130-132, 2000.
[24] S. M. SZE, Physics of Semiconductor Devices, 2nd Edition, Central Book Company, Taipei, Taiwan, 1985.
[25] E. H. Nicollian and J. R. Brews, MOS (Metal Oxide Semiconductor) Physics and Technology, John Wiley &; Sons, Singapore.
[26] L. K. Meixner and S. Koch, “Simulation of ISFET operation based on the site-binding model,” Sensors and Actuators B, vol. 6, pp. 315-318, 1992.
[27] H. K. Liao, J. C. Chou, W. Y. Chung, T. P. Sun and S. K. Hsiung, “The influence of isothermal annealing on tin oxide thin film for pH-ISFET sensor”, Sensors and Actuators, B 65, pp. 23-25, 2000.
[28] S. Caras, J. Janata, “Field effect transistors sensitive to penicillin,” Anal. Chem., vol. 52, pp. 1935–1938, 1980.
[29] Y. Miyahara, F. Matsu, T. Moriizumi, H. Matsuoka, I. Karube, S. Suzuki, Anal. Chem. Symposia Ser., vol. 17, pp. 501, 1983.
[30] A. Ahmadalinezhad, G. Wu, W. Keeler, A. Chen, “Fabrication and electrochemical study of carbon modified TiO2 nanowires, “Electrochem. Commun., vol 49. pp 25-29, 2014.
[31] S.V. Dzyadevych, A.P. Soldatkin, A.V. El’skaya, C. Martelet, N. Jaffrezic-Renault, “Enzyme biosensors based on ion-selective field-effect transistors,” Anal. Chem., vol. 568, pp. 248-258, 2006.
[32] J.F. Kennedy, J.M.S. Cabral, in: H.J. Rehm, G. Reed (Eds.), Biotechnology, 7a, VCH Publishers, Germany, pp. 349–404, 1987.
[33] J. H. T. Luong, A. Mulchandani, G.G. Guilbault, “Developments and applications of biosensors,” Trends Biotechnol., vol. 6, pp. 310–316, 1988.
[34] T. Togawa, T. Tamura, P.A. Oberg, “Biomedical Transducers and Instruments,” CRC Press, New York, 1997.
[35] T. M. Pan, C. W. Wang, Y. S. Huang, W. H. Weng, S. T. Pangc, “Effect of Postdeposition Annealing on the Structural and Sensing Characteristics of Tb2O3 and Tb2Ti2O7 Sensing Films for Electrolyte-Insulator-Semiconductor pH Sensors,” J. Electrochem. Soc., vol. 162, pp B83-B88, 2015.
[36] T. M. Pan, C. H. Chen, C. D. Lee, “Yb2O3 Thin Films as a Sensing Membrane for pH-ISFET Application,” J. Electrochem. Soc., vol 156. pp J108-J111, 2009.
[37] S. Libertino, S. Conoci, A. Scandurra, C. Spinell “Biosensor integration on Si-based devices: Feasibility studies and examples, ” Sens. Actuators, B, vol 179. pp 240-251, 2013.
[38] M. Bäcker, D. Rakowski, A. Poghossian, M. Biselli, P. Wagner, M. J. Schöninga, “Chip-based amperometric enzyme sensor system for monitoring of bioprocesses by flow-injection analysis, “J. Biotechnol., vol 163. pp 371-376, 2013.
[39] M. H. Wu, H. W. Yang, M. Y. Hua, Y. B. Peng, T. M. Pan, ” High-κ GdTixOy sensing membrane-based electrolyte–insulator–semiconductor with magnetic nanoparticles as enzyme carriers for protein contamination-free glucose biosensing, “Biosens. Bioelectron., vol 47. pp 99-105, 2013.
[40] Y. H. Lin, S. H. Wang, M. H. Wu, T. M. Pan, C. S. Lai, J. D Luo, C. C. Chiou, “Integrating solid-state sensor and microfluidic devices for glucose, urea and creatinine detection based on enzyme-carrying alginate microbeads, “Biosens. Bioelectron., vol 43. pp 328-335, 2013.
[41] K. A. Yusof, N. I. M. Noh, S. H. Herman, A. Z. Abdullah, M. Zolkapli, W. F. H. Abdullah, "pH sensing characteristics of silicon nitride thin film and silicon nitride-based ISFET sensor," Control and System Graduate Research Colloquium (ICSGRC), 2013 IEEE 4th , vol., no., pp.132,135, 19-20 Aug. 2013.
[42] N. Atar, T. Eren, M. L. Yola, S. Wang, “A sensitive molecular imprinted surface plasmon resonance nanosensor for selective determination of trace triclosan in wastewater, “Sens. Actuators, B, vol. 126. pp. 638-644, 2015.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊