跳到主要內容

臺灣博碩士論文加值系統

(100.28.227.63) 您好!臺灣時間:2024/06/16 21:40
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:吳瑜瑄
研究生(外文):Yu Hsuan Wu
論文名稱:整合微流體聚合酶鏈鎖反應及快速側向流試紙應用於結核分枝桿菌檢測
論文名稱(外文):Integration of Microfluidic Polymerase Chain Reaction and Rapid Lateral Flow Strip for Mycobacterium Tuberculosis Detection
指導教授:林彥亨林彥亨引用關係
指導教授(外文):Y. H. Lin
學位類別:碩士
校院名稱:長庚大學
系所名稱:電子工程學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2015
畢業學年度:103
論文頁數:74
中文關鍵詞:微流體晶片聚合酶連鎖反應側向流檢測
外文關鍵詞:Microfluidic chipPolymerase Chain ReactionLateral flow detection
相關次數:
  • 被引用被引用:0
  • 點閱點閱:186
  • 評分評分:
  • 下載下載:16
  • 收藏至我的研究室書目清單書目收藏:0
指導教授推薦書
口試委員會審定書
誌謝 -iii-
中文摘要 -iv-
Abstract -v-
目錄 -vi-
圖目錄 -ix-
表目錄 -xii-
第一章 緒論 - 1 -
1.1 微機電系統簡介 - 1 -
1.2 生物晶片簡介 - 2 -
1.3 結核病 - 3 -
1.4 免疫層析檢測的應用 - 4 -
1.5 MICRO-PCR 晶片 - 7 -
1.6研究動機與目的 - 10 -
第二章 理論 - 11 -
2.1 ICT檢測方式 - 11 -
2.2 ICT 偵測結核菌的原理 - 16 -
第三章 材料與方法 - 19 -
3.1晶片設計 - 19 -
3.2 白金感測器與溫度計製作 - 22 -
3.2.1製程 - 22 -
3.2.2 白金溫度感測器之燒結處理 - 25 -
3.3樣品備製 - 26 -
3.3.1前置處理內容 - 26 -
3.3.2進晶片前溶液配置 - 26 -
3.4操作流程與實驗架設 - 29 -
3.4.1流體控制 - 30 -
3.4.2溫度控制 - 33 -
第四章 結果與討論 - 39 -
4.1注射幫浦精密性的評估 - 39 -
4.1.1 注射幫浦的誤差 - 39 -
4.1.2 改善注射幫浦的誤差 - 42 -
4.2微型流道表面疏水處理 - 44 -
4.3 PT加熱感測器 - 48 -
4.3.1 Sintering處理後的效果 - 48 -
4.3.2 Pt感測器之溫度關係圖 - 50 -
4.4 ICT試紙測試 - 54 -
第五章 未來展望 - 58 -
參考文獻 - 59 -


圖目錄
圖 1 利用 ICT 檢測人類乳突病毒之檢測原理 [17]......................... - 6 -
圖 2 反轉錄 PCR 後端檢測利用 ICT 檢測 [16] ............................. - 6 -
圖 3 (A)微流道設計圖;(B)連續流動式 PCR 示意圖。[19]........... - 9 -
圖 4 (A)(B)晶片爆炸視圖與溫度配置圖; (C)晶片俯視圖,提供 20
個熱循環。[20]..................................................................................... - 9 -
圖 5 固定式晶片示意圖。[21]......................................................... - 10 -
圖 6 ICT 試紙結構[22].......................................................................- 11 -
圖 7 三明治免疫分析原理[23]......................................................... - 14 -
圖 8 競爭型免疫分析原理[23]......................................................... - 15 -
圖 9 ICT 檢測結核菌原理流程圖.................................................... - 16 -
圖 10 PCR principle[25]..................................................................... - 18 -
圖 11 晶片設計.................................................................................. - 19 -
圖 12 (a)光罩設計;(b)做完黃光製程後的實品照; (c)實品照中央局
部放大。 ............................................................................................. - 24 -
圖 13 系統設立。 ............................................................................. - 29 -
圖 14 利用 syringe pump 驅動流體示意圖。 ................................. - 32 -
圖 15 加工完成之微加熱晶片。 ..................................................... - 34 -
圖 16 控制加熱器模組之電路圖。.................................................. - 35 -
圖 17 注射幫浦設定推 20μL,再推 20μL,紀錄第二次推的(紅色),
回抽 20μL 紀錄下來(R, reverse, 藍色),再抽 20μL(紅色)同時紀錄下來,
重複 10 次示意圖。 ........................................................................... - 41 -
圖 18 紀錄圖 17 中的第二次作用體積(紅色箭頭)。 .................... - 41 -
圖 19 紀錄圖 17 中的轉折處的作用體積(藍色箭頭)。 ................. - 42 -
圖 20 利用體積 1000μL 的針筒塗矽油前與塗矽油後,系統改善的程
度。N=10。 ........................................................................................ - 44 -
圖 21 疏水劑對於微流管道內改質效果 ......................................... - 47 -
圖 22 經過疏水劑與否之通入藍色墨水之比較圖......................... - 47 -
圖 23 Sintering 前後對照圖。........................................................... - 49 -
圖 24 利用 250℃,1 小時 Sintering 處理後,電阻值改善圖。N=37。
.............................................................................................................. - 49 -
圖 25 利用電源供應器固定電壓,改變電流,量測溫度變化。. - 51 -
圖 26 微加熱器從室溫上升到工作溫度所需時間圖。................. - 52 -
圖 27 微加熱器提供溫定熱能時,不同溫度的液體通過加熱器表面的
反應情況。 ......................................................................................... - 53 -
圖 28 三區微型加熱晶片溫度分佈圖。白色虛線區域是微流道晶片
的反應區。 ......................................................................................... - 54 -
圖 29 疏水劑對 PCR 的影響(M:Marker、檢體#923、添加 1%疏水劑、
添加 5%疏水劑、添加 10%疏水劑)。............................................. - 56 -
圖 30 使用檢體#990 測試晶片是否可以提供足夠量給 ICT 檢測。 ...-
56 -


表目錄
表 1 PCR 機器與晶片時間比較圖…………………………………..57


[1] A. J. G. Hey and R. P. Feynman, Feynman and computation : exploring the limits of computers. Cambridge, Mass.: Westview Press/Perseus Books, 2002.
[2] S. Badilescu and M. Packirisamy, BioMEMS : science and engineering perspectives. Boca Raton: CRC Press, 2011.
[3] C. G. Keller, Microfabricated high aspect ratio silicon flexures : HEXSIL, RIE, and KOH etched design and fabrication. El Cerrito, Calif.: MEMS Precision Instruments, 1998.
[4] W. Wang and S. A. Soper, Bio-MEMS : technologies and applications. Boca Raton: CRC/Taylor &; Francis, 2007.
[5] K. Cockerham, S. Aro, W. Liu, O. Pantchenko, A. Olmos, M. Oehlberg, et al., "Application of MEMS technology and engineering in medicine: a new paradigm for facial muscle reanimation," Expert Rev Med Devices, vol. 5, pp. 371-81, May 2008.
[6] S. E. Lyshevski, MEMS and NEMS : systems, devices, and structures. Boca Raton, Fla.: CRC Press, 2002.
[7] P. N. Floriano, Microchip-based assay systems : methods and applications. Totowa, N.J.: Humana Press, 2007.
[8] 衛. 疾病管制署, "http://www.cdc.gov.tw/diseaseinfo.aspx?treeid=8d54c504e820735b&;nowtreeid=dec84a2f0c6fac5b&;tid=BAB48CF8772C3B05."
[9] P. C. Soo, Y. T. Horng, P. R. Hsueh, B. J. Shen, J. Y. Wang, H. H. Tu, et al., "Direct and simultaneous identification of Mycobacterium tuberculosis complex (MTBC) and Mycobacterium tuberculosis (MTB) by rapid multiplex nested PCR-ICT assay," J Microbiol Methods, vol. 66, pp. 440-8, Sep 2006.
[10] H. L. Smits, T. H. Abdoel, J. Solera, E. Clavijo, and R. Diaz, "Immunochromatographic Brucella-specific immunoglobulin M and G lateral flow assays for rapid serodiagnosis of human brucellosis," Clinical and Diagnostic Laboratory Immunology, vol. 10, pp. 1141-1146, Nov 2003.
[11] C. Liu, Q. Jia, C. Yang, R. Qiao, L. Jing, L. Wang, et al., "Lateral flow immunochromatographic assay for sensitive pesticide detection by using Fe3O4 nanoparticle aggregates as color reagents," Anal Chem, vol. 83, pp. 6778-84, Sep 1 2011.
[12] X. J. Wang and W. B. Zhan, "Development of an immunochromatographic test to detect White Spot Syndrome Virus of shrimp," Aquaculture, vol. 255, pp. 196-200, May 31 2006.
[13] T. S. Vijayakumar, S. David, K. Selvaraj, T. Viswanathan, R. Kannangai, and G. Sridharan, "Performance of a rapid immunochromatographic screening test for detection of antibodies to human immunodeficiency virus type 1 (HIV-1) and HIV-2: experience at a tertiary care hospital in South India," J Clin Microbiol, vol. 43, pp. 4194-6, Aug 2005.
[14] D. W. Vaughn, A. Nisalak, S. Kalayanarooj, T. Solomon, N. M. Dung, A. Cuzzubbo, et al., "Evaluation of a rapid immunochromatographic test for diagnosis of dengue virus infection," J Clin Microbiol, vol. 36, pp. 234-8, Jan 1998.
[15] K. E. Opheim, B. E. Statland, S. A. Tillson, and D. J. Litman, "Calibration, quality control, and stability of a quantitative enzyme immunochromatographic method for therapeutic drug monitoring," Ther Drug Monit, vol. 9, pp. 190-6, Jun 1987.
[16] N. Nagatani, K. Yamanaka, H. Ushijima, R. Koketsu, T. Sasaki, K. Ikuta, et al., "Detection of influenza virus using a lateral flow immunoassay for amplified DNA by a microfluidic RT-PCR chip," Analyst, vol. 137, pp. 3422-3426, 2012.
[17] Y. B. Kuo, Y. S. Li, and E. C. Chan, "Rapid identification of HPV 16 and 18 by multiplex nested PCR-immunochromatographic test," J Virol Methods, vol. 212, pp. 8-11, Feb 2015.
[18] K. B. Mullis, F. o. Ferré, and R. Gibbs, The Polymerase chain reaction. Boston: Birkhäuser, 1994.
[19] M. U. Kopp, A. J. de Mello, and A. Manz, "Chemical amplification: Continuous-flow PCR on a chip," Science, vol. 280, pp. 1046-1048, May 15 1998.
[20] P. Gascoyne, J. Satayavivad, and M. Ruchirawat, "Microfluidic approaches to malaria detection," Acta Trop, vol. 89, pp. 357-69, Feb 2004.
[21] J. H. Daniel, S. Iqbal, R. B. Millington, D. F. Moore, C. R. Lowe, D. L. Leslie, et al., "Silicon microchambers for DNA amplification," Sensors and Actuators a-Physical, vol. 71, pp. 81-88, Nov 1 1998.
[22] E. Petryayeva and W. R. Algar, "Toward point-of-care diagnostics with consumer electronic devices: the expanding role of nanoparticles," Rsc Advances, vol. 5, pp. 22256-22282, 2015.
[23] 劉永銓;熊光濱, "The use of matrix in dye-immunochromatographic application," 2003.
[24] 許峰碩, "奈米碳黑在免疫層析檢測上的應用," 2002.
[25] http://upload.wikimedia.org/wikipedia/commons/7/74/PCR_basic_principle1.jpg.
[26] C. Luo, F. Meng, and A. Francis, "Fabrication and application of silicon-reinforced PDMS masters," Microelectronics Journal, vol. 37, pp. 1036-1046, Oct 2006.
[27] W. L. Cheng, S. Yuan, and J. L. Song, "Studies on preparation and adaptive thermal control performance of novel PTC (positive temperature coefficient) materials with controllable Curie temperatures," Energy, vol. 74, pp. 447-454, Sep 1 2014.
[28] 謝宗閔, "Micro Thermocyclers for Nucleic Acid Amplification with High Thermal Uniformity," 2008.
[29] S. H. Montenegro, R. H. Gilman, P. Sheen, R. Cama, L. Caviedes, T. Hopper, et al., "Improved detection of Mycobacterium tuberculosis in Peruvian children by use of a heminested IS6110 polymerase chain reaction assay," Clin Infect Dis, vol. 36, pp. 16-23, Jan 1 2003.
[30] U. Reischl, N. Lehn, H. Wolf, and L. Naumann, "Clinical evaluation of the automated COBAS AMPLICOR MTB assay for testing respiratory and nonrespiratory specimens," J Clin Microbiol, vol. 36, pp. 2853-60, Oct 1998.
[31] A. Ali and S. Majhi, "PID controller tuning for integrating processes," ISA Trans, vol. 49, pp. 70-8, Jan 2010.
[32] S. Bhattacharya, A. Datta, J. M. Berg, and S. Gangopadhyay, "Studies on surface wettability of poly(dimethyl) siloxane (PDMS) and glass under oxygen-plasma treatment and correlation with bond strength," Journal of Microelectromechanical Systems, vol. 14, pp. 590-597, Jun 2005.
[33] K.-C. K. Pin-Chuan Chen⇑, "The influence of hydrophobic surface to the manipulation of a reagent plug in a gas–liquid microsystem," Microelectronic Engineering, 2014.
[34] F. Sassa, J. Fukuda, and H. Suzuki, "Microprocessing of liquid plugs for bio/chemical analyses," Anal Chem, vol. 80, pp. 6206-13, Aug 15 2008.
[35] P. Nath, T. S. Maity, F. Pettersson, J. Resnick, Y. Kunde, N. Kraus, et al., "Polymerase chain reaction compatibility of adhesive transfer tape based microfluidic platforms," Microsystem Technologies-Micro-and Nanosystems-Information Storage and Processing Systems, vol. 20, pp. 1187-1193, Jun 2014.
[36] L. Zhu, C. C. Zhu, G. Q. Deng, L. Zhang, S. M. Zhao, J. H. Lin, et al., "Rapid identification of H5 avian influenza virus in chicken throat swab specimens using microfluidic real-time RT-PCR," Analytical Methods, vol. 6, pp. 2628-2632, 2014.
[37] M. W. C.C. Huang, W. P. Liu, "Temperature Uniformity and DNA Amplification Eifficiency in Micromachined Glass PCR chip," vol. 1, 2005, 2005.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top