跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.170) 您好!臺灣時間:2025/01/13 15:02
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:葉致昌
研究生(外文):Chih Chang Yeh
論文名稱:退化性關節炎致病機轉及可能的治療策略
論文名稱(外文):The pathological mechanism and possible therapeutic strategy in osteoarthritis
指導教授:陳政男陳政男引用關係石宗憲石宗憲引用關係
指導教授(外文):C. N. ChenC. S. Shi
學位類別:博士
校院名稱:長庚大學
系所名稱:臨床醫學研究所
學門:醫藥衛生學門
學類:醫學學類
論文種類:學術論文
論文出版年:2015
畢業學年度:103
論文頁數:130
中文關鍵詞:退化性關節炎流體剪力巨噬細胞薑黃素微脂體單磷酸腺苷活化蛋白激酶骨質代謝
外文關鍵詞:osteoarthritisshear stressmacrophageCurcuminoidliposomeAMPKbone turnover
相關次數:
  • 被引用被引用:1
  • 點閱點閱:1176
  • 評分評分:
  • 下載下載:192
  • 收藏至我的研究室書目清單書目收藏:0
退化性關節炎是成人中最常見的關節炎疾病,主要的臨床症狀是關節疼痛、變形、活動度受限。其X光上的特徵包括由於軟骨的磨損、基底骨質硬化,而造成關節腔狹窄及骨刺的增生。目前已知形成退化性關節炎的危險因子包括老化、關節受傷或過度使用、體重過重等,然而對於其致病機制仍不甚了解,本論文主要目的為探討人類軟骨細胞受巨噬細胞及剪力作用下,urokinase plasminogen activator (uPA)基因表現之分子機制,以及透過對老鼠成骨細胞增生、礦物質化以及蝕骨細胞分化的影響,來評估薑黃素奈米化微脂體對於退化性關節炎之保護效果。
將人類周邊血液巨噬細胞培養後,收集其條件培養液(conditioned medium)。人類軟骨細胞受到巨噬細胞條件培養液刺激後,透過細胞內訊息傳遞途徑JNK/Akt的磷酸化及轉錄因子NF-κB活化,誘導uPA基因表現。利用IL-1ra抑制劑進一步發現條件培養液中之IL-1對於uPA之誘導扮演重要角色。實驗證據顯示低程度剪力作用能經由單磷酸腺苷活化蛋白激酶(AMPK)的活化,有效抑制巨噬細胞條件培養液誘導之軟骨細胞JNK/Akt的磷酸化及轉錄因子NF-κB的活化,並抑制uPA基因表現增加。因而進一步研究單磷酸腺苷活化蛋白激酶對軟骨細胞的保護機轉, 可能對退化性關節炎的治療開一扇門。
此外,薑黃素(curcumin,Cur)與二去甲基薑黃素(bisdemethoxy- curcumin,BDMC) 是由薑黃(Curcuma longa) 所萃取出來的非水溶性多酚類抗發炎化合物,在過去的研究指出具有良好的抗發炎效果,可以應用在退化性關節炎的治療上。為改善薑黃素與二去甲基薑黃素被細胞利用的方式,大豆磷脂質(soybean phosphatidylcholine)用來包覆薑黃素或二去甲基薑黃素製成奈米化微脂體(Cur-Lip和BDMC-Lip)。結果顯示微脂體對Cur 和 BDMC的包覆率約為70%,並且其大小穩定並可被細胞吸收。Cur-Lip和BDMC-Lip兩者皆可抑制巨噬細胞受刺激後發炎因子一氧化氮(nitric oxide;NO)的產生與朝蝕骨細胞的分化。此外與Cur 和 BDMC比較,Cur-Lip和BDMC-Lip的細胞毒性顯著下降。與BDMC-Lip相比, Cur-Lip更可以維持成骨細胞的增生及礦物質化功能。在介白素(Interleukin (IL)-1β)的刺激下,Cur-Lip和BDMC-Lip可以降低成骨細胞的發炎因子的表現並增加成骨細胞抑制分子(Osteoprotegerin;OPG)對NF-κB配位體接受器活化因子(receptor activator for NF-κB ligand;RANKL)的比值,有效減緩骨質的代謝。因此我們研究發現微脂體包覆薑黃素與二去甲基薑黃素兩種藥物可以有效地降低蝕骨細胞活化和維持成骨細胞的功能,達到保護效果延緩退化性關節炎的進程。

Osteoarthritis (OA) is the most common degenerative joint disease in the world. The clinical symptoms are pain, stiffness and deformation of affected joints which are characterized with progressive destruction of articular cartilage, joint space narrowing, subchondral sclerosis and spur formation. Aging, joint trauma, obesity and excessive repetitive loading are the well-known risk factors of OA, but the exact mechanisms of OA remain unclear. The aim of this thesis was to investigate the mechanisms underlying macrophage-induced urokinase plasminogen activator (uPA) expression in human chondrocytes and its modulation by fluid shear stress; and to evaluate the protective effects of curcuminoid-loaded liposomes against bone turnover in a cell-based model of osteoarthritis. This thesis addresses the preparation of peripheral blood-macrophage-conditioned medium (PB-MCM), modeling of shear stress in a parallel plate flow chamber, liposome formulation techniques, cell uptake and bioactivity assays.
Stimulation of human chondrocytes with PB-MCM was found to induce uPA expression. We demonstrated that the JNK/Akt phosphory- lation and NF-κB activation are critical for PB-MCM-induced uPA expression. Blocking assays by using IL-1ra further demonstrated that IL-1β in PB-MCM is the major mediator of uPA expression. PB-MCM-treated chondrocytes subjected to a lower level of shear stress showed inhibition of MCM-induced JNK/Akt phosphorylation, NF-κB activation, and uPA expression. The PB- MCM-induced uPA expression was suppressed by AMP-activated protein kinase (AMPK) agonist. The inhibitor or siRNA for AMPK abolished the shear-mediated inhibition of uPA expression. Therefore, our data support the hypothesis that uPA upregulation stimulated by macrophages may be modurated with low fluid shear stress. AMPK may potentially provide new molecular target or new ‘entry point’ to develop an effective disease-modifying drugs for the treatment of osteoarthritis.
In addition, curcumin (Cur) and bisdemethoxycurcumin (BDMC), extracted from Curcuma longa, are poorly-water-soluble polyphenol compounds that have shown antiinflammatory potential for the treatment of osteoarthritis. To increase cellular uptake of Cur and BDMC in 7F2 mouse osteoblastic cells, soybean phosphatidylcholine (SPC) were used for liposome formulation. There are about 70% entrapment efficiency of Cur and BDMC in the liposomes and the particle sizes are stable after liposome formation. Both Curcuminoid-loaded liposomes can inhibit NO production of macrophage and its osteoclast differential activities. In comparison with free drugs (Cur and BDMC), curcuminoid-loaded liposomes were less cytotoxic, and expressed high cellular uptake of the drugs. Of note is that Cur-Lip can prevent liposome-dependent inhibition of osteoblast differentiation and mineralization, but BDMC-Lip could not. With interleukin (IL)-1β stimulation, curcuminoid-loaded liposomes can successfully down- regulate the expression of inflammatory markers on osteoblasts, and show high osteoprotegerin (OPG)/ Receptor activator of nuclear factor κB ligand (RANKL) ratio to prevent osteoclastogenesis. Our data demonstrated that Cur and BDMC can be successfully encapsulated in liposomes and that can reduce osteoclast activity and maintain osteoblast functions. Therefore, Curcuminoid-loaded liposomes may slow osteoarthritis progression.

目 錄
指導教授推薦書
口試委員會審定書
誌謝……………………………………………………………………...iii
中文摘要………………………………………….……………………..iv
英文摘要……………………………………………………………. .....vi
目錄……………………………………………………………......……..viii
Directory of Figures……………………………...……………..………...xii
Directory of Tables …………………………………….....……..…....…..xiv
Chapter 1 Introduction……………………………………………..1
1.1 Overview of osteoarthritis .. ………….…………………………2
1.2 Pathogenesis of osteoarthritis…..………………………………..4
1.3 Structure of articular cartilage …………………………………..6
1.4 Interaction of Growth factors and proinflammatory Cytokines.…8
1.5 MMP/ ADAMTS/ TIMMP , UPA/ plasmin/ PAI-I…….………11
1.6 Mechanobiology of cartilage………..………………..………….13
1.7 Diverse response to fluid Shear stress on osteoarthritic lesional and non-lesional chondrocytes……………………………...…..16
Chapter 2 Moduration of macrophage-induced urokinase plasminogen activator expression in human chondrocytes under fluid shear stress…………21
2.1 Purpose………………………………………………………….22
2.2 Materials and methods………………………………………….23
2.2.1 Reagents……………………………………………………....23
2.2.2 Culture of human chondrocytes………………………………24
2.2.3 Isolation of peripheral blood monocytes……………………...24
2.2.4 Preparation of peripheral blood monocyte-derived macrophageconditioned medium (PB-MCM)……………………………...25
2.2.5 Shear-stress experiment………………………………………25
2.2.6 Real-time quantitative PCR…………………………………..26
2.2.7 Quantification of uPA expression…………………………….26
2.2.8 Western blot analysis…………………………………………26
2.2.9 Reporter gene constructs, siRNA, transfection, and luciferase assays………………………………………………………….27
2.2.10 Chromatin immunoprecipitation assay (ChIP)……………...27
2.2.11 Transcription factor ELISA assay…………………………...28
2.2.12 Statistical analysis…………………………………………...28
2.3 Results…………………………………………………………..28
2.3.1 Conditioned medium from macrophages induces the upregulation of uPA in human chondrocytes………………...28
2.3.2 PB-MCM-induced uPA expression is mediated by the JNK and Akt signaling pathways…………………………29
2.3.4 NF-κB binding sites are major determinants of the PB-MCM induction of uPA promoter activity………………...30
2.3.5 The JNK and Akt signaling pathways are involved in macrophage- induced uPA promoter activity………………31
2.3.6 IL-1ra inhibits macrophage-induced signaling transduction and uPA expression…………………………....………32
2.3.7 Exposure of human chondrocytes to shear stress of 2 and 5 dyn/cm2 inhibits macrophage-induced uPA expression……33
2.3.8 Effect of AMPK on PB-MCM-induced uPA expression….….33
2.4 Conclusion……………………………………………………34
Chapter 3 Evaluation of the protective effects of curcuminoid- loaded liposomes (Cur-Lip and BDMC-Lip) against bone turnover in a cell-based model of osteoarthritis………………………..35
3.1 Purpose……………………………………………….………….36
3.2 Materials and methods…………………………………………...38
3.2.1 Cell culture and Reagents……………………………………...38
3.2.2 Liposome formulations………………………………………...39
3.2.3 Particle characterization………………………………………..39
3.2.4 Cell viability and Proliferation assay…………………………..40
3.2.5 Entrapment efficiency………………………………………….40
3.2.6 Fluorescence spectroscopy method for intracellular uptake of liposomes………………………………41
3.2.7 Nitrite measurement…………………………………………...42
3.2.8 Osteoclast differentiation assay………………………………..42
3.2.9 Cellular alkaline phosphatase (ALP) activity………………….43
3.2.10 Mineralization of the extracellular matrix…………………....44
3.2.11 Quantitative real-time PCR……………………….…………..44
3.2.12 Statistical analysis…………………………………………….45
3.3 Results………………………………………………………......45
3.3.1 In Vitro Characterization of liposomes……... …………………45
3.3.2 Effect of liposomal formulations on the cell viability, delivery efficiency and NO production…………………………………47
3.3.3 Inhibitory effects of Curcuminoid-loaded liposomes on osteoclast differentiation in RAW264.7 macrophages…………48
3.3.4 Effect of 7F2 osteoblasts by curcuminoid-loaded liposome.…...........49
3.3.5 Curcuminoid-loaded liposome protective osteoblast when stimulated with IL-1β…………………………………………51
3.4 Conclusion……………………………………….…………….52
Chapter 4 Discussion ……………………………………………54
References………………………………………………………………94


Directory of Figures
Fig 1. Induction of urokinase-type PA (uPA) in chondrocytes by peripheral blood-macrophage-conditioned medium (PB-MCM) stimulation.................................68
Fig 2. The JNK and Akt pathways are required for peripheral blood- macrophage-conditioned medium (PB-MCM)-induced urokinase- type PA (uPA) expression............69
Fig 3. The role of nuclear factor-κβ (NF-κβ) in peripheral blood- macrophage-conditioned medium (PB-MCM)-induced urokinase- type PA (uPA) mRNA expression and promoter activity..................................................................71
Fig 4. The JNK and Akt signaling pathways are involved in peripheral blood-macrophage-conditioned medium (PB-MCM)-induced urokinase- type PA (uPA) promoter activity...........................................................................73
Fig 5. Interleukin (IL)-1β is the major factor underlying peripheral blood-macrophage-conditioned medium (PB-MCM)-induced urokinase- type PA (uPA) expression in chondrocytes.......................................................................75
Fig 6. Effects of interleukin (IL)-1ra on peripheral blood- macrophage- conditioned medium (PB-MCM)-induced signaling in chondrocytes..................................76
Fig 7. Exposure of chondrocytes to lower shear stress inhibits peripheral blood-macrophage-conditioned medium (PB-MCM)-induced urokinase-type PA (uPA) expression.....77
Fig 8. Effect of AMPK on peripheral blood-macrophage-conditioned medium (PB-MCM)-induced urokinase-type PA (uPA) expression ..................................79
Fig 9. Particle size of liposome formulations......................................80
Fig 10. The effect of Curcuminoid-loaded liposomes on cell viability...............81
Fig 11. Cell uptake of liposomes on 7F2 osteoblastic cells.........................82
Fig 12. Effects of curcuminoid-loaded liposomes on nitric oxide (NO) production in LPS (500ng/ml) induced RAW264.7 macrophages for 24 hours...........................83
Fig 13. curcuminoid-loaded liposomes (70μM) suppress osteoclastogenesis in 10ng/ml LPS and 50ng/ml RANKL induced RAW264.7 macrophages after 5 days incultivation....….84
Fig 14. Effects of curcuminoid-loaded liposomes (70μM) on osteoblast proliferation, differentiation and mineralization.................................................86
Fig 15. Effects of curcuminoid-loaded liposomes (70μM) on the expression of pro- inflammatory mediators (cyclooxygenase 2; COX-2), metalloproteinase-3 (MMP-3), and OPG/RANKL ratio of 7F2 osteoblastic cells in the presence or absence of 10ng/ml IL-1β stimulation........................................................................89
Fig16. curcuminoid-loaded liposomes (70 µM) induced adipogenesis in 7F2 osteoblastic cells after 7 days of cultivation..................................................91


Directory of Tables
Table 1. Sequences of primers used in real-time PCR experiment.....................92
Table 2. Encapsulation parameters of the liposomal formulations....................93

Abbaszade I, Liu RQ, Yang F, Rosenfeld SA, Ross OH, Link JR, et al. Cloning and characterization of ADAMTS11, an aggrecanase from the ADAMTS family. J Biol Chem 1999;274:23443-50.

Abulencia JP, Gaspard R, Healy ZR, Gaarde WA, Quackenbush J,Konstantopoulos K: Shear-induced cyclooxygenase-2 via a JNK2/c-Jun-dependent pathway regulates prostaglandin receptor expression in chondrocytic cells. J Biol Chem 2003, 278:28388-28394.

Aditya NP, Chimote G, Gunalan K, Banerjee R, Patankar S, Madhusudhan B. Curcuminoids-loaded liposomes in combination with arteether protects against Plasmodium berghei infection in mice. ExpParasitol, 2012; 131: 292-299.

Aggarwal BB, Harikumar KB. Potential therapeutic effects of Cur, the anti inflammatory agent, against neurodegenerative, cardiovascular, pulmonary, metabolic, autoimmune and neoplastic diseases. Int J Biochem Cell Biol. 2009; 41:40-59.

Ahn J, Lee H, Kim S, Ha T. Curcumin-induced suppression of adipogenic ifferentiation is accompanied by activation of Wnt/beta-catenin signaling. Am J Physiol Cell Physiol. 2010; 298(6): C1510-6.

Akhtar N, Haqqi TM: Epigallocatechin-3-gallate suppresses the global interleukin-1β-induced inflammatory response in human chondrocytes. Arthritis Res Ther 2011, 13:R93.

Alaaeddine N, DiBattista JA, Pelletier JP, Cloutier JM, Kiansa K, Dupuis M,Martel-Pelletier J. Osteoarthritic synovial fibroblasts possess an increased level of tumor necrosis factor-receptor 55 (TNF-R55) that mediates biological activation by TNF-alpha. J Rheumatol. 1997 Oct;24(10):1985-94.

Anand P, Kunnumakkara AB, Newman RA, Aggarwal BB. Bioavailability of Cur: problems and promises. Mol Pharm. 2007; 4: 807-818.

Anand P, Nair HB, Sung B, Kunnumakkara AB, Yadav VR, Tekmal RR. Design of Cur-loaded PLGA nanoparticles formulation with enhanced cellular uptake, and increased bioactivity in vitro and superior bioavailability in vivo. Biochem Pharmacol. 2010; 79: 330-338.

Asagiri M, Takayanagi H. The molecular understanding of osteoclast differentiation. Bone. 2007; 40: 251-264.

Altman R, Asch E, Bloch D, Bole G, Borenstein D, Brandt K, et al. Development of criteria for the classification and reporting of osteoarthritis: classification of osteoarthritis of the knee. Arthritis Rheum 1986;29:1039–49.

Arend WP. Interleukin-1 receptor antagonist. Adv Immunol. 1993; 54:167-227.

Bannuru RR, Natov NS, Dasi UR, Schmid CH, McAlindon TE. Therapeutic trajectory following intra-articular hyaluronic acid injection in knee osteoarthritis--meta-analysis. Osteoarthritis Cartilage. 2011 Jun;19(6):611-9.

Bao JP, Chen WP, Feng J, Zhao J, Shi ZL, Huang K, Wu LD: Variation patterns of two degradation enzyme systems in articular cartilage in different stages of osteoarthritis: regulation by dehydroepiandrosterone. Clin Chim Acta 2009, 408:1-7.

Basnet P, Hussain H, Tho I, Skalko-Basnet N. Liposomal delivery system enhances anti-inflammatory properties of curcumin. J Pharm Sci, 2012; 101: 598-609.

Belcaro G, Cesarone MR, Dugall M, et al. Efficacy and safety of Meriva® , a curcumin- phosphatidylcholine complex, during extended administration in osteoarthritis patients. Altern Med Rev. 2010; 15(4): 337-44.

Benito MJ, Veale DJ, FitzGerald O, van den Berg WB, Bresnihan B: Synovial tissue inflammation in early and late osteoarthritis. Ann Rheum Dis 2005,64:1263-1267.

Bennell KL, Hinman RS: A review of the clinical evidence for exercise in osteoarthritis of the hip and knee. J Sci Med Sport 2011, 14:4-9.

Berenbaum F. New horizons and perspectives in the treatment of osteoarthritis. Arthritis Res Ther. 2008;10 Supp l 2:S1.

Bharti AC, Takada Y, Aggarwal BB. Cur (diferuloylmethane) inhibits receptor activator of NF-kappa B ligand-induced NF-kappa B activation in osteoclast precursors and suppresses osteoclastogenesis. J Immunol. 2004; 172, 5940-5947.

Bijlsma JW, Berenbaum F, Lafeber FP. Osteoarthritis: an update with relevance for clinical practice. Lancet. 2011 Jun 18;377(9783):2115-26.

Billinghurst RC, Dahlberg L, Ionescu M, Reiner A, Bourne R,Rorabeck C, et al. Enhanced cleavage of type II collagen by collagenases in osteoarthritic articular cartilage. J Clin Invest 1997;99:1534–45.

Blanco Garcia FJ. Catabolic events in osteoarthritic cartilage. Osteoarthritis Cartilage 1999;7:308–9.

Blom AB, van Lent PL, Holthuysen AE, van der Kraan PM, Roth J, van Rooijen N, van den Berg WB: Synovial lining macrophages mediate osteophyte formation during experimental osteoarthritis. Osteoarthritis Cartilage 2004, 12:27-35.

Bohensky J, Leshinsky S, Srinivas V, Shapiro IM: Chondrocyte autophagy is stimulated by HIF-1 dependent AMPK activation and mTOR suppression. Pediatr Nephrol 2010, 25:633-642.

Bondeson J, Wainwright SD, Lauder S, Amos N, Hughes CE: The role of synovial macrophages and macrophage-produced cytokines in driving aggrecanases, matrix metalloproteinases, and other destructive and inflammatory responses in osteoarthritis. Arthritis Res Ther 2006, 8:R187.

Brandt KD, Dieppe P, Radin EL. Etiopathogenesis of osteoarthritis. Rheum Dis Clin North Am. 2008 Aug;34(3):531-59.

Brandt KD, Radin EL, Dieppe PA, van de Putte L. Yet more evidence that osteoarthritis is not a cartilage disease. Ann Rheum Dis. 2006 Oct; 65(10):1261-4.

Buckwalter JA, Martin JA. Osteoarthritis. Adv Drug Deliv Rev. 2006 May 20;58(2):150-67.

Buschmann MD, Maurer AM, Berger E, et al: Ruthenium hexaam-mine trichloride chemography for aggrecan mapping in cartilage is a sensitive indicator of matrix degradation. J Histochem Cytochem 48:81–88, 2000.

Busso N, Péclat V, So A, Sappino AP: Plasminogen activation in synovial tissues: differences between normal, osteoarthritis, and rheumatoid arthritis joints. Ann Rheum Dis 1997, 56:550-557.

Buttner FH, Hughes CE, Margerie D, Lichte A, Tschesche H,Caterson B, et al. Membrane type 1 matrix metalloproteinase (MT1-MMP) cleaves the recombinant aggrecan substrate rAgg1mut at the ‘aggrecanase’ and the MMP sites: characterization of MT1-MMP catabolic activities on the interglobular domain of aggrecan. Biochem J 1998;333:159–65.

Cantley LC: The phosphoinositide 3-kinase pathway. Science 2002,296:1655-1657.

Capini C, Jaturanpinyo M, Chang HI, Mutalik S, McNally A, Street S. Antigen-specific suppression of inflammatory arthritis using liposomes. J Immunol. 2009; 182: 3556-3565.

Carter DR, Beaupré GS, Wong M, Smith RL, Andriacchi TP, Schurman DJ. The mechanobiology of articular cartilage development and degeneration. Clin OrthopRelat Res. 2004 Oct;(427 Suppl):S69-77.

Carter DR, Wong M: Modelling cartilage mechanobiology. Phil Trans R Soc Lond B Biol Sci 2003, 358:1461-1471.

Carter DR, Beaupré GS, Wong M, Smith RL, Andriacchi TP, Schurman DJ:The mechanobiology of articular cartilage development and degeneration. Clin Orthop Rel Res 2004, 427(Suppl):S69-S77.

Chan WH, Wu HY, Chang WH. Dosage effects of curcumin on cell death types in a human osteoblast cell line. Food ChemToxicol. 2006; 44: 1362-1371.

Chang L, Karin M: Mammalian MAP kinase signalling cascades. Nature 2001, 410:37-40.

Chang SF, Chang CA, Lee DY, Lee PL, Yeh YM, Yeh CR, Cheng CK, Chien S,Chiu JJ: Tumor cell cycle arrest induced by shear stress: roles of integrins and Smad. Proc Natl Acad Sci USA 2008, 105:3927-3932.

Chatzizisis YS, Baker AB, Sukhova GK, Koskinas KC, Papafaklis MI, Beigel R,Jonas M, Coskun AU, Stone BV, Maynard C, Shi GP, Libby P, Feldman CL,Edelman ER, Stone PH: Augmented expression and activity of extracellular matrix-degrading enzymes in regions of low endothelial shear stress colocalize with coronary atheromata with thin fibrous caps in pigs. Circulation 2011, 123:621-630.

Chen TC, Chien SJ, Kuo HC, Huang WS, Sheen JM, Lin TH, Yen CK, Sung ML,Chen CN: High glucose-treated macrophages augment E-selectin expression in endothelial cells. J Biol Chem 2011, 286:25564-25573.

Chen Y, Wu Q, Zhang Z, Yuan L, Liu X, Zhou L. Preparation of curcumin-loaded liposomes and evaluation of their skin permeation and pharmacodynamics. Molecules, 2012; 17: 5972-5987.

Chien S. Role of shear stress direction in endothelial mechano-transduction. Mol Cell Biomech 2008;5:1–8.

Chiu JJ, Chen LJ, Lee CI, Lee PL, Lee DY, Tsai MC, Lin CW, Usami S, Chien S: Mechanisms of induction of endothelial cell E-selectin expression by smooth muscle cells and its inhibition by shear stress. Blood 2007, 110:519-528.

Chou MT, Chang SN, Ke C, Chang HI, Sung ML, Kuo HC, Chen CN: The proliferation and differentiation of placental-derived multipotent cells into smooth muscle cells on fibrillar collagen. Biomaterials 2010, 31: 4367-4375.

Clark IM, Powell LK, Ramsey S, Hazleman BL, Cawston TE. The measurement of collagenase, tissue inhibitor of metalloproteinases (TIMP), and collagenase–TIMP complex in synovial fluids from patients with osteoarthritis and rheumatoid arthritis. Arthritis Rheum 1993;36:372–9.

Clerigues V, Guillen MI, Castejon MA, Gomar F, Mirabet V, Alcaraz MJ. Heme oxygenase-1 mediates protective effects on inflammatory, catabolic and senescence responses induced by interleukin-1β in osteoarthritic osteoblasts. BiochemPharmacol. 2012; 83: 395-405.

Cochran DL. Inflammation and bone loss in periodontal disease. J Periodontol. 2008; 79: 1569-1576.

Collin-Osdoby P. Regulation of vascular calcification by osteoclast regulatory factors RANKL and osteoprotegerin. Circ Res. 2004; 95: 1046-1057.

Cooper LF. Biologic determinants of bone formation for osseointegration: clues for future clinical improvements. J Prosthet Dent. 1998; 80: 439-449.

Cross M, Smith E, Hoy D, Nolte S, Ackerman I, Fransen M, Bridgett L, Williams S, Guillemin F, Hill CL, Laslett LL, Jones G, Cicuttini F, Osborne R, Vos T, Buchbinder R, Woolf A, March L. The global burden of hip and knee osteoarthritis: estimates from the global burden of disease 2010 study. Ann Rheum Dis. 2014 Jul;73(7):1323-30.

Daheshia M, Yao JQ: The interleukin 1β pathway in the pathogenesis of osteoarthritis. J Rheumatol 2008, 35:2306-2312.

Dean DD, Martel-Pelletier J, Pelletier JP, Howell DS, Woessner JF Jr. Evidence for metalloproteinase and metalloproteinase inhibitor imbalance in human osteoarthritic cartilage. J Clin Invest 1989;84:678–85.

Demircan K, Hirohata S, Nishida K, Hatipoglu OF, Oohashi T, Yonezawa T, Apte SS, Ninomiya Y: ADAMTS-9 is synergistically induced by interleukin-1β and tumor necrosis factor α in OUMS-27 chondrosarcoma cells and in human chondrocytes. Arthritis Rheum 2005, 52:1451-1460.

Diascro DD Jr, Vogel RL, Johnson TE, et al. High fatty acid content in rabbit serum is responsible for the differentiation of osteoblasts into adipocyte-like cells. J Bone Miner Res. 1998; 13(1): 96-106.

Dougall WC. Molecular pathways: osteoclast-dependent and osteoclast-independent roles of the RANKL/RANK/OPG pathway in tumorigenesis and metastasis. Clin Cancer Res. 2012; 18: 326-335.

Dreier R, Wallace S, Fuchs S, Bruckner P, Grässel S: Paracrine interactions of chondrocytes and macrophages in cartilage degradation: articular chondrocytes provide factors that activate macrophage-derived pro-gelatinase B (pro-MMP-9). J Cell Sci 2001, 114:3813-3822.

Fosang AJ, Last K, Neame PJ, Murphy G, Knauper V, Tschesche H, et al. Neutrophil collagenase (MMP-8) cleaves at the aggre-canase site E373-A374 in the interglobular domain of cartilage aggrecan. Biochem J 1994;304:347–51.

Felson DT. Clinical practice. Osteoarthritis of the knee. N Engl J Med. 2006 Feb 23;354(8):841-8.

Fisslthaler B, Fleming I: Activation and signaling by the AMP-activated protein kinase in endothelial cells. Circ Res 2009, 105:114-127.

Franzen A, Inerot S, Hejderup SO, et al: Variations in the compo-sition of bovine hip articular cartilage with distance from the ar-ticular surface. Biochem J 195:535–543, 1981.

Funk JL, Oyarzo JN, Frye JB, Chen G, Lantz RC, Jolad SD. Turmeric extracts containing curcuminoids prevent experimental rheumatoid arthritis. J Nat Prod. 2006; 69: 351-355.

Furneri PM, Fresta M, Puglisi G, Tempera G. Ofloxacin-loaded liposomes: in vitro activity and drug accumulation in bacteria. Antimicrob Agents Chemother. 2000; 44(9): 2458-64.

Galovic Rengel R, Barisic K, Pavelic Z, Zanic Grubisic T, Cepelak I, Filipovic-Grcic J. High efficiency entrapment of superoxide dismutase into mucoadhesive chitosan-coated liposomes. Eur J Pharm Sci, 2002; 15: 441-448.

Gasparini G, De Gori M, Paonessa F, Chiefari E, Brunetti A, Galasso O. Functional relationship between high mobility group A1 (HMGA1) protein and insulin-like growth factor-binding protein 3 (IGFBP-3) in human chondrocytes. Arthritis Res Ther. 2012 Oct 4;14(5):R207.

Ge Z, Hu Y, Heng BC, Yang Z, Ouyang H, Lee EH, Cao T. Osteoarthritis and therapy. Arthritis Rheum. 2006; 55:493-500.

Ginaldi L, Di Benedetto MC, De Martinis M. Osteoporosis, inflammation and ageing. Immun Ageing. 2005; 2, 14.

Glansbeek HL, van Beuningen HM, Vitters EL, van der Kraan PM, van den Berg WB. Stimulation of articular cartilage repair in established arthritis by local administration of transforming growth factor-beta into murine knee joints. Lab Invest 1998;78:133–142

Goldring MB. The role of the chondrocyte in osteoarthritis. Arthritis Rheum. 2000; 43:1916-1926.

Goldring MB, Otero M, Tsuchimochi K, Ijiri K, Li Y: Defining the roles of inflammatory and anabolic cytokines in cartilage metabolism. Ann Rheum Dis 2008, 67(Suppl 3):75-82

Grimaud E, Heymann D, Redini F. Recent advances in TGF-β effects on chondrocyte metabolism. Potential therapeutic roles of TGF-β in cartilage disorders. Cytokine Growth Factor Rev 2002;13:241–257.

Guo LY, Cai XF, Lee JJ, et al. Comparison of suppressive effects of demethoxycurcumin and bisdemethoxycurcumin on expressions of inflammatory mediators in vitro and in vivo. Arch Pharm Res. 2008;31(4):490-6.

Gupta SC, Patchva S, Koh W, Aggarwal BB. Discovery of Curcumin, a Component of the Golden Spice, and Its Miraculous Biological Activities, Clin Exp Pharmacol Physiol. 2012; 39(3): 283–299.

Healy ZR, Lee NH, Gao X, Goldring MB, Talalay P, Kensler TW, Konstantopoulos K: Divergent responses of chondrocytes and endothelial cells to shear stress: cross-talk among COX-2, the phase 2 response, and apoptosis. Proc Natl Acad Sci USA 2005, 102:14010-14015.

Healy ZR, Zhu F, Stull JD, Konstantopoulos K: Elucidation of the signaling network of COX-2 induction in sheared chondrocytes: COX-2 is induced via a Rac/MEKK1/MKK7/JNK2/c-Jun-C/EBP-dependent pathway Am J Physiol Cell Physiol 2008, 294:C1146-C1157

Henderson JH, Carter DR: Mechanical induction in limb morpho-genesis: The role of growth-generated strains and pressures. Bone 31:645–653, 2002.

Hembry RM, Bagga MR, Reynolds JJ, Hamblen DL. Immuno-localisation studies on six matrix metalloproteinases and their inhibitors, TIMP-1 and TIMP-2, in synovia from patients with osteo- and rheumatoid arthritis. Ann Rheum Dis 1995;54:25–32.

Hie M, Yamazaki M, Tsukamoto I. Curcumin suppresses increased bone resorption by inhibiting osteoclastogenesis in rats with streptozotocin- induced diabetes. Eur J Pharmacol. 2009; 621: 1-9.

Hunter DJ, Felson DT. Osteoarthritis. BMJ. 2006 Mar 18;332(7542): 639-42.

Hunter DJ, Schofield D, Callander E. The individual and socioeconomic impact of osteoarthritis. Nat Rev Rheumatol. 2014 Jul;10(7):437-41.

Hurskainen TL, Hirohata S, Seldin MF, Apte SS. ADAM-TS5, ADAM-TS6, and ADAM-TS7, novel members of a new family of zinc metalloproteases: general features and genomic distribution of the ADAM-TS family. J Biol Chem 1999;274:25555–63.

Imai K, Ohta S, Matsumoto T, Fujimoto N, Sato H, Seiki M, et al. Expression of membrane-type I matrix metalloproteinase and activation of progelatinase A in human osteoarthritic cartilage. Am J Pathol 1997;151:245–56.

Ishiguro N, Ito T, Ito H, Iwata H, Jugessur H, Ionescu M, et al. Relationship of matrix metalloproteinases and their inhibitors to cartilage proteoglycan and collagen turnover: analyses of synovial fluid from patients with osteoarthritis. Arthritis Rheum 1999;42:129–36.

Iwanaga H, Matsumoto T, Enomoto H, Okano K, Hishikawa Y, Shindo H, Koji T: Enhanced expression of insulin-like growth factor-binding proteins in human osteoarthritic cartilage detected by immunohistochemistry and in situ hybridization. Osteoarthritis Cartilage 2005, 13:439-448.

Jayaprakasha GK, Rao LJ, Sakariah KK. Antioxidant activities of curcumin, demethoxycurcumin and bisdemethoxycurcumin. Food Chemistry. 2006; 98: 720-724.

Jung KK, Lee HS, Cho JY, et al. Inhibitory effect of curcumin on nitric oxide production from lipopolysaccharide-activated primary microglia. Life Sci., 2006; 79(21): 2022-31

Kapoor M, Martel-Pelletier J, Lajeunesse D, Pelletier JP, Fahmi H. Role of proinflammatory cytokines in the pathophysiology of osteoarthritis. Nat Rev Rheumatol. 2011 Jan;7(1):33-42.

Kearns AE, Kallmes DF. Osteoporosis primer for the vertebroplasty practitioner: expanding the focus beyond needles and cement. AJNR Am J Neuroradiol. 2008; 29: 1816-1822.

Kellgren JH, Lawrence JS. Radiological assessment of osteoarthrosis. Ann Rheum Dis 1957;16:494–502

Kerin A, Patwari P, Kuettner K, Cole A, Grodzinsky A: Molecular basis of osteoarthritis: biomechanical aspects. Cell Mol Life Sci 2002, 59:27-35.

Kim JH, Gupta SC, Park B, Yadav VR, Aggarwal B.B. Turmeric (Curcuma longa) inhibits inflammatory nuclear factor (NF)-κB and NF-κB-regulated gene products and induces death receptors leading to suppressed proliferation, induced chemosensitization, and suppressed osteoclastogenesis. Mol Nutr Food Res. 2012;56: 454-465.

Knauper V, Lopez-Otin C, Smith B, Knight G, Murphy G. Biochemical characterization of human collagenase-3. J Biol Chem 1996; 271: 1544–50.

Krasnokutsky S, Samuels J, Abramson SB. Osteoarthritis in 2007. Bull NYU Hosp Jt Dis. 2007;65(3):222-8.

Krishnan R, Park S, Eckstein F, et al: Inhomogeneous cartilage properties enhance superficial interstitial fluid support and frictional properties but do not provide a homogeneous state of stress. J Biomech Eng 2003; 125:569–577.

Kular J, Tickner J, Chim SM, Xu J. An overview of the regulation of bone remodelling at the cellular level. ClinBiochem. 2012; 45:863-873.

Kumar SH, Rangarajan A: Simian virus 40 small T antigen activates AMPK and triggers autophagy to protect cancer cells from nutrient deprivation. J Virol 2009, 83:8565-8574.

Lajeunesse D: The role of bone in the treatment of osteoarthritis. Osteoarthritis Cartilage 2004, 12(Suppl A):S34-S38.

Lark MW, Bayne EK, Flanagan J, Harper CF, Hoerrner LA, Hutchinson NI, et al. Aggrecan degradation in human cartilage: evidence for both matrix metalloproteinase and aggrecanase activity in normal, osteoarthritic, and rheumatoid joints. J Clin Invest 1997;100:93–106.

Lee MS, Trindade MC, Ikenoue T, Goodman SB, Schurman DJ, Smith RL. Regulation of nitric oxide and bcl-2 expression by shear stress in human osteoarthritic chondrocytes in vitro. J Cell Biochem. 2003 Sep 1;90(1):80-6.

Leibbrandt A, Penninger JM. RANKL/RANK as key factors for osteoclast development and bone loss in arthropathies. Adv Exp Med Biol. 2009; 649: 100-113.

Li J, Ny A, Leonardsson G, Nandakumar KS, Holmdahl R, Ny T: The plasminogen activator/plasmin system is essential for development of the joint inflammatory phase of collagen type II-induced arthritis. Am J Pathol 2005, 166:783-792.

Lietman SA, Yin L, Levine MA. SH3BP2 is an activator of NFAT activity and osteoclastogenesis. Biochem Biophys Res Commun. 2008; 371(4): 644-8.

Lin YL, Liu YK, Tsai NM, Hsieh JH, Chen CH, Lin CMA. Lipo-PEG-PEI complex for encapsulating curcumin that enhances its antitumor effects on urcumin-sensitive and curcumin-resistance cells. Nanomedicine. 2012;8: 318-327.

Lipshitz H, Etheredge III R, Glimcher MJ: Changes in the hexosamine content and swelling ratio of articular cartilage as functions of depth from the surface. J Bone Joint Surg 58:1149–1153, 1976.

Loeser, R. F., Goldring, S. R., Scanzello, C. R. and Goldring, M. B. Osteoarthritis: a disease of the joint as an organ. Arthritis Rheum. 2012;64: 1697-1707.

Lories R. The balance of tissue repair and remodeling in chronic arthritis. Nat Rev Rheumatol. 2011 Oct 18;7(12):700-7.

Lories RJ, Luyten FP. The bone-cartilage unit in osteoarthritis. Nat Rev Rheumatol. 2011 Jan;7(1):43-9.

Luyten FP, Lories RJ, Verschueren P, de Vlam K, Westhovens R: Contemporary concepts of inflammation, damage and repair in rheumatic diseases. Best Pract Res Clin Rheumatol 2006, 20:829-848.

Malek AM, Alper SL, Izumo S: Hemodynamic shear stress and its role in atherosclerosis. JAMA 1999, 282:2035-2042.

Maroudas A, Muir H, Wingham J: The correlation of fixed negative charge with glycosaminoglycan content of human articular carti-lage. Biochim Biophys Acta 177:492–500, 1969.

Martel-Pelletier J, Lajeunesse D, Pelletier J P in Arthritis and Allied Conditions. A Textbook of Rheumatology 15 th edn (eds Koopman W J &; Moreland L W) 2199–2226 (Lippincott Williams &; Wilkins, Baltimore, USA, 2005).

Mathy-Hartert M, Jacquemond-Collet I, Priem F, Sanchez C, Lambert C, Henrotin Y. Curcumin inhibits pro-inflammatory mediators and metalloproteinase-3 production by chondrocytes. Inflamm Res. 2009; 58: 899-908.

Mitchell PG, Magna HA, Reeves LM, Lopresti-Morrow LL,Yocum SA, Rosner PJ, et al. Cloning, expression, and type II collagenolytic activity of matrix metalloproteinase-13 from human osteoarthritic cartilage. J Clin Invest 1996;97:761–8.

Montaseri A, Busch F, Mobasheri A, Buhrmann C, Aldinger C, Rad JS, Shakibaei M: IGF-1 and PDGF-bb suppress IL-1β-induced cartilage degradation through down-regulation of NF-κB signaling: involvement of Src/PI-3K/AKT pathway. PLoS One 2011, 6:e28663.

Moran JM, Roncero-Martin R, Rodriguez-Velasco FJ, Calderon- Garcia JF, Rey-Sanchez P, Vera V. Effects of curcumin on the proliferation and mineralization of human osteoblast-like cells: implications of nitric oxide. Int J MolSci. 2012; 13: 16104-16118.

Muir H, Bullough P, Maroudas A: The distribution of collagen in human articular cartilage with some of its physiological implica-tions. J Bone Joint Surg 52:554–563, 1970.

Mulari MT, Qu Q, Härkönen PL, Väänänen HK. Osteoblast-like cells complete osteoclastic bone resorption and form new mineralized bone matrix in vitro. Calcif Tissue Int. 2004; 75(3):253-61.

Nagamine Y, Medcalf RL, Muñoz-Cánoves P: Transcriptional and posttranscriptional regulation of the plasminogen activator system. Thromb Haemost 2005, 93:661-675.

Nonaka T, Kikuchi H, Ikeda T, Okamoto Y, Hamanishi C, Tanaka S: Hyaluronic acid inhibits the expression of u-PA, PAI-1, and u-PAR in human synovial fibroblasts of osteoarthritis and rheumatoid arthritis. J Rheumatol 2000, 27:997-1004.

Notoya M, Nishimura H, Woo JT, Nagai K, Ishihara Y, Hagiwara H. Curcumin inhibits the proliferation and mineralization of cultured osteoblasts. Eur J Pharmacol. 2006; 534: 55-62.

Okada Y, Shinmei M, Tanaka O, Naka K, Kimura A, Nakanishi I, et al. Localization of matrix metalloproteinase 3 (stromelysin) in osteoarthritic cartilage and synovium. Lab Invest 1992;66:680-90.

Panahi Y, Rahimnia AR, Sharafi M, Alishiri G, Saburi A, Sahebkar A. Curcuminoid treatment for knee osteoarthritis: a randomized double-blind placebo-controlled trial. Phytother Res. 2014 Nov;28(11):1625-31

Poole AR. Cartilage in health and disease. In: Koopman WJ, editor. Arthritis and allied conditions: a textbook of rheumatology Baltimore: Williams and Wilkins; 1997. p. 255-308.

Ratcliffe A, Fryer PR, Hardingham TE: The distribution of aggre-gating proteoglycans in articular cartilage: Comparison of quanti-tative immunoelectron microscopy with radioimmunoassay and bio-chemical analysis. J Histochem Cytochem 32:193–201, 1984.

Reuning U, Magdolen V, Hapke S, Schmitt M. Molecular and functional interdependence of the urokinase-type plasminogen activator system with integrins. Biol Chem 2003;384:1119–31.

Roman-Blas JA, Stokes DG, Jimenez SA. Modulation of TGF-beta signaling by proinflammatory cytokines in articular chondrocytes. Osteoarthritis Cartilage. 2007 Dec;15(12):1367-77.

Romas E, Gillespie MT, Martin TJ. Involvement of receptor activator of NFκB ligand and tumor necrosis factor-α in bone destruction in rheumatoid arthritis. Bone. 2002; 30: 340-346.

Roux S. New treatment targets in osteoporosis. Joint Bone Spine. 2010; 77: 222-228.

Rowan AD, Koshy PJ, Shingleton WD, Degnan BA, Heath JK, Vernallis AB, Spaull JR, Life PF, Hudson K, Cawston TE: Synergistic effects of glycoprotein 130 binding cytokines in combination with interleukin-1 on cartilage collagen breakdown. Arthritis Rheum 2001, 44:1620-1632.

Sadouk MB, Pelletier JP, Tardif G, Kiansa K, Cloutier JM, Martel-Pelletier J. Human synovial fibroblasts coexpress IL-1 receptor type I and type II mRNA. The increased level of the IL-1 receptor in osteoarthritic cells is related to an increased level of the type I receptor. Lab Invest. 1995 Sep;73(3):347-55.

Sadowski T, Steinmeyer J. Differential effects of nonsteroidal antiinflammatory drugs on the IL-1 altered expression of plasminogen activators and plasminogen activator inhibitor-1 by articular chondrocytes. Inflamm Res 2002;51:427–33.

Sadowski T, Steinmeyer J. Effects of polysulfated glycosaminogly-can and triamcinolone acetonid on the production of proteinases and their inhibitors by IL-1 treated articular chondrocytes. Biochem Pharmacol 2002;64:217–27.

Saini S, Wick TM: Concentric cylinder bioreactor for production of tissue engineered cartilage: effect of seeding density and hydrodynamic loading on construct development. Biotechnol Prog 2003, 19:510-521.

Saklatvala J: Inflammatory signaling in cartilage: MAPK and NF-κB pathways in chondrocytes and the use of inhibitors for research into pathogenesis and therapy of osteoarthritis. Curr Drug Targets 2007, 8:305-313.

Sameera R, Shamim M, Sushant W, Amit P, Dirti B. Effect of demethoxycurcumin and bisdemethoxycurcumin on antioxidant activity of curcumin in refined sunflower oil. J Food Process Pres. 2014; 38(1): 296-303.

Sandell LJ, Aigner T. Articular cartilage and changes in arthritis. An introduction: cell biology of osteoarthritis. Arthritis Res. 2001; (2):107-13

Sandur SK, Pandey MK, Sung B, Ahn KS, Murakami A, Sethi G. Curcumin, demethoxycurcumin, bisdemethoxycurcumin, tetrahydrocurcumin and turmerones differentially regulate anti-inflammatory and anti-proliferative responses through a ROS-independent mechanism. Carcinogenesis. 2007; 28: 1765-1773.

Sasano Y, Furusawa M, Ohtani H, et al: Chondrocytes synthesize type I collagen and accumulate the protein in the matrix during development of rat tibial articular cartilage. Anat Embryol (Berl)194: 247–252, 1996.

Schwab W, Schulze-Tanzil G, Mobasheri A, Dressler J, Kotzsch M, Shakibaei M: Interleukin-1β-induced expression of the urokinase-type plasminogen activator receptor and its co-localization with MMPs in human articular chondrocytes. Histol Histopathol 2004, 19:105-112.

Sellam J, Berenbaum F: The role of synovitis in pathophysiology and clinical symptoms of osteoarthritis. Nat Rev Rheumatol 2010, 6:625-635.

Sharma L. Examination of exercise effects on knee osteoarthritis outcomes: Why should the local mechanical environment be considered? Arthritis Rheum. 2003; 49:255-260.

Shen J, Li S, Chen D. TGF-β signaling and the development of osteoarthritis. Bone Res. 2014;2. pii: 14002

Shlopov BV, Lie WR, Mainardi CL, Cole AA, Chubinskaya S, Hasty KA. Osteoarthritic lesions: involvement of three different collagenases. Arthritis Rheum 1997;40:2065–74.

Smith HW, Marshall CJ: Regulation of cell signalling by uPAR. Nat Rev Mol Cell Biol 2010, 11:23-36.

Smith RL, Carter DR, Schurman DJ. Pressure and shear differ-entially alter human articular chondrocyte metabolism: a review. Clin Orthop Relat Res 2004;427 Suppl:S89–95.

Srivastava RA, Pinkosky SL, Filippov S, Hanselman JC, Cramer CT, Newton RS: AMP-activated protein kinase: an emerging drug target to regulate imbalances in lipid and carbohydrate metabolism to treat cardio-metabolic diseases: thematic review series: new lipid and lipoprotein targets for the treatment of cardiometabolic diseases. J Lipid Res 2012, 53:2490-2514.

Stanescu V, Maroteaux P: Reparation differente du collagene de Type I et du Type II dans la zone superficielle et dans la zone intermediare du cartilage articulare. CR Hebd Seances Acad Sci Ser D 283:279–282, 1976.

Stein GS, Lian JB, van Wijnen AJ, Stein JL, Montecino M, Javed A. Runx2 control of organization, assembly and activity of the regulatory machinery for skeletal gene expression. Oncogene. 2004; 23: 4315-4329.

Sun D, Zhuang X, Xiang X, Liu Y, Zhang S, Liu C. A novel nanoparticle drug delivery system: the anti-inflammatory activity of curcumin is enhanced when encapsulated in exosomes. MolTher, 2010; 18: 1606- 1614.

Sung ML, Wu CC, Chang HI, Yen CK, Chen HJ, Cheng JC, Chien S, Chen CN: Shear stress inhibits homocysteine-induced stromal cell derived factor-1 expression in endothelial cells. Circ Res 2009, 105:755-763.

Suntres ZE. Liposomal Antioxidants for Protection against Oxidant-Induced Damage. J Toxicol. 2011; 2011:152474.

Tang YL, Zhu GQ, Hu L, Zheng M, Zhang JY, Shi ZD, Liang XH: Effects of intra-articular administration of sodium hyaluronate on plasminogen activator system in temporomandibular joints with osteoarthritis. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2010, 109:541-547.

Terkeltaub R, Yang B, Lotz M, Liu-Bryan R: Chondrocyte AMP-activated protein kinase activity suppresses matrix degradation responses to proinflammatory cytokines interleukin-1β and tumor necrosis factor α.Arthritis Rheum 2011, 63:1928-1937.

Thamamongood TA, Furuya R, Fukuba S, Nakamura M, Suzuki N, Hattori A. Expression of osteoblastic and osteoclastic genes during spontaneous regeneration and autotransplantation of goldfish scale: a new tool to study intramembranous bone regeneration. Bone. 2012; 50: 1240-1249.

Tocharus J, Jamsuwan S, Tocharus C, Changtam C, Suksamrarn A. Curcuminoid analogs inhibit nitric oxide production from LPS-activated microglial cells. J Nat Med. 2012; 66: 400-405.

Tortorella MD, Burn TC, Pratta MA, Abbaszade I, Hollis JM,Liu R, et al. Purification and cloning of aggrecanase-1: a member of the ADAMTS family of proteins. Science 1999;284:1664–6.

Treede I, Braun A, Sparla R, et al. Anti-inflammatory effects of phosphatidylcholine. J Biol Chem. 2007;282(37):27155-64.

Tuli R, Tuli S, Nandi S, Huang X, Manner PA, Hozack WJ, Danielson KG, Hall DJ, Tuan RS. TGF-β1- mediated chondrogenesis of human mesenchymal progenitor cells involves N-cadherin and MAP kinase and Wnt signaling crosstalk. J Biol Chem 2003;278:41227– 41236.

Ulrich-Vinther M, Maloney MD, Schwarz EM, Rosier R, O’Keefe RJ: Articular cartilage biology. J Am Acad Orthop Surg 2003;11:421-430.

van der Kraan PM. Age-related alterations in TGF beta signaling as a causal factor of cartilage degeneration in osteoarthritis. Biomed Mater Eng. 2014;24(1Suppl):75-80

Waldman SD, Couto DC, Grynpas MD, Pilliar RM, Kandel RA: Multi-axial mechanical stimulation of tissue engineered cartilage: review. Eur Cell Mater 2007, 13:66-73.

Wang P, Zhu F, Konstantopoulos K: The antagonistic actions of endogenous interleukin-1β and 15-deoxy-Δ12,14-prostaglandin J2 regulate the temporal synthesis of matrix metalloproteinase-9 in sheared chondrocytes. J Biol Chem 2012, 287:31877-31893.

Wang P, Zhu F, Lee NH, Konstantopoulos K: Shear-induced interleukin-6 synthesis in chondrocytes: roles of E prostanoid (EP) 2 and EP3 in cAMP/protein kinase A- and PI3-K/Akt-dependent NF-κB activation. J Biol Chem 2010, 285:24793-24804.

Wang P, Zhu F, Tong Z, Konstantopoulos K: Response of chondrocytes to shear stress: antagonistic effects of the binding partners Toll-like receptor 4 and caveolin-1. FASEB J 2011, 25:3401-3415.

Williams KA, Saini S, Wick TM: Computational fluid dynamics modeling of steady-state momentum and mass transport in a bioreactor for cartilage tissue engineering. Biotechnol Prog 2002, 18:951-963.

Wong M, Carter DR: Articular cartilage functional histomorphology and mechanobiology: A research perspective. Bone 33:1–13, 2003.

Wong M, Wuerthrich P, Eggli P, et al: Zone-specific cell biosyn-thetic activity in mature bovine articular cartilage: a new method using confocal microscopic stereology and quantitative autoradiog-raphy. J Orthop Res 14:424–432, 1996.

Yeh CC, Chang HI, Chiang JK, Tsai WT, Chen LM, Wu CP, Chien S, Chen CN. Regulation of plasminogen activator inhibitor 1 expression in human osteoarthritic chondrocytes by fluid shear stress: role of protein kinaseCα. Arthritis Rheum 2009, 60:2350-2361.

Yokota H, Goldring MB, Sun HB: CITED2-mediated regulation of MMP-1and MMP-13 in human chondrocytes under flow shear. J Biol Chem 2003, 278:47275-47280.

Yuan XL, Meng HY, Wang YC, et al. Bone-cartilage interface crosstalk in osteoarthritis: potential pathways and future therapeutic strategies. Osteoarthritis Cartilage. 2014; 22(8):1077-1089.

Zhang Y, Huang C, Sheng X, Gong Z, Zang YQ. Lecithin promotes adipocyte differentiation and hepatic lipid accumulation. Int J Mol Med. 2009; 23: 449-454.

Zupan J, Jeras M. and Marc J. Osteoimmunology and the influence of pro-inflammatory cytokines on osteoclasts. Biochem Med (Zagreb), 23, 43-63, 2013.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊