跳到主要內容

臺灣博碩士論文加值系統

(3.229.142.104) 您好!臺灣時間:2021/07/30 15:59
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:李業威
研究生(外文):LEE , YEH-WEI
論文名稱:開放圓柱其波形壁面之熱傳分析
論文名稱(外文):Heat Transfer from an open cylinder with wavy surface
指導教授:楊一龍
指導教授(外文):Yi-Lung Yang
學位類別:碩士
校院名稱:中華大學
系所名稱:機械工程學系碩士班
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2015
畢業學年度:103
語文別:中文
論文頁數:54
中文關鍵詞:微分法開放邊界瑞利數普朗特常數雷諾數波形壁
外文關鍵詞:Differential AlgorithmOpen BoundariesRayleigh numberPrandtl numberReynolds numberWavy wall
相關次數:
  • 被引用被引用:2
  • 點閱點閱:67
  • 評分評分:
  • 下載下載:8
  • 收藏至我的研究室書目清單書目收藏:0
本研究探討微分法處理開放邊界下可壓縮Navier-Stokes方程式之解答。透過邊界條件之設定可模擬自然對流之流場與溫度分布,透過計算邊界大小之影響可比較出圓柱熱傳量之差異,採用文獻實驗數據之比對發現數值結果相當吻合圓柱局部紐塞數分布,且開放圓柱自然對流下不同瑞利數所得之熱傳量,透過無因次分析發現符合瑞利數0.25次方之關係。至於圓柱表面波數與振幅等造型改變對局部紐塞數產生明顯之波峰與波谷現象,當波數與振幅增加時其流體阻力之影響,其平均紐塞數皆會減小,但隨著表面積之增大其熱傳總量仍會略增。至於水平進氣與垂直浮力交互作用下混合對流分析中,可明顯掌握散熱機制由上壁傳導逐漸轉換成出口噴流主導之物理現象。
A differential algorithm has been carried to solve the compressible Navier-Stokes equations for open boundaries. The proposed boundary conditions enable one to simulate the flow and thermal fields of natural convection problems. The effect of computational domain on the heat transfer of an open cylinder was studied. The present results of the local Nusselt number distribution are compared well with the results given in the literature. Besides, the distributions of the local heat transfer coefficient for different Rayleigh numbers for an open cylinder can be correlated well with Rayleigh number to the power of 0.25. Further, a study on number of waviness and its amplitude is present to reveal the behavior of the heat transfer along the crest and trough of the wavy wall. As the numbers of waviness or its amplitude are increased, the averaged Nusselt number is decreased due to friction. However, as the surface area is increased due to its waviness, the overall heat transfer is increased as well. Finally, the solution is extended to mixed convection problem. The results show a clear picture on the mechanism of conduction dominated top wall toward convection dominated outlet flow due to the coupling of the horizontal inflow and the vertical buoyancy flow.
中文摘要 iii
Abstract iv
目錄 v
圖目錄 vii
符號定義 viii
第一章 緒論 1
1-1 前言 1
1-2 文獻回顧 1
1-3 採用方法 3
1-4 文章安排 3
第二章 物理問題描述 5
2.1 開放圓柱下自然對流與流場分析 5
2.2開放圓柱下混合對流與流場分析 6
2.3 無單位係數定義 6
2.4 基本假設 7
第三章 數值方法 8
3.1 Navier-Stokes方程式 8
3.2時間積分 9
3.3 流通量計算 10
第四章 結果與討論 12
4-1不同邊界大小對圓柱熱傳分析之影響 12
4-2數值與文獻結果比對 13
4-3開放圓柱其壁面波數對熱傳之影響 14
4-4開放圓柱其壁面振幅對熱傳之影響 15
4-5開放圓柱下不同理查森數對熱傳之影響 15
第五章 結論與展望 17
5-1 結論 17
5-2 未來展望 18
參考文獻 19

1. Y.L. Yang, Y.C. Lin, A numerical study of natural convective heat transfer in a cavity using a high-order differential scheme, Journal of Aeronautics, Astronautics and Aviation, Series A, 42 (2010) 123-130.
2. Y.L. Yang, Y.C. Lin, Numerical investigation of natural convection in an inclined wavy cavity using a high-order differential scheme, Journal of Aeronautics, Astronautics and Aviation, Series A, 43 (2011) 045-056.
3. Y.L. Yang, P.C. Chu, Numerical Simulation of Instantaneous Heat Transfer in Reciprocating Internal Combustion Engines, Advanced Materials Research Vols. 765-767 (2013) pp 351-356.
4. Y.L. Yang, P.C. Chu, Advanced computational methods for predictions of flow and thermal fields in a reciprocating piston-cylinder assembly,中國機械工程學會第三十屆全國學術研討會論文集,中華民國一百零二年十二月六日、七日,國立宜蘭大學宜蘭縣,Paper ID: 1498.
5. Y.L. Yang, P.C. Chu, 帶動轉機下缸內二維與三維瞬時熱傳分析比較,中國機械工程學會第三十一屆全國學術研討會論文集,逢甲大學台中市,中華民國一百零三年十二月六、七日,論文編號:01812.
6. Y.L. Yang, Kuan-Lin Chen and Yu-Ta Hsu, Effect of Inclination Angle of a Rhombic Enclosure on Natural Convection due to Differential Heating and Rayleigh-Bѐnard Configuration, J. Aero. Astro. and Avia. Series A, 46 No.3 (2014) 159 – 174.
7. D.H. Rudy, J.C. Strikwerda, A nonreflecting outflow boundary condition for subsonic Navier–Stokes calculations, J. Comput. Phys. 36 (1980) 55–70.
8. K.W. Thompson, Time-dependent boundary conditions for hyperbolic systems, J. Comput. Phys. 68 (1987) 1–24.
9. J.B. Keller, D. Givoli, Exact nonreflecting boundary conditions, J. Comput. Phys. 82 (1) (1989) 172–192.
10. M.B. Giles, Nonreflecting boundary conditions for Euler equations calculations, AIAA J. 28 (12) (1990) 2050–2058.
11. T. Poinsot, S. Lele, Boundary conditions for direct simulations of compressible viscous flows, J. Comput. Phys. 101 (1992) 104–129.
12. M.J. Grote, J.B. Keller, On nonreflecting boundary conditions, J. Comput. Phys. 122 (2) (1995) 231–243.
13. M. Baum, T. Poinsot, D. The’venin, Accurate boundary conditions for multicomponent reactive flows, J. Comput. Phys. 116 (2) (1995) 247–261.
14. S.V. Tsynkov, V.N. Vatsa, Improved treatment of external boundary conditions for three-dimensional flow computations, AIAA J. 36 (11) (1998) 1998–2004.
15. K. Khanafer, K. Vafai, Effective boundary conditions for buoyancy-driven flows and heat transfer in fully open-ended two-dimensional enclosures, Int. J. Heat Mass Transfer 45 (2002) 2527–2538.
16. M. Klein, A. Sadiki, J. Janicka, A digital filter based generation of inflow data for spatially developing direct numerical or large eddy simulations, J. Comput. Phys. 186 (2003) 652–665.
17. W. Polifke, C. Wall, P. Moin, Partially reflecting and non-reflecting boundary conditions for simulation of compressible viscous flow, J. Comput. Phys. 202 (2005) 710–736.
18. W. Polifke, C. Wall, P. Moin, Partially reflecting and non-reflecting boundary conditions for simulation of compressible viscous flow, J. Comput. Phys., 213 (1) (2006) 437–449.
19. G. Lodato, P. Domingo, L. Vervisch, Three-dimensional boundary conditions for direct and large-eddy simulation of compressible viscous flows, J. Comput. Phys. 227 (2008) 5105–5143.
20. Wu-Shung Fu, Chung-Gang Li, Chien-Ping Huang, Jieh-Chau Huang, An investigation of a high temperature difference natural convection in a finite length channel without Bossinesq assumption, Int. J. Heat Mass Transfer 52 (2009) 571–2580.
21. Wu-Shung Fu, Chung-Gang Li, Tseng Ching-Chi, An investigation of a dual reflection phenomenon of a natural convection in a three dimensional horizontal channel without Boussinesq assumption, Int. J. Heat Mass Transfer 53 (2010) 575–1585.
22. Wu-Shung Fu, Wei-Hsiang Wang, Chung-Gang, Shang-Hao Huang, An investigation of natural convection in parallel square plates with a heated bottom surface by an absorbing boundary condition, Int. J. Heat Mass Transfer 56 (2013) 35–44.
23. M. J. Shah, E.E. Petersen, A. Acrivos, Heat transfer from a cylinder to a power lawn on-Newtonian fluid, AIChE J. 8 (1962) 542–549.
24. V.T. Morgan, The overall convective heat transfer from smooth circular cylinders, Adv. Heat Transfer 11 (1975) 199–264.
25. R.M. Fand, E.W. Morris, M. Lum, Natural convection heat transfer from horizontal cylinders to air, water and silicone oils for Rayleigh numbers between 3 _ 102 and 2 _ 107, Int. J. Heat Mass Transfer 20 (1977) 1173–1184.
26. A. Prhashanna, R.P. Chhabra, Laminar natural convection from a horizontal cylinder in power-law fluids, Ind. Eng. Chem. Res. 50 (2011) 2424–2440.
27. S.K. Park, K.S. Chang, Numerical study on interactive laminar natural convection from a pair of vertically separated horizontal cylinders, Numer.Heat Transfer 14 (1988) 61–74.
28. H. Yuncu, A. Batta, Effect of vertical separation distance on laminar natural convective heat transfer over two vertically spaced equi-temperature horizontal cylinders, Appl. Sci. Res. 52 (1994) 259–277.
29. R. Chouikh, A. Guizani, M. Maalej, A. Belghith, Numerical study of the laminar natural convection flow around an array of two horizontal isothermal cylinders, Int. Commun. Heat Mass Transfer 26 (1999) 329–338.
30. R. Chouikh, A. Guizani, A. El Cafsi, M. Maalej, A. Belghith, Experimental study of the natural convection flow around an array of heated horizontal cylinders, Renew. Energy 21 (2000) 65–78.
31. M. Corcione, Correlating equations for free convection heat transfer from horizontal isothermal cylinders set in a vertical array, Int. J. Heat Mass Transfer 48 (2005) 3660–3673.
32. E. Paykoc, H. Yuncu, M. Bezzazog˘lu, Laminar natural convective heat transfer over two vertically spaced isothermal horizontal cylinders, Exp. Therm. Fluid Sci. 4 (1991) 362–368.
33. M.S. Sadeghipour, M. Asheghi, Free convection heat transfer from arrays of vertically separated horizontal cylinders at low Rayleigh numbers, Int. J. Heat Mass Transfer 37 (1994) 103–109.
34. E.M. Sparrow, J.E. Niethammer, Effect of vertical separation distance and cylinder-to-cylinder temperature imbalance on natural convection for a pair of horizontal cylinders, J. Heat Transfer 103 (1981) 638–644.
35. J.H. Heo, M.S. Chae, B.J. Chung, Influences of vertical and horizontal pitches on the natural convection of two staggered cylinders, Int. J. Heat Mass Transfer 57 (2013) 1–8.
36. S. Grafsronningen, A. Jensen, Natural convection heat transfer from two horizontal cylinders at high Rayleigh numbers, Int. J. Heat Mass Transfer 55 (2012) 5552–5564.
37. R.P. Chhabra, Fluid flow and heat transfer from circular and non-circular cylinders submerged in non-Newtonian liquids, Adv. Heat Transfer 43 (2011) 289–417.
38. Y.H. Choi, and C.L. Merkle, The Application of Preconditioning in Viscous Flows, Journal of Computational Physics, Vol. 105, No. 2 (1993) pp. 207-223.
39. J.M.Weiss and W.A. Smith, Preconditioning Applied to Variable and Constant Density Time-Accurate Flows on Unstructured Meshes,” AIAA Paper, 94-2209, (1994).
40. J.R. Edwards and M.S. Liou, Low-Diffusion Flux-Splitting Methods for Flows at All Speeds,” AIAA Journal, Vol. 36, No. 9 (1998) pp. 1610-1617.
41. T.H. Kuchn, R.J. Goldstein, Numerical Solution to the Navier-Stokes Equaitons for Laminar Natural Convection about a Horizontal Isothermal Circular, Int. J. Heat Mass Transfer 23 (1980) 971–979.
42. O. Reymond, D.B. Murray, T.S. O’Donovan, Natural Convection Heat Transfer for Two Horizontal Cylinders, Exp. Thermal and Fluid Science, 32 (2008) 1702-–1709.
43. S.W. Churchill and H.H.S. Chu, Correlating Equations for Laminar and Turbulent Free Convection from a Horizontal Cylinder, Int. J. Heat Mass Transfer 18 (1975) p. 1049.
44. R.M. Fand, Heat Transfer by Forced Conveciton from a Cylinder to Water in Crossflow, Int. J. Heat Mass Transfer 8 (1965) p. 995.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top