跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.170) 您好!臺灣時間:2025/01/13 14:41
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:王碩郁
研究生(外文):Shuo Yu Wang
論文名稱:2-去氧葡萄糖在治療乳突性甲狀腺癌及神經母細胞瘤的角色
論文名稱(外文):Roles of 2-Deoxyglucose in the Treatment of Papillary Thyroid Carcinoma and Neuroblastoma
指導教授:莊錦豪魏耀揮魏耀揮引用關係
指導教授(外文):J. H. ChuangY. H. Wei
學位類別:博士
校院名稱:長庚大學
系所名稱:臨床醫學研究所
學門:醫藥衛生學門
學類:醫學學類
論文種類:學術論文
論文出版年:2015
畢業學年度:103
論文頁數:113
中文關鍵詞:糖酵解粒線體DNA2-去氧葡萄糖乳突性甲狀腺癌神經母細胞瘤血管新生
外文關鍵詞:glycolysismitochondrial DNA2-deoxyglucosepapillary thyroid carcinomaneuroblastomaangiogenesis
相關次數:
  • 被引用被引用:0
  • 點閱點閱:197
  • 評分評分:
  • 下載下載:25
  • 收藏至我的研究室書目清單書目收藏:0
本論文研究的目的是在了解在乳突性甲狀腺癌中粒線體DNA(mitochondrial DNA)與BRAFV600E突變(papillary thyroid carcinoma)的關聯,並研究一種糖酵解抑制劑─2-去氧葡萄糖(2-deoxyglucose)在治療乳突性甲狀腺癌和神經母細胞瘤(neuroblastoma)中的角色。乳突性甲狀腺癌是最常見的甲狀腺癌,以BRAFV600E突變最常見。此外,粒線體DNA突變或含量的改變被認為有助於癌細胞對抗癌藥物產生抗藥性。研究結果顯示不到20%病人的乳突性甲狀腺癌病灶組織裡有粒線體DNA D-環突變和4977 鹼基對(base pairs)缺失;而乳突性甲狀腺癌裡的粒線體DNA含量(mtDNA content)增加與BRAFV600E突變有關。我們利用兩株乳突性甲狀腺癌細胞:BCPAP(有BRAFV600E突變)和CG3(無BRAFV600E突變)細胞進行實驗。BCPAP細胞比CG3細胞更依賴有氧糖酵解,乳突性甲狀腺癌的細胞增殖正相關於能量供給。合併使用2-去氧葡萄糖及兩種美國批准可以用在治療晚期乳突性甲狀腺癌的藥物,阿黴素(doxorubicin)和索拉非尼(sorafenib),發現無論是否有BRAFV600E突變,2-去氧葡萄糖可增加乳突性甲狀腺癌細胞對這兩種藥的敏感性,並將其半抑制率(IC50)各下降至單獨使用時的70%及50%以下。因此,同時使用低劑量的2-去氧葡萄糖和較低劑量的阿黴素或索拉非尼,可提供等同於高劑量的阿黴素或索拉非尼的抗癌作用。
研究也探討2-去氧葡萄糖對孩童最常見的顱外實體瘤─神經母細胞瘤的影響,一般認為具有MYCN擴增的神經母細胞瘤較依賴有氧糖酵解也對於治療較有抗藥性。2株神經母細胞瘤細胞被選擇來進行小鼠異種移植實驗:SK-N-DZ 細胞(有MYCN擴增)及SK-N-AS細胞(無MYCN擴增),並一週兩次於腹腔內注射生理食鹽水或2-去氧葡萄糖治療三週後將腫瘤取出。結果顯示不論有無MYCN擴增,2-去氧葡萄糖會經由降低HIF-1α,PDK1和p-Bad的表現,且在SK-N-AS細胞中抑制c-Myc的表現,進而減緩腫瘤成長。此外,2-去氧葡萄糖促使內皮細胞凋亡及抑制偽足的生成而減少腫瘤血管新生。因此,使用2-去氧葡萄糖治療,可以同時獲得抑制癌細胞及內皮細胞的生長的雙重效益。
綜合以上結果,2-去氧葡萄糖不論在單獨或併用其它抗癌藥,均可作為治療乳突性甲狀腺癌和神經母細胞瘤病人的一種新選擇。
The purpose of this research was to investigate the changes in mitochondrial DNA (mtDNA) associated with the BRAFV600E mutation in papillary thyroid carcinoma (PTC), and the role of 2-deoxyglucose (2-DG), a glycolysis inhibitor, in PTC and neuroblastoma (NB). PTC is the most common form of thyroid cancer, and the BRAFV600E mutation is the most common genetic aberration. MtDNA mutations and the changes of mtDNA content were thought to facilitate chemotherapy resistance in cancer cells. Less than 20% of human PTC shows somatic D-loop mutation and mtDNA 4977 bp deletion. Moreover, an increase of mtDNA content in PTC is associated with the BRAFV600E mutation. The bioenergetic function and response to 2-DG of two PTC cell lines, BCPAP cells (with the BRAFV600E mutation) and CG3 cells (without the BRAFV600E mutation), were studied. BCPAP cells are more glycolytic than CG3 cells, and energy depletion is responsible for inhibiting proliferation of both PTC cells. Chemosensitivity to doxorubicin and sorafenib, two USFDA-approved drugs for treating advanced PTC, increased in both cell lines when combination with 2-DG for 48 h. The IC50 of doxorubicin in BCPAP and CG3 cells fell by more than 30%, and the IC50 of sorafenib in both cells also fell by more than 50% when combined therapy with only 0.0625 mM 2-DG. This suggests that 2-DG with lower doses of either doxorubicin or sorafenib will provide anticancer effects which can otherwise be achieved only with high doses of doxorubicin or sorafenib alone, regardless of the status of the BRAFV600E mutation.
Because of its significantly positive effects on PTC, the effects of 2-DG on NB was investigated. NB is the most common extracranial solid tumor in childhood with wide genetic variations. MYCN amplification in NB is correlated with glycolysis and resistance to treatment. We implanted the MYCN-amplified SK-N-DZ and the MYCN-nonamplified SK-N-AS cell lines into the subcutaneous tissue of NOD/SCID mice with 6 intraperitoneal injections of normal saline or 2-DG (2 doses per week). Our results demonstrated tumor shrinkage was significant in mice treated with 2-DG, regardless of MYCN amplification or not. 2-DG inhibited tumor growth by downregulating HIF-1, PDK1, and p-BAD in both NB xenografts and downregulating c-Myc in SK-N-AS xenografts. Moreover, 2-DG inhibited angiogenesis by apoptosis and suppressing lamellipodia and filopodia formation of endothelial cells. Our findings indicate that 2-DG treatment in mice simultaneously targeted tumor cells and cancerous endothelial cells.
Taken together, our findings indicate that 2-DG, alone or combined with other chemotherapeutic agents, might provide novel and more efficacious therapy for patients with PTC and NB.
指導教授推薦書
口試委員會審定書
誌 謝............................................................................. iii
中文摘要........................................................................... iv
Abstract….......................................................................... vi
Table of Contents................................................................ viii
Directory of Figures............................................................. xiii
Directory of Tables ................................................................xv
Abbreviations..................................................................... xvi
CHAPTER I. INTRODUCTION..............................................................1
1.1 Background ......................................................................1
1.1.1 Metabolic reprogramming and changes of microenvironment in cancers.............1
1.1.2 Alterations of mitochondrial DNA in cancers ...................................2
1.1.3 Papillary thyroid carcinomas and therapy ......................................3
1.1.4 Characteristics of neuroblastoma and therapeutic implication ..................4
1.1.5 Angiogenesis and glycolysis....................................................5
1.1.6 2-Deoxyglucose and its potential applications .................................6
1.2 Study aims and hypotheses .......................................................7
1.2.1 Discovery of the alterations of mtDNA and the relationship with BRAFV600E mutation in PTCs ....................................................................7
1.2.2 Effects of 2-DG on PTCs in vitro ..............................................8
1.2.3 Simultaneously targeting cancer cells and endothelial cells in vivo using 2-DG in mice with NB......................................................................8
CHAPTER II. MATERIALS AND METHODS ...................................................9
2.1 Analysis of mtDNA alterations and BRAFV600E mutation in PTCs ....................9
2.1.1 Patients and samples ..........................................................9
2.1.2 DNA extraction ................................................................9
2.1.3 Determination of the BRAFV600E mutation .......................................9
2.1.4 Direct sequencing analysis of sequence variations in mtDNA D-loop region......10
2.1.5 Detection of the 4,977-bp deletion of mtDNA ..................................11
2.1.6 Determination of mtDNA content................................................11
2.1.7 Extraction of total RNA and real-time PCR analysis ...........................12
2.1.8 Statistical analysis..........................................................13
2.2 Treatment with 2-DG alone or in combination with doxorubicin and sorafenib in PTC cells in vitro .....................................................................14
2.2.1 Cell lines and cell culture...................................................14
2.2.2 Chemicals.....................................................................14
2.2.3 Cell viability assay .........................................................15
2.2.4 Colony formation assay .......................................................15
2.2.5 Glucose uptake analysis ......................................................16
2.2.6 Intracellular ATP content analysis............................................16
2.2.7 Glycolysis assay..............................................................17
2.2.8 Extracellular flux assay......................................................17
2.2.9 Flow cytometric analysis of apoptosis.........................................18
2.2.10 RNA isolation, RT-PCR, qRT-PCR, and primers..................................18
2.2.11 Western blot analysis........................................................18
2.2.12 Statistical analysis ........................................................19
2.3 Effects of 2-DG on NB in vivo ..................................................20
2.3.1 Immunohistochemistry..........................................................20
2.3.2 Animal xenografts ............................................................20
2.3.3 Western blot analysis.........................................................21
2.3.4 Quantifying endothelial cell density after staining with isolectin B4 ........22
2.3.5 Cell proliferation assay .....................................................22
2.3.6 Trypan blue exclusion assay ..................................................23
2.3.7 Flow cytometry to detect apoptosis ...........................................23
2.3.8 Cell migration detected using a wound healing assay and a Boyden chamber......23
2.3.9 Immunofluorescence and laser confocal microscopy..............................24
2.3.10 Statistical analysis.........................................................25
CHAPTER III. RESULTS................................................................26
3.1 Concomitant presence of increased mtDNA content and BRAFV600E mutation was detected in PTCs ...................................................................26
3.1.1 BRAFV600E mutation and somatic mtDNA alterations in PTCs......................26
3.1.2 Correlation between somatic mtDNA alterations and BRAFV600E mutation..........27
3.1.3 The expression of nuclear genes involved in mitochondrial biogenesis .........28
3.2 2-DG inhibited the proliferation of PTC cells and decreased the IC50 of doxorubicin and sorafenib in PTC cells in vitro ....................................29
3.2.1 Mapping bioenergetics in PTC cells ...........................................29
3.2.2 Effect of 2-DG on cell viability in PTC cell lines ...........................29
3.2.3 Effects of 2-DG on the changes of bioenergetic functions of PTC cell lines....30
3.2.4 Effects of 2-DG plus doxorubicin on cell viability and colony formation in PTC cell lines..........................................................................31
3.2.5 Effects of 2-DG plus sorafenib on cell viability and colony formation in PTC cell lines..........................................................................31
3.2.6 Effects of 2-DG plus doxorubicin or sorafenib on apoptosis and metabolic dysfunction in PTC cell lines.......................................................32
3.3 2-DG targeted NB and endothelial cells .........................................33
3.3.1 Differential PDK1 expression in human NB .....................................33
3.3.2 2-DG treated NB tumors in NOD/SCID mice shrank ...............................33
3.3.3 HIF-1, PDK1, c-Myc, and p-Bad expression, but not Bax or Bak expression, fell in 2-DG-treated NB xenografts..........................................................34
3.3.4 The number of tumor vessels in 2-DG-treated AS and DZ xenografts was significantly lower.................................................................34
3.3.5 Cell proliferation and migration were significantly downregulated and apoptosis was upregulated in 2-DG-treated mouse endothelial cells ............................35
3.3.6 Lamellipodia and filopodia formation was inhibited and F-actin filaments were disorganized in 2-DG-treated mouse endothelial cells................................35
CHAPTER IV. DISCUSSION AND CONCLUSIONS..............................................37
4.1 MtDNA content in PTC is increased and is associated with BRAFV600E mutation.....37
4.2 2-DG complements doxorubicin and sorafenib in PTC cells in vitro................39
4.3 2-DG simultaneously inhibits the growth of NB and angiogenesis in vivo .........41
4.4 Conclusion .....................................................................44
CHAPTER V. FUTURE PERSPECTIVES .....................................................45
FIGURES.............................................................................46
TABLES..............................................................................68
REFERENCES .........................................................................73
APPENDIX............................................................................87
Approval of animal study (Approval from Institutional Animal Care and Use Committee) ....................................................................................88
Research Projects...................................................................90
Bibliography........................................................................91
口試委員審查意見回覆.................................................................93


Directory of Figures
Figure 1. Four representative somatic D-loop mutation sequences in PTCs (T) compared to paired non-tumorous tissues (N). ................................................47
Figure 2. Alterations in the mtDNA content..........................................48
Figure 3. Alterations in the mRNA expression of mtTFA, mtSSB, NRF-1, PGC-1 and NDUFS2. ....................................................................................49
Figure 4. Basal bioenergetics in BCPAP and CG3 papillary thyroid carcinoma (PTC) cell lines. .............................................................................50
Figure 5. Measuring basal glycolysis and oxidative metabolism in BCPAP and CG3 papillary thyroid carcinoma (PTC) cell lines by Seahorse X-24 flux analyzer.........51
Figure 6. Susceptibility of PTC cells to 2- DG......................................52
Figure 7. Effects of 2-DG on the changes in ATP production of PTC cells.............53
Figure 8. Effect of 2-DG on the expression of glycolytic genes in PTC cells.........54
Figure 9. Effects of 2-DG on the changes in bioenergetics of PTC cells..............55
Figure 10. Effects of doxorubicin on the viability of PTC cells treated with or without 2-DG........................................................................56
Figure 11. Effects of sorafenib on the viability of PTC cells treated with or without 2-DG................................................................................57
Figure 12. Effects of 2-DG, doxorubicin, or both on apoptosis in PTC cells..........58
Figure 13. Effects of 2-DG, doxorubicin, or both on metabolic dysfunction in PTC cells...............................................................................59
Figure 14. Immunohistochemical staining of PDK1 expression in human NB..............60
Figure 15. Treatment with 2-DG significantly inhibited NB xenograft tumor growth in NOD/SCID mice.......................................................................61
Figure 16. 2-DG downregulated the expression of HIF-1α, PDK1 and c-Myc in NB xenografts..........................................................................62
Figure 17. 2-DG downregulated the expression of Bad and pBad in NB xenografts.......63
Figure 18. 2-DG reduced tumor vessels in both AS and DZ xenografts after 6 doses of 2-DG treatment. ......................................................................64
Figure 19. 2-DG significantly suppressed cell proliferation and induced apoptosis in mouse endothelial cells.............................................................65
Figure 20. 2-DG decreased wound closure and inhibited cell migration in mouse endothelial cells. .................................................................66
Figure 21. 2-DG suppressed lamellipodia and filopodia formation and caused disorganization of F-actin filaments in mouse endothelial cells. ...................67


Directory of Tables
Table 1. Sequences of the oligonucleotide primers used in this study................69
Table 2. Sequences of the oligonucleotide primers used in this study................70
Table 3. Summary of the somatic mutation in the D-loop region of mtDNA in 89 papillary thyroid carcinomas compared to non-tumorous tissues in the same patient.............71
Table 4. Association between the alterations of mtDNA and BRAFV600E mutation in papillary thyroid carcinomas .......................................................72
1. Jones NP, Schulze A. Targeting cancer metabolism--aiming at a tumour's sweet-spot. Drug Discov Today. 2012; 17: 232-241.
2. Jose C, Bellance N, Rossignol R. Choosing between glycolysis and oxidative phosphorylation: a tumor's dilemma? Biochim Biophys Acta. 2011; 1807: 552-561.
3. Regel I, Kong B, Raulefs S, et al. Energy metabolism and proliferation in pancreatic carcinogenesis. Langenbecks Arch Surg. 2012; 397: 507-512.
4. DeBerardinis RJ, Lum JJ, Hatzivassiliou G, et al. The biology of cancer: metabolic reprogramming fuels cell growth and proliferation. Cell Metab. 2008; 7: 11-20.
5. Daye D, Wellen KE. Metabolic reprogramming in cancer: unraveling the role of glutamine in tumorigenesis. Semin Cell Dev Biol. 2012; 23: 362-369.
6. Ferreira LM. Cancer metabolism: the Warburg effect today. Exp Mol Pathol. 2010; 89: 372-380.
7. Gatenby RA, Gillies RJ. Why do cancers have high aerobic glycolysis? Nat Rev Cancer. 2004; 4: 891-899.
8. Warburg O, Wind F, Negelein E. The metabolism of tumors in the body. J Gen Physiol. 1927; 8: 519-530.
9. Dearling JL, Flynn AA, Sutcliffe-Goulden J, et al. Analysis of the regional uptake of radiolabeled deoxyglucose analogs in human tumor xenografts. J Nucl Med. 2004; 45: 101-107.
10. Maher JC, Wangpaichitr M, Savaraj N, et al. Hypoxia-inducible factor-1 confers resistance to the glycolytic inhibitor 2-deoxy-D-glucose. Mol Cancer Ther. 2007; 6:732-741.
11. Maher JC, Krishan A, Lampidis TJ. Greater cell cycle inhibition and cytotoxicity induced by 2-deoxy-D-glucose in tumor cells treated under hypoxic vs aerobic conditions. Cancer Chemother Pharmacol. 2004; 53: 116-122.
12. Verdegem D, Moens S, Stapor P, et al. Endothelial cell metabolism: parallels and divergences with cancer cell metabolism. Cancer Metab. 2014; 2: 19.
13. Alexandrov LB, Nik-Zainal S, Wedge DC, et al. Signatures of mutational processes in human cancer. Nature. 2013; 500: 415-421.
14. Clayton DA. Replication and transcription of vertebrate mitochondrial DNA. Annu Rev Cell Biol. 1991; 7: 453-478.
15. DiMauro S, Schon EA. Mitochondrial respiratory-chain diseases. N Engl J Med. 2003; 348: 2656-2668.
16. Anderson S, Bankier AT, Barrell BG, et al. Sequence and organization of the human mitochondrial genome. Nature. 1981; 290: 457-465.
17. Bianchi NO, Bianchi MS, Richard SM. Mitochondrial genome instability in human cancers. Mutat Res. 2001; 488: 9-23.
18. Haag-Liautard C, Dorris M, Maside X, et al. Direct estimation of per nucleotide and genomic deleterious mutation rates in Drosophila. Nature. 2007; 445: 82-85.
19. Larsen NB, Rasmussen M, Rasmussen LJ. Nuclear and mitochondrial DNA repair: similar pathways? Mitochondrion. 2005; 5: 89-108.
20. Chatterjee A, Mambo E, Sidransky D. Mitochondrial DNA mutations in human cancer. Oncogene. 2006; 25: 4663-4674.
21. Yeh JJ, Lunetta KL, van Orsouw NJ, et al. Somatic mitochondrial DNA (mtDNA) mutations in papillary thyroid carcinomas and differential mtDNA sequence variants in cases with thyroid tumours. Oncogene. 2000; 19: 2060-2066.
22. Yin PH, Lee HC, Chau GY, et al. Alteration of the copy number and deletion of mitochondrial DNA in human hepatocellular carcinoma. Br J Cancer. 2004; 90: 2390-2396.
23. Welter C, Kovacs G, Seitz G, et al. Alteration of mitochondrial DNA in human oncocytomas. Genes Chromosomes Cancer. 1989; 1: 79-82.
24. Hsu CC, Lee HC, Wei YH. Mitochondrial DNA alterations and mitochondrial dysfunction in the progression of hepatocellular carcinoma. World J Gastroenterol. 2013; 19: 8880-8886.
25. Yu M. Generation, function and diagnostic value of mitochondrial DNA copy number alterations in human cancers. Life Sci. 2011; 89: 65-71.
26. Hundahl SA, Fleming ID, Fremgen AM, et al. A National Cancer Data Base report on 53,856 cases of thyroid carcinoma treated in the U.S., 1985-1995 [see commetns]. Cancer. 1998; 83: 2638-2648.
27. Couto JP, Prazeres H, Castro P, et al. How molecular pathology is changing and will change the therapeutics of patients with follicular cell-derived thyroid cancer. J Clin Pathol. 2009; 62: 414-421.
28. Davies H, Bignell GR, Cox C, et al. Mutations of the BRAF gene in human cancer. Nature. 2002; 417: 949-954.
29. Namba H, Nakashima M, Hayashi T, et al. Clinical implication of hot spot BRAF mutation, V599E, in papillary thyroid cancers. J Clin Endocrinol Metab. 2003; 88: 4393-4397.
30. Puxeddu E, Moretti S, Elisei R, et al. BRAF(V599E) mutation is the leading genetic event in adult sporadic papillary thyroid carcinomas. J Clin Endocrinol Metab. 2004; 89: 2414-2420.
31. Puxeddu E, Durante C, Avenia N, et al. Clinical implications of BRAF mutation in thyroid carcinoma. Trends Endocrinol Metab. 2008; 19: 138-145.
32. Xing M. BRAF mutation in papillary thyroid cancer: pathogenic role, molecular bases, and clinical implications. Endocr Rev. 2007; 28: 742-762.
33. Mercer KE, Pritchard CA. Raf proteins and cancer: B-Raf is identified as a mutational target. Biochim Biophys Acta. 2003; 1653: 25-40.
34. Mazzaferri EL, Jhiang SM. Long-term impact of initial surgical and medical therapy on papillary and follicular thyroid cancer. Am J Med. 1994; 97: 418-428.
35. Schlumberger M, Tahara M, Wirth LJ, et al. Lenvatinib versus placebo in radioiodine-refractory thyroid cancer. N Engl J Med. 2015; 372: 621-630.
36. Shimaoka K, Schoenfeld DA, DeWys WD, et al. A randomized trial of doxorubicin versus doxorubicin plus cisplatin in patients with advanced thyroid carcinoma. Cancer. 1985; 56: 2155-2160.
37. Minotti G, Menna P, Salvatorelli E, et al. Anthracyclines: molecular advances and pharmacologic developments in antitumor activity and cardiotoxicity. Pharmacol Rev. 2004; 56: 185-229.
38. Singal PK, Iliskovic N. Doxorubicin-induced cardiomyopathy. N Engl J Med. 1998; 339: 900-905.
39. Swain SM, Whaley FS, Ewer MS. Congestive heart failure in patients treated with doxorubicin: a retrospective analysis of three trials. Cancer. 2003; 97: 2869-2879.
40. Goodin T. FDA approves Nexavar to treat type of thyroid cancer. FDA News Release. 22 Nov 2013. Available: http://www.fda.gov/NewsEvents/Newsroom/PressAnnouncements/ucm376443.htm. Accessed 17 March 2015.
41. Brose MS, Nutting CM, Jarzab B, et al. Sorafenib in radioactive iodine-refractory, locally advanced or metastatic differentiated thyroid cancer: a randomised, double-blind, phase 3 trial. Lancet. 2014; 384: 319-328.
42. Howlader N, Noone AM, Krapcho M, et al (eds).: SEER Cancer Statistics Review, 1975-2009 (Vintage 2009 Populations). Bethesda, Md: National Cancer Institute, 2012. Available: http://seer.cancer.gov/csr/1975_2009_pops09/. Last accessed April 2, 2015.
43. Couzin-Frankel J. Personalized medicine. Pushing the envelope in neuroblastoma therapy. Science. 2011; 333: 1569-1571.
44. Shutt DC, O'Dorisio MS, Aykin-Burns N, et al. 2-deoxy-D-glucose induces oxidative stress and cell killing in human neuroblastoma cells. Cancer Biol Ther. 2010; 9: 853-861.
45. Brodeur GM, Seeger RC, Schwab M, et al. Amplification of N-myc in untreated human neuroblastomas correlates with advanced disease stage. Science. 1984; 224: 1121-1124.
46. Haupt R, Garaventa A, Gambini C, et al. Improved survival of children with neuroblastoma between 1979 and 2005: a report of the Italian Neuroblastoma Registry. J Clin Oncol. 2010;28: 2331-2338.
47. Maris JM, Hogarty MD, Bagatell R, et al. Neuroblastoma. Lancet. 2007; 369: 2106-2120.
48. Seeger RC, Brodeur GM, Sather H, et al. Association of multiple copies of the N-myc oncogene with rapid progression of neuroblastomas. N Engl J Med. 1985; 313: 1111-1116.
49. Wang LL, Suganuma R, Ikegaki N, et al. Neuroblastoma of undifferentiated subtype, prognostic significance of prominent nucleolar formation, and MYC/MYCN protein expression: a report from the Children's Oncology Group. Cancer. 2013; 119: 3718-3726.
50. Osthus RC, Shim H, Kim S, et al. Deregulation of glucose transporter 1 and glycolytic gene expression by c-Myc. J Biol Chem. 2000; 275: 21797-21800.
51. Wise DR, DeBerardinis RJ, Mancuso A, et al. Myc regulates a transcriptional program that stimulates mitochondrial glutaminolysis and leads to glutamine addiction. Proc Natl Acad Sci U S A. 2008; 105: 18782-18787.
52. Chuang JH, Chou MH, Tai MH, et al. 2-Deoxyglucose treatment complements the cisplatin- or BH3-only mimetic-induced suppression of neuroblastoma cell growth. Int J Biochem Cell Biol. 2013; 45: 944-951.
53. Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011; 144: 646-674.
54. De Bock K, Georgiadou M, Schoors S, et al. Role of PFKFB3-driven glycolysis in vessel sprouting. Cell. 2013; 154: 651-663.
55. Jang C, Arany Z. Metabolism: Sweet enticements to move. Nature. 2013; 500: 409-411.
56. Rivera LB, Bergers G. Angiogenesis. Targeting vascular sprouts. Science 2014; 344: 1449-1450.
57. Cheng G, Zielonka J, McAllister D, et al. Profiling and targeting of cellular bioenergetics: inhibition of pancreatic cancer cell proliferation. Br J Cancer. 2014; 111: 85-93.
58. Galluzzi L, Kepp O, Vander Heiden MG, et al. Metabolic targets for cancer therapy. Nat Rev Drug Discov. 2013; 12: 829-846.
59. Tennant DA, Durán RV, Gottlieb E. Targeting metabolic transformation for cancer therapy. Nat Rev Cancer. 2010; 10: 267-277.
60. Wise DR, Thompson CB. Glutamine addiction: a new therapeutic target in cancer. Trends Biochem Sci. 2010; 35: 427-433.
61. Xu RH, Pelicano H, Zhou Y, et al. Inhibition of glycolysis in cancer cells: a novel strategy to overcome drug resistance associated with mitochondrial respiratory defect and hypoxia. Cancer Res. 2005; 65: 613-621.
62. Karczmar GS, Arbeit JM, Toy BJ, et al. Selective depletion of tumor ATP by 2-deoxyglucose and insulin, detected by 31P magnetic resonance spectroscopy. Cancer Res. 1992; 52: 71-76.
63. Aft RL, Lewis JS, Zhang F, et al. Enhancing targeted radiotherapy by copper (II) diacetyl-bis (N4-methylthiosemicarbazone) using 2-deoxy-D-glucose. Cancer Res. 2003; 63: 5496-5504.
64. Coleman MC, Asbury CR, Daniels D, et al. 2-deoxy-D-glucose causes cytotoxicity, oxidative stress, and radiosensitization in pancreatic cancer. Free Radic Biol Med. 2008; 44: 322-331.
65. Goldberg L, Israeli R, Kloog Y. FTS and 2-DG induce pancreatic cancer cell death and tumor shrinkage in mice. Cell Death Dis. 2012; 3: e284.
66. Maschek G, Savaraj N, Priebe W, et al. 2-deoxy-D-glucose increases the efficacy of adriamycin and paclitaxel in human osteosarcoma and non-small cell lung cancers in vivo. Cancer Res. 2004; 64: 31-34.
67. Zhang XD, Deslandes E, Villedieu M, et al. Effect of 2-deoxy-D-glucose on various malignant cell lines in vitro. Anticancer Res. 2006; 26: 3561-3566.
68. Zhang F, Aft RL. Chemosensitizing and cytotoxic effects of 2-deoxy-D-glucose on breast cancer cells. J Cancer Res Ther. 2009; 5: S41-S43.
69. Ingram DK, Zhu M, Mamczarz J, et al. Calorie restriction mimetics: an emerging research field. Aging Cell. 2006; 5: 97-108.
70. Lane MA, Roth GS, Ingram DK. Caloric restriction mimetics: a novel approach for biogerontology. Methods Mol Biol. 2007; 371: 143-149.
71. Vilalta A, Brown GC. Deoxyglucose prevents neurodegeneration in culture by eliminating microglia. J Neuroinflammation. 2014; 11: 58.
72. Duan W, Mattson MP. Dietary restriction and 2-deoxyglucose administration improve behavioral outcome and reduce degeneration of dopaminergic neurons in models of Parkinson's disease. J Neurosci Res. 1999; 57: 195-206.
73. Yao J, Chen S, Mao Z, et al. 2-Deoxy-D-glucose treatment induces ketogenesis, sustains mitochondrial function, and reduces pathology in female mouse model of Alzheimer’s disease. PLoS One. 2011; 6: e21788.
74. Garriga-Canut M, Schoenike B, Qazi R, et al. 2-Deoxy-D-glucose reduces epilepsy progression by NRSF-CtBP-dependent metabolic regulation of chromatin structure. Nat Neurosci. 2006; 9: 1382-1387.
75. Raez LE, Papadopoulos K, Ricart AD, et al. A phase I dose-escalation trial of 2-deoxy-D-glucose alone or combined with docetaxel in patients with advanced solid tumors. Cancer Chemother Pharmacol. 2013; 71: 523-530.
76. Stein M, Lin H, Jeyamohan C, et al. Targeting tumor metabolism with 2-deoxyglucose in patients with castrate-resistant prostate cancer and advanced malignancies. Prostate. 2010; 70: 1388-1394.
77. Virbasius JV, Scarpulla RC. Activation of the human mitochondrial transcription factor A gene by nuclear respiratory factors: a potential regulatory link between nuclear and mitochondrial gene expression in organelle biogenesis. Proc Natl Acad Sci U S A. 1994; 91: 1309-1313.
78. Scarpulla RC. Nuclear control of respiratory chain expression in mammalian cells. J Bioenerg Biomembr. 1997; 29: 109-119.
79. Schultz RA, Swoap SJ, McDaniel LD, et al. Differential expression of mitochondrial DNA replication factors in mammalian tissues. J Biol Chem. 1998; 273: 3447-3451.
80. Wu Z, Puigserver P, Andersson U, et al. Mechanisms controlling mitochondrial biogenesis and respiration through the thermogenic coactivator PGC-1. Cell. 1999; 98: 115-124.
81. Lin J, Handschin C, Spiegelman BM. Metabolic control through the PGC-1 family of transcription coactivators. Cell Metab. 2005; 1: 361-370.
82. Cannino G, Di Liegro CM, Rinaldi AM. Nuclear-mitochondrial interaction. Mitochondrion. 2007; 7: 359-366.
83. Wang SY, Wei YH, Shieh DB, et al. 2-Deoxy-D-glucose can complement doxorubicin and sorafenib to suppress the growth of papillary thyroid carcinoma cells. PLoS One. 2015; 10: e0130959.
84. Takahashi K, Eguchi H, Arihiro K, et al. The presence of BRAF point mutation in adult papillary thyroid carcinomas from atomic bomb survivors correlates with radiation dose. Mol Carcinog. 2007; 46: 242-248.
85. Lee HC, Li SH, Lin JC, et al. Somatic mutations in the D-loop and decrease in the copy number of mitochondrial DNA in human hepatocellular carcinoma. Mutat Res. 2004; 547: 71-78.
86. Bai RK, Perng CL, Hsu CH, et al. Quantitative PCR analysis of mitochondrial DNA content in patients with mitochondrial disease. Ann N Y Acad Sci. 2004; 1011: 304-309.
87. Lin JD, Chao TC, Weng HF, et al. Establishment of xenografts and cell lines from well-differentiated human thyroid carcinoma. J Surg Oncol. 1996; 63: 112-118.
88. Nicholls DG, Darley-Usmar VM, Wu M, et al. Bioenergetic profile experiment using C2C12 myoblast cells. J Vis Exp. 2010; (46). pii: 2511. doi: 10.3791/2511.
89. Sedliarou I, Saenko V, Lantsov D, et al. The BRAFT1796A transversion is a prevalent mutational event in human thyroid microcarcinoma. Int J Oncol. 2004; 25: 1729-1735.
90. Elisei R, Ugolini C, Viola D, et al. BRAF(V600E) mutation and outcome of patients with papillary thyroid carcinoma: a 15-year median follow-up study. J Clin Endocrinol Metab. 2008; 93: 3943-3949.
91. Mambo E, Gao X, Cohen Y, et al. Electrophile and oxidant damage of mitochondrial DNA leading to rapid evolution of homoplasmic mutations. Proc Natl Acad Sci U S A. 2003; 100: 1838-1843.
92. Cortopassi GA, Shibata D, Soong NW, et al. A pattern of accumulation of a somatic deletion of mitochondrial DNA in aging human tissues. Proc Natl Acad Sci U S A. 1992; 89: 7370-7374.
93. Gochhait S, Bhatt A, Sharma S, et al. Concomitant presence of mutations in mitochondrial genome and p53 in cancer development – a study in north Indian sporadic breast and esophageal cancer patients. Int J Cancer. 2008; 123: 2580-2586.
94. Wani AA, Sharma N, Shouche YS, et al. Nuclear-mitochondrial genomic profiling reveals a pattern of evolution in epithelial ovarian tumor stem cells. Oncogene. 2006; 25: 6336-6344.
95. Mizumachi T, Suzuki S, Naito A, et al. Increased mitochondrial DNA induces acquired docetaxel resistance in head and neck cancer cells. Oncogene. 2008; 27: 831-838.
96. Galmiche A, Fueller J. RAF kinases and mitochondria. Biochim Biophys Acta. 2007; 1773: 1256-1262.
97. Lee MH, Lee SE, Kim DW, et al. Mitochondrial localization and regulation of BRAFV600E in thyroid cancer: a clinically used RAF inhibitor is unable to block the mitochondrial activities of BRAFV600E. J Clin Endocrinol Metab. 2011; 96: E19-E30.
98. Haugen DR, Fluge Ø, Reigstad LJ, et al. Increased expression of genes encoding mitochondrial proteins in papillary thyroid carcinomas. Thyroid. 2003; 13: 613-620.
99. Trounce I. Genetic control of oxidative phosphorylation and experimental models of defects. Hum Reprod. 2000; 15 Suppl 2: 18-27.
100. Feng C, Gao Y, Wang C, et al. Aberrant overexpression of pyruvate kinase M2 is associated with aggressive tumor features and the BRAF mutation in papillary thyroid cancer. J Clin Endocrinol Metab. 2013; 98: E1524-E1533.
101. Grabellus F, Worm K, Schmid KW, et al. The BRAF V600E mutation in papillary thyroid carcinoma is associated with glucose transporter 1 overexpression. Thyroid. 2012; 22: 377-382.
102. Nicholson P, Yepiskoposyan H, Metze S, et al. Nonsense-mediated mRNA decay in human cells: mechanistic insights, functions beyond quality control and the double-life of NMD factors. Cell Mol Life Sci. 2010; 67: 677-700.
103. Valencia-Sanchez MA, Liu J, Hannon GJ, et al. Control of translation and mRNA degradation by miRNAs and siRNAs. Genes Dev. 2006; 20: 515-524.
104. Sandulache VC, Skinner HD, Wang Y, et al. Glycolytic inhibition alters anaplastic thyroid carcinoma tumor metabolism and improves response to conventional chemotherapy and radiation. Mol Cancer Ther. 2012; 11: 1373-1380.
105. Silva AS, Kam Y, Khin ZP, et al. Evolutionary approaches to prolong progression-free survival in breast cancer. Cancer Res. 2012; 72: 6362-6370.
106. Chen K, Xu X, Kobayashi S, et al. Caloric restriction mimetic 2-deoxyglucose antagonizes doxorubicin-induced cardiomyocyte death by multiple mechanisms. J Biol Chem. 2011; 286: 21993-22006.
107. Farooque A, Afrin F, Adhikari JS, et al. Protection of normal cells and tissues during radio- and chemosensitization of tumors by 2-deoxy-D-glucose. J Cancer Res Ther. 2009; 5 Suppl 1: S32-S35.
108. Denko NC. Hypoxia, HIF1 and glucose metabolism in the solid tumour. Nat Rev Cancer. 2008; 8: 705-713.
109. Kaelin WG Jr, Thompson CB. Q&;A: Cancer: clues from cell metabolism. Nature. 2010; 465: 562-564.
110. Holness MJ, Sugden MC. Regulation of pyruvate dehydrogenase complex activity by reversible phosphorylation. Biochem Soc Trans. 2003; 31: 1143-1151.
111. Fujiwara S, Kawano Y, Yuki H, et al. PDK1 inhibition is a novel therapeutic target in multiple myeloma. Br J Cancer. 2013; 108: 170-178.
112. Höckel M, Vaupel P. Tumor hypoxia: definitions and current clinical, biologic, and molecular aspects. J Natl Cancer Inst. 2001; 93: 266-276.
113. Teicher BA. Hypoxia and drug resistance. Cancer Metastasis Rev. 1994; 13: 139-168.
114. Sastry KS, Al-Muftah MA, Li P, et al. Targeting proapoptotic protein BAD inhibits survival and self-renewal of cancer stem cells. Cell Death Differ. 2014; 21: 1936-1949.
115. Khor TO, Gul YA, Ithnin H, et al. Positive correlation between overexpression of phospho-BAD with phosphorylated Akt at serine 473 but not threonine 308 in colorectal carcinoma. Cancer Lett. 2004; 210: 139-150.
116. Kao C, Chao A, Tsai CL, et al. Phosphorylation of signal transducer and activator of transcription 1 reduces bortezomib-mediated apoptosis in cancer cells. Cell Death Dis. 2013; 4: e512.
117. Miller DM, Thomas SD, Islam A, et al. c-Myc and cancer metabolism. Clin Cancer Res. 2012; 18: 5546-5553.
118. Teicher BA, Linehan WM, Helman LJ. Targeting cancer metabolism. Clin Cancer Res. 2012; 18: 5537-5545.
119. Merchan JR, Kovács K, Railsback JW, et al. Antiangiogenic activity of 2-deoxy-D-glucose. PLoS One. 2010; 5: e13699.
120. Wang Q, Liang B, Shirwany NA, et al. 2-Deoxy-D-glucose treatment of endothelial cells induces autophagy by reactive oxygen species-mediated activation of the AMP-activated protein kinase. PLoS One. 2011; 6: e17234.
121. Bergers G, Hanahan D. Modes of resistance to anti-angiogenic therapy. Nat Rev Cancer. 2008; 8: 592-603.
122. Mattila PK, Lappalainen P. Filopodia: molecular architecture and cellular functions. Nat Rev Mol Cell Biol. 2008; 9: 446-454.
123. Ridley AJ. Life at the leading edge. Cell. 2011; 145: 1012-1022.
124. Galluzzi L, Bravo-San Pedro JM, Kroemer G. Organelle-specific initiation of cell death. Nat Cell Biol. 2014; 16: 728-736.
125. Ivanovska J, Mahadevan V, Schneider-Stock R. DAPK and cytoskeleton-associated functions. Apoptosis. 2014; 19: 329-338.
126. Leadsham JE, Kotiadis VN, Tarrant DJ, et al. Apoptosis and the yeast actin cytoskeleton. Cell Death Differ. 2010; 17: 754-762.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊