|
[1] H. Michael, I. Gordon, and P. Wojciech, "Histology: a text and atlas," Lippincott Williams and, vol. 47, pp. 602-641, 2003. [2] 唐智宏, "雷射燒結組織支架製作與水膠結合體外軟骨細胞評估," 長庚大學, 2008. [3] D. L. Wise, "Biomaterials and Bioengineering Handbook," Sensor Review, vol. 21, pp. 323-324, 2001. [4] 傅宇輝, "骨科學原理及應用 (上冊), 大中國圖書公司," 1987. [5] 簡千翔, "明膠與陶瓷複合式支架培養關節軟骨細胞的研究," 清華大學化學工程學系學位論文, pp. 1-81, 2006. [6] J. S. Temenoff and A. G. Mikos, "Review: tissue engineering for regeneration of articular cartilage," Biomaterials, vol. 21, pp. 431-440, 2000. [7] 章世豪, "膠原蛋白改質聚 a 羥酸支架應用於軟骨修復的研究," 2001. [8] S. Wakitani, T. Goto, S. J. Pineda, R. G. Young, J. M. Mansour, A. I. Caplan, et al., "Mesenchymal cell-based repair of large, full-thickness defects of articular cartilage," The Journal of Bone &; Joint Surgery, vol. 76, pp. 579-592, 1994. [9] R. Lanza, R. Langer, and J. P. Vacanti, Principles of tissue engineering: Academic press, 2011. [10] L. E. Freed, R. Langer, I. Martin, N. R. Pellis, and G. Vunjak-Novakovic, "Tissue engineering of cartilage in space," Proceedings of the National Academy of Sciences, vol. 94, pp. 13885-13890, 1997. [11] P. Brun, G. Abatangelo, M. Radice, V. Zacchi, D. Guidolin, D. D. Gordini, et al., "Chondrocyte aggregation and reorganization into three‐dimensional scaffolds," Journal of biomedical materials research, vol. 46, pp. 337-346, 1999. [12] R. P. Silverman, L. Bonasser, D. Passaretti, M. A. Randolph, and M. J. Yaremchuk, "Adhesion of tissue-engineered cartilage to native cartilage," Plastic and reconstructive surgery, vol. 105, pp. 1393-1398, 2000. [13] P. D. Benya and J. D. Shaffer, "Dedifferentiated chondrocytes reexpress the differentiated collagen phenotype when cultured in agarose gels," Cell, vol. 30, pp. 215-224, 1982. [14] 李威勳, "雷射燒結快速成型系統開發與組織工程支架應用研究," 長庚大學, 2005. [15] 潘楷明, "雷射燒結孔洞支架製作及測試," 長庚大學, 2007. [16] 蔡冠宇, "軟硬骨複合式組織支架快速成型技術開發與應用研究," 長庚大學, 2006. [17] 劉喜文, "雷射燒結快速成型技術結合高分子水膠於硬骨組織支架製程之發展與臨床評估," 長庚大學, 2008. [18] 王修誠, "聚己內酯結合三鈣磷酸鹽生物支架表面改質與功能性骨生成刺激支架載子設計製作研究," 長庚大學, 2010. [19] 盧偉傑, "組織支架表面改質與動態培養軟骨細胞增生實驗," 長庚大學, 2011. [20] 陳璽鎔, "聚己內酯支架添加第 II 型膠原蛋白體外驗證與壓力感測支架載子設計製作研究," 長庚大學, 2010. [21] F. Guilak, D. L. Butler, and S. A. Goldstein, "Functional tissue engineering: the role of biomechanics in articular cartilage repair," Clinical Orthopaedics and Related Research, vol. 391, pp. S295-S305, 2001. [22] R. L. Carrier, M. Papadaki, M. Rupnick, F. J. Schoen, N. Bursac, R. Langer, et al., "Cardiac tissue engineering: cell seeding, cultivation parameters, and tissue construct characterization," Biotechnology and bioengineering, vol. 64, pp. 580-589, 1999. [23] S. Mizuno, T. Tateishi, T. Ushida, and J. Glowacki, "Hydrostatic fluid pressure enhances matrix synthesis and accumulation by bovine chondrocytes in three‐dimensional culture," Journal of cellular physiology, vol. 193, pp. 319-327, 2002. [24] R. L. Smith, D. R. Carter, and D. J. Schurman, "Pressure and shear differentially alter human articular chondrocyte metabolism: a review," Clinical orthopaedics and related research, vol. 427, pp. S89-S95, 2004. [25] D. L. Butler, N. Juncosa‐Melvin, G. P. Boivin, M. T. Galloway, J. T. Shearn, C. Gooch, et al., "Functional tissue engineering for tendon repair: A multidisciplinary strategy using mesenchymal stem cells, bioscaffolds, and mechanical stimulation," Journal of Orthopaedic Research, vol. 26, pp. 1-9, 2008. [26] E. C. Breen, "Mechanical strain increases type I collagen expression in pulmonary fibroblasts in vitro," Journal of applied physiology, vol. 88, pp. 203-209, 2000. [27] J. C. Wolchok, C. Brokopp, C. J. Underwood, and P. A. Tresco, "The effect of bioreactor induced vibrational stimulation on extracellular matrix production from human derived fibroblasts," Biomaterials, vol. 30, pp. 327-335, 2009. [28] S. Mishima, "The effect of long-term pulsing electromagnetic field stimulation on experimental osteoporosis of rats," Journal of UOEH, vol. 10, pp. 31-45, 1988. [29] J. Rubin, K. J. McLeod, L. Titus, M. S. Nanes, B. D. Catherwood, and C. T. Rubin, "Formation of osteoclast‐like cells is suppressed by low frequency, low intensity electric fields," Journal of Orthopaedic Research, vol. 14, pp. 7-15, 1996. [30] R. Balint, N. J. Cassidy, and S. H. Cartmell, "Electrical stimulation: a novel tool for tissue engineering," Tissue Engineering Part B: Reviews, vol. 19, pp. 48-57, 2012. [31] F. Lejbkowicz, M. Zwiran, and S. Salzberg, "The response of normal and malignant cells to ultrasound in vitro," Ultrasound in medicine &; biology, vol. 19, pp. 75-82, 1993. [32] F. Lejbkowicz and S. Salzberg, "Distinct sensitivity of normal and malignant cells to ultrasound in vitro," Environmental health perspectives, vol. 105, p. 1575, 1997. [33] A. Shimazaki, K. Inui, Y. Azuma, N. Nishimura, and Y. Yamano, "Low-intensity pulsed ultrasound accelerates bone maturation in distraction osteogenesis in rabbits," Journal of Bone &; Joint Surgery, British Volume, vol. 82, pp. 1077-1082, 2000. [34] P. Reher, E.-N. I. Elbeshir, W. Harvey, S. Meghji, and M. Harris, "The stimulation of bone formation in vitro by therapeutic ultrasound," Ultrasound in medicine &; biology, vol. 23, pp. 1251-1258, 1997. [35] A. Mortimer and M. Dyson, "The effect of therapeutic ultrasound on calcium uptake in fibroblasts," Ultrasound in medicine &; biology, vol. 14, pp. 499-506, 1988. [36] J. S. Sun, Y. H. Tsuang, F. H. Lin, H. C. Liu, C. Z. Tsai, and W. H. S. Chang, "Bone defect healing enhanced by ultrasound stimulation: an in vitro tissue culture model," Journal of biomedical materials research, vol. 46, pp. 253-261, 1999. [37] J. W. Busse, M. Bhandari, A. V. Kulkarni, and E. Tunks, "The effect of low-intensity pulsed ultrasound therapy on time to fracture healing: a meta-analysis," Canadian Medical Association Journal, vol. 166, pp. 437-441, 2002. [38] T. Nishikori, M. Ochi, Y. Uchio, S. Maniwa, H. Kataoka, K. Kawasaki, et al., "Effects of low‐intensity pulsed ultrasound on proliferation and chondroitin sulfate synthesis of cultured chondrocytes embedded in Atelocollagen® gel," Journal of biomedical materials research, vol. 59, pp. 201-206, 2002. [39] C.-C. Wu, "Exposure to low intensity ultrasound stimulates aggrecan gene expression by cultured chondrocytes," Trans. Orthop. Res. Soc., vol. 21, p. 622, 1996. [40] J. Parvizi, C. C. Wu, D. G. Lewallen, J. F. Greenleaf, and M. E. Bolander, "Low‐intensity ultrasound stimulates proteoglycan synthesis in rat chondrocytes by increasing aggrecan gene expression," Journal of Orthopaedic Research, vol. 17, pp. 488-494, 1999. [41] Z.-J. Zhang, J. Huckle, C. A. Francomano, and R. G. Spencer, "The effects of pulsed low-intensity ultrasound on chondrocyte viability, proliferation, gene expression and matrix production," Ultrasound in medicine &; biology, vol. 29, pp. 1645-1651, 2003. [42] P. G. De Deyne and M. Kirsch-Volders, "In vitro effects of therapeutic ultrasound on the nucleus of human fibroblasts," Physical Therapy, vol. 75, pp. 629-634, 1995. [43] 鄭益利, "超音波對人類軟骨細胞的生物效應," 撰者, 2005. [44] 郭霽慶, "超音波刺激與動態培養對組織工程支架體外再生組織形成之影響," 2002. [45] H.-L. Liu, W.-S. Chen, J.-S. Chen, T.-C. Shih, Y.-Y. Chen, and W.-L. Lin, "Cavitation-enhanced ultrasound thermal therapy by combined low-and high-frequency ultrasound exposure," Ultrasound in medicine &; biology, vol. 32, pp. 759-767, 2006. [46] H. Tang, C. C. J. Wang, D. Blankschtein, and R. Langer, "An investigation of the role of cavitation in low-frequency ultrasound-mediated transdermal drug transport," Pharmaceutical research, vol. 19, pp. 1160-1169, 2002. [47] 劉. T. 謝. (TW), "多頻驅動單一換能器之超音波系統及訊號產生裝置," 2008. [48] 劉峻幗, "複合式生醫陶瓷支架上關節軟骨細胞行為的研究," 2005. [49] 謝汶淇, "以明膠/幾丁聚醣/透明質酸及富含血小板血漿之凍膠作為皮膚創傷癒合," 長庚大學, 2011. [50] S.-N. Park, H. J. Lee, K. H. Lee, and H. Suh, "Biological characterization of EDC-crosslinked collagen–hyaluronic acid matrix in dermal tissue restoration," Biomaterials, vol. 24, pp. 1631-1641, 2003.
|