|
[1] Melmed S, Polonsky KS, Larsen PR and Kronenberg HM. Williams Textbook of Endocrinology. 2012:1371–435. [2] Shi Y, Hu FB. The global implications of diabetes and cancer. The Lancet. 2014;383:1947-8. [3] Chiang JL, Kirkman MS, Laffel LM, Peters AL. Type 1 diabetes through the life span: a position statement of the American diabetes association. Diabetes Care. 2014;37:2034-54. [4] Leonor G, Tim N, Jessica B, Ute L, Olivier J. IDF diabetes atlas. International Diabetes Federation. 2013;101:349-51. [5] Liu S, Jin MN, Quan YS, Kamiyama F, Katsumi H, Sakane T. The development and characteristics of novel microneedle arrays fabricated from hyaluronic acid, and their application in the transdermal delivery of insulin. Journal of Controlled Release. 2012;161:933-41. [6] Hultstrom M, Roxhed N, Nordquist L. Intradermal insulin delivery: a promising future for diabetes management. Journal of Diabetes Science and Technology. 2014;8:453-7. [7] Owens DR, Zinman B, Bolli G. Alternative routes of insulin delivery. Diabetic Medicine. 2003;20:886–98. [8] Palermo A, Napoli N, Manfrini S, Lauria A, Strollo R, Pozzilli P. Buccal spray insulin in subjects with impaired glucose tolerance: the prevoral study. Diabetes, Obesity &; Metabolism. 2011;13:42-6. [9] Pozzilli P, Raskin P, Parkin CG. Review of clinical trials: update on oral insulin spray formulation. Diabetes, Obesity &; Metabolism. 2010;12:91-6. [10] Hou T, Xin W, Dong Z. Functional and pathological study of intranasal absorption of insulin aided by azone. Chinese Journal of Otorhinolaryngology Head and Heck Surgery. 2002;37:271-3. [11] Dondeti P, Zia H, Needham TE. In vivo evaluation of spray formulations of human insulin for nasal delivery. International Journal of Pharmaceutics. 1995;122:91-105. [12] Pillion DJ, Amsden JA, Kensil CR, Recchia J. Structure-function relationship among quillaja saponins serving as excipients for nasal and ocular delivery of insulin. Journal of Pharmaceutical Sciences. 1996;85:518-24. [13] Pillion DJ, Hosmer S, Meezan E. Dodecylmaltoside-mediated nasal and ocular absorption of lyspro insulin : independence of surfactant action from multimer dissociation. Journal of Pharmaceuical Research. 1998;15:1637-9. [14] Xuan B, McClellan DA, Moore R, Chiou GC. Alternative delivery of insulin via eye drops. Diabetes Technology &; Therapeutics. 2005;7:695-8. [15] 李素霞, 鄒立家, 張天民. 胰島素經眼給藥製劑的研究. 中國生化藥物志. 1998;19:10. [16] Migalska K, Morrow DI, Garland MJ, Thakur R, Woolfson AD, Donnelly RF. Laser-engineered dissolving microneedle arrays for transdermal macromolecular drug delivery. Pharmaceutical Research. 2011;28:1919-30. [17] Deng YL, Juang YJ. Polydimethyl siloxane wet etching for three dimensional fabrication of microneedle array and high-aspect-ratio micropillars. Biomicrofluidics. 2014;8:026502. [18] Zhu Z, Luo H, Lu W, Luan H, Wu Y, Luo J. Rapidly dissolvable microneedle patches for transdermal delivery of exenatide. Pharmaceutical Research. 2014;31:3348-60. [19] Moga KA, Bickford LR, Geil RD, Dunn SS, Pandya AA, Wang Y. Rapidly-dissolvable microneedle patches via a highly scalable and reproducible soft lithography approach. Advanced Materials. 2013;25:5060-6. [20] Matsuo K, Yokota Y, Zhai Y, Quan YS, Kamiyama F, Mukai Y. A low-invasive and effective transcutaneous immunization system using a novel dissolving microneedle array for soluble and particulate antigens. Journal of Controlled Release. 2012;161:10-7. [21] Kim JD, Kim M, Yang H, Lee K, Jung H. Droplet-born air blowing: novel dissolving microneedle fabrication. Journal of Controlled Release. 2013;170:430-6. [22] Ito Y, Nakahigashi T, Yoshimoto N, Ueda Y, Hamasaki N, Takada K. Transdermal insulin application system with dissolving microneedles. Diabetes Technology &; Therapeutics. 2012;14:891-9. [23] Hirobe S, Azukizawa H, Matsuo K, Zhai Y, Quan YS, Kamiyama F. Development and clinical study of a self-dissolving microneedle patch for transcutaneous immunization device. Pharmaceutical Research. 2013;30:2664-74. [24] Pankowska E, Blazik M, Dziechciarz P, Szypowska A, Szajewska H. Continuous subcutaneous insulin infusion vs. multiple daily injections in children with type 1 diabetes: a systematic review and meta-analysis of randomized control trials. Pediatric Diabetes. 2009;10:52-8. [25] Davidson A, Al-Qallaf B, Das DB. Transdermal drug delivery by coated microneedles: geometry effects on effective skin thickness and drug permeability. Chemical Engineering Research and Design. 2008;86:1196-206. [26] Hong X, Wei L, Wu F, Wu Z, Chen L, Liu Z. Dissolving and biodegradable microneedle technologies for transdermal sustained delivery of drug and vaccine. Drug Design, Development and Therapy. 2013;7:945-52. [27] Donnelly RF, Singh TR, Alkilani AZ, McCrudden MT, O'Neill S, O'Mahony C. Hydrogel-forming microneedle arrays exhibit antimicrobial properties: potential for enhanced patient safety. International Journal of Pharmaceutics. 2013;451:76-91. [28] 行政院衛生署. 糖尿病用降血糖藥胰島素. 藥物食品安全週報. 2007;第116期. [29] 佛教慈濟綜合醫院. 藥物Q&;A:胰島素分類與使用. 慈濟藥訊. 第56期:21. [30] Hiraishi Y, Nakagawa T, Quan YS, Kamiyama F, Hirobe S, Okada N. Performance and characteristics evaluation of a sodium hyaluronate-based microneedle patch for a transcutaneous drug delivery system. International Journal of Pharmaceutics. 2013;441:570-9. [31] Kim YC, Park JH, Prausnitz MR. Microneedles for drug and vaccine delivery. Advanced Drug Delivery Reviews. 2012;64:1547-68. [32] McAllister DV, Wang PM, Davis SP, Park JH, Canatella PJ, Allen MG. Microfabricated needles for transdermal delivery of macromolecules and nanoparticles: fabrication methods and transport studies. Proceedings of the National Academy of Sciences of the United States of America. 2003;100:13755-60. [33] Henry S, Devin V. Mcallister, Allen MG, Prausnitz MR. Microfabricated microneedles: anovel approach to transdermal drug delivery. Pharmaceutical Sciences. 1998;87:922-5. [34] Gill HS, Prausnitz MR. Coated microneedles for transdermal delivery. Journal of Controlled Release. 2007;117:227–37. [35] Martanto W, Davis SP, Holiday NR, J. Wang HSG, Prausnitz MR. Transdermal delivery of insulin using microneedles in vivo. Pharmaceutical Research. 2004;21:947–52. [36] Matriano JA, Cormier M, Johnson J, Young WA, Buttery M, NyamK. Macroflux (R) microprojection array patch technology: a new and efficient approach for intracutaneous immunization. Pharmaceutical Research. 2002;19: 63–70. [37] Omatsu T, Chujo K, Miyamoto K, Okida M, Nakamura K, Aoki N. Metal microneedle fabrication using twisted light with spin. Optical Express. 2010;18:17967–73. [38] Jung PG, Lee TW, Oh DJ, Hwang SJ, Jung ID, Lee SM. Nickel microneedles fabricated by sequential copper and nickel electroless plating and copper chemical wet etching. Sensors and Materials. 2008;20:45-53. [39] Bystrova S, Luttge R. Micromolding for ceramic microneedle arrays. Microelectronic Engineering. 2011;88:1681-4. [40] Gittard SD, Ovsianikov A, Chichkov BN, Doraiswamy A, Narayan RJ. Two-photon polymerization of microneedles for transdermal drug delivery. Expert Opinion on Drug Delivery. 2010;7:513-33. [41] Moon SJ, Lee SS, Lee HS, Kwon TH. Fabrication of microneedle array using LIGA and hot embossing process. Microsystem Technologies. 2005;11:311-8. [42] McGrath MG, Vrdoljak A, O'Mahony C, Oliveira JC, Moore AC, Crean AM. Determination of parameters for successful spray coating of silicon microneedle arrays. International Journal of Pharmaceutics. 2011;415:140-9. [43] Lee KJ, Park SH, Lee JY, Joo HC, Jang EH, Youn YN. Perivascular biodegradable microneedle cuff for reduction of neointima formation after vascular injury. Journal of Controlled Release. 2014;192:174-81. [44] Gill HS, Prausnitz MR. Coating formulations for microneedles. Pharmaceutical Research. 2007;24:1369-80. [45] Davis SP, Martanto W, Allen MG, Prausnitz MR. Hollow metal microneedles for insulin delivery to diabetic rats. IEEE Transactions on Biomedical Engineering. 2005;52:909–15. [46] Roxhed N, Gasser TC, Griss P, Holzapfel GA, Stemme G. Penetration-enhanced ultrasharp microneedles and prediction on skin interaction for efficient transdermal drug delivery. Journal of Microelectromechanical Systems. 2007;16:1429–40. [47] Luttge R, Berenschot EJW, Boer MJd, Altpeter DM, Vrouwe EX, Berg AVD. Integrated lithographic molding for microneedle-based devices. Journal of Microelectromechanical Systems. 2007;16:872–84. [48] Ma B, Liu S, Gan Z, Liu G, Cai X, Zhang H. A PZT insulin pump integrated with a silicon microneedle array for transdermal drug delivery. Microfluidics and Nanofluidics. 2006;2:417-23. [49] Park SY, Lee HU, Lee YC, Kim GH, Park EC, Han SH. Wound healing potential of antibacterial microneedles loaded with green tea extracts. Materials Science and Engineering C. 2014;42:757-62. [50] Katsumi H, Liu S, Tanaka Y, Hitomi K, Hayashi R, Hirai Y. Development of a novel self-dissolving microneedle array of alendronate, a nitrogen-containing bisphosphonate: evaluation of transdermal absorption, safety, and pharmacological effects after application in rats. Journal of Pharmaceutical Sciences. 2012;101:3230-8. [51] Lee JW, Park JH, Prausnitz MR. Dissolving microneedles for transdermal drug delivery. Biomaterials. 2008;29:2113-24. [52] Lee JW, Choi SO, Felner EI, Prausnitz MR. Dissolving microneedle patch for transdermal delivery of human growth hormone. Small. 2011;7:531-9. [53] Fukushima K, Ise A, Morita H, Hasegawa R, Ito Y, Sugioka N. Two-layered dissolving microneedles for percutaneous delivery of peptide/protein drugs in rats. Pharmaceutical Research. 2011;28:7-21. [54] Ling MH, Chen MC. Dissolving polymer microneedle patches for rapid and efficient transdermal delivery of insulin to diabetic rats. Acta Biomaterialia. 2013;9:8952-61. [55] Chu LY, Prausnitz MR. Separable arrowhead microneedles. Journal of Controlled Release. 2011;149:242-9. [56] Wendorf JR, Ghartey-Tagoe EB, Williams SC, Enioutina E, Singh P, Cleary GW. Transdermal delivery of macromolecules using solid-state biodegradable microstructures. Pharmaceutical Research. 2011;28:22-30. [57] Choi CK, Lee KJ, Youn YN, Jang EH, Kim W, Min BK. Spatially discrete thermal drawing of biodegradable microneedles for vascular drug delivery. European Journal of Pharmaceutics and Biopharmaceutics. 2013;83:224-33. [58] G¨ok E, Olgaz S. Binding of fluorescein isothiocyanate to insulin: afluorimetric labeling study. Journal of Fluorescence. 2004;14:203-6. [59] Yan G, Warner KS, Zhang J, Sharma S, Gale BK. Evaluation needle length and density of microneedle arrays in the pretreatment of skin for transdermal drug delivery. International Journal of Pharmaceutics. 2010;391:7-12. [60] Donnelly RF, Garland MJ, Morrow DI, Migalska K, Singh TR, Majithiya R. Optical coherence tomography is a valuable tool in the study of the effects of microneedle geometry on skin penetration characteristics and in-skin dissolution. Journal of Controlled Release. 2010;147:333-41. [61] Garland MJ, Migalska K, Tuan-Mahmood TM, Raghu Raj Singh T, Majithija R, Caffarel-Salvador E. Influence of skin model on in vitro performance of drug-loaded soluble microneedle arrays. International Journal of Pharmaceutics. 2012;434:80-9.
|