|
1.Leddy, L.R. and R.E. Holmes, Chondrosarcoma of bone. Cancer Treat Res, 2014. 162: p. 117-30. 2.Bone sarcomas: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann Oncol, 2014. 25 Suppl 3: p. iii113-23. 3.Gelderblom, H., et al., The clinical approach towards chondrosarcoma. Oncologist, 2008. 13(3): p. 320-9. 4.Andreou, D., et al., Survival and prognostic factors in chondrosarcoma: results in 115 patients with long-term follow-up. Acta Orthop, 2011. 82(6): p. 749-55. 5.Terek, R.M., et al., Chemotherapy and P-glycoprotein expression in chondrosarcoma. J Orthop Res, 1998. 16(5): p. 585-90. 6.Woodhouse, E.C., R.F. Chuaqui, and L.A. Liotta, General mechanisms of metastasis. Cancer, 1997. 80(8 Suppl): p. 1529-37. 7.Scully, S.P., et al., Collagenase specificity in chondrosarcoma metastasis. Braz J Med Biol Res, 1999. 32(7): p. 885-9. 8.Fong, Y.C., et al., BMP-2 increases migration of human chondrosarcoma cells via PI3K/Akt pathway. J Cell Physiol, 2008. 217(3): p. 846-55. 9.Darash-Yahana, M., et al., Role of high expression levels of CXCR4 in tumor growth, vascularization, and metastasis. Faseb j, 2004. 18(11): p. 1240-2. 10.Sun, X., et al., miR-181a Targets RGS16 to Promote Chondrosarcoma Growth, Angiogenesis, and Metastasis. Mol Cancer Res, 2015. 11.Rosano, L., F. Spinella, and A. Bagnato, Endothelin 1 in cancer: biological implications and therapeutic opportunities. Nat Rev Cancer, 2013. 13(9): p. 637-51. 12.Ruiz, P. and U. Gunthert, The cellular basis of metastasis. World J Urol, 1996. 14(3): p. 141-50. 13.Puisieux, A., [Role of epithelial-mesenchymal transition in tumor progression]. Bull Acad Natl Med, 2009. 193(9): p. 2017-32; discussion 2032-4. 14.Thiery, J.P., et al., Epithelial-mesenchymal transitions in development and disease. Cell, 2009. 139(5): p. 871-90. 15.Costa, L.C., et al., Expression of epithelial-mesenchymal transition markers at the invasive front of oral squamous cell carcinoma. J Appl Oral Sci, 2015. 23(2): p. 169-78. 16.Kalluri, R. and R.A. Weinberg, The basics of epithelial-mesenchymal transition. J Clin Invest, 2009. 119(6): p. 1420-8. 17.Lamouille, S., J. Xu, and R. Derynck, Molecular mechanisms of epithelial-mesenchymal transition. Nat Rev Mol Cell Biol, 2014. 15(3): p. 178-96. 18.Samatov, T.R., A.G. Tonevitsky, and U. Schumacher, Epithelial-mesenchymal transition: focus on metastatic cascade, alternative splicing, non-coding RNAs and modulating compounds. Mol Cancer, 2013. 12(1): p. 107. 19.Sanguinetti, A., et al., Interleukin-6 and pro inflammatory status in the breast tumor microenvironment. World J Surg Oncol, 2015. 13: p. 129. 20.Zhang, W., et al., HIF-1alpha Promotes Epithelial-Mesenchymal Transition and Metastasis through Direct Regulation of ZEB1 in Colorectal Cancer. PLoS One, 2015. 10(6): p. e0129603. 21.Puisieux, A., T. Brabletz, and J. Caramel, Oncogenic roles of EMT-inducing transcription factors. Nat Cell Biol, 2014. 16(6): p. 488-94. 22.Winder, W.W. and D.G. Hardie, AMP-activated protein kinase, a metabolic master switch: possible roles in type 2 diabetes. Am J Physiol, 1999. 277(1 Pt 1): p. E1-10. 23.Zhang, B.B., G. Zhou, and C. Li, AMPK: an emerging drug target for diabetes and the metabolic syndrome. Cell Metab, 2009. 9(5): p. 407-16. 24.Kato, K., et al., Critical roles of AMP-activated protein kinase in constitutive tolerance of cancer cells to nutrient deprivation and tumor formation. Oncogene, 2002. 21(39): p. 6082-90. 25.Qu, C., et al., Metformin reverses multidrug resistance and epithelial-mesenchymal transition (EMT) via activating AMP-activated protein kinase (AMPK) in human breast cancer cells. Mol Cell Biochem, 2014. 386(1-2): p. 63-71. 26.Gorgisen, G., et al., Differential expression and activation of epidermal growth factor receptor 1 (EGFR1), ERK, AKT, STAT3, and TWIST1 in nonsmall cell lung cancer (NSCLC). Exp Lung Res, 2013. 39(9): p. 387-98. 27.Hu, P., et al., LncRNA expression signatures of twist-induced epithelial-to-mesenchymal transition in MCF10A cells. Cell Signal, 2014. 26(1): p. 83-93. 28.Jin, H.O., et al., Silencing of Twist1 sensitizes NSCLC cells to cisplatin via AMPK-activated mTOR inhibition. Cell Death Dis, 2012. 3: p. e319. 29.Eckert, M.A., et al., Twist1-induced invadopodia formation promotes tumor metastasis. Cancer Cell, 2011. 19(3): p. 372-86. 30.Niu, R.F., et al., Up-regulation of Twist induces angiogenesis and correlates with metastasis in hepatocellular carcinoma. J Exp Clin Cancer Res, 2007. 26(3): p. 385-94. 31.Mironchik, Y., et al., Twist overexpression induces in vivo angiogenesis and correlates with chromosomal instability in breast cancer. Cancer Res, 2005. 65(23): p. 10801-9. 32.Karreth, F. and D.A. Tuveson, Twist induces an epithelial-mesenchymal transition to facilitate tumor metastasis. Cancer Biol Ther, 2004. 3(11): p. 1058-9. 33.Warbrick, E., A new twist to the tale? Apoptosis. Curr Biol, 1996. 6(9): p. 1057-9. 34.Zhang, X., et al., Anti-apoptotic role of TWIST and its association with Akt pathway in mediating taxol resistance in nasopharyngeal carcinoma cells. Int J Cancer, 2007. 120(9): p. 1891-8. 35.Aouida, M. and D. Ramotar, A new twist in cellular resistance to the anticancer drug bleomycin-A5. Curr Drug Metab, 2010. 11(7): p. 595-602. 36.Wang, X., et al., Identification of a novel function of TWIST, a bHLH protein, in the development of acquired taxol resistance in human cancer cells. Oncogene, 2004. 23(2): p. 474-82. 37.Khan, M.A., et al., Twist: a molecular target in cancer therapeutics. Tumour Biol, 2013. 34(5): p. 2497-506. 38.Inoue, A., et al., The human endothelin family: three structurally and pharmacologically distinct isopeptides predicted by three separate genes. Proc Natl Acad Sci U S A, 1989. 86(8): p. 2863-7. 39.Schneider, M.P., E.I. Boesen, and D.M. Pollock, Contrasting actions of endothelin ET(A) and ET(B) receptors in cardiovascular disease. Annu Rev Pharmacol Toxicol, 2007. 47: p. 731-59. 40.Barton, M. and M. Yanagisawa, Endothelin: 20 years from discovery to therapy. Can J Physiol Pharmacol, 2008. 86(8): p. 485-98. 41.Kedzierski, R.M. and M. Yanagisawa, Endothelin system: the double-edged sword in health and disease. Annu Rev Pharmacol Toxicol, 2001. 41: p. 851-76. 42.Hirata, Y., et al., Cellular mechanism of action by a novel vasoconstrictor endothelin in cultured rat vascular smooth muscle cells. Biochem Biophys Res Commun, 1988. 154(3): p. 868-75. 43.Luscher, T.F., et al., Endothelium-derived vasoactive substances: potential role in hypertension, atherosclerosis, and vascular occlusion. J Cardiovasc Pharmacol, 1989. 14 Suppl 6: p. S63-9. 44.Curtis, M.J., M.K. Pugsley, and M.J. Walker, Endogenous chemical mediators of ventricular arrhythmias in ischaemic heart disease. Cardiovasc Res, 1993. 27(5): p. 703-19. 45.Loffler, B.M., et al., Influence of congestive heart failure on endothelin levels and receptors in rabbits. J Mol Cell Cardiol, 1993. 25(4): p. 407-16. 46.Kohan, D.E., Endothelin-1 and hypertension: from bench to bedside. Curr Hypertens Rep, 2008. 10(1): p. 65-9. 47.Maguire, J.J., J.C. Yu, and A.P. Davenport, ETA receptor antagonists inhibit intimal smooth muscle cell proliferation in human vessels. Clin Sci (Lond), 2002. 103 Suppl 48: p. 184s-188s. 48.Bertelli, A., et al., Role of endothelin-1 in carrageenin-induced inflammation. Int J Tissue React, 1992. 14(5): p. 225-30. 49.Schiffrin, E.L., et al., Effects of ANP, angiotensin, vasopressin, and endothelin on ANP receptors in cultured rat vascular smooth muscle cells. Am J Physiol, 1991. 260(1 Pt 2): p. H58-65. 50.Jaffer, F.E., et al., Endothelin stimulates PDGF secretion in cultured human mesangial cells. Kidney Int, 1990. 38(6): p. 1193-8. 51.Zeng, Z.P., et al., Endothelin stimulates aldosterone secretion in vitro from normal adrenocortical tissue, but not adenoma tissue, in primary aldosteronism. J Clin Endocrinol Metab, 1992. 74(4): p. 874-8. 52.Calvo, J.J., et al., Release of substance P from rat hypothalamus and pituitary by endothelin. Endocrinology, 1990. 126(5): p. 2288-95. 53.Warner, T.D., et al., Endothelin-1 and endothelin-3 release EDRF from isolated perfused arterial vessels of the rat and rabbit. J Cardiovasc Pharmacol, 1989. 13 Suppl 5: p. S85-8; discussion S102. 54.Whittle, B.J., J. Lopez-Belmonte, and D.D. Rees, Modulation of the vasodepressor actions of acetylcholine, bradykinin, substance P and endothelin in the rat by a specific inhibitor of nitric oxide formation. Br J Pharmacol, 1989. 98(2): p. 646-52. 55.Usuki, S., et al., Endothelin-1 and endothelin-3 stimulate ovarian steroidogenesis. J Cardiovasc Pharmacol, 1991. 17 Suppl 7: p. S256-9. 56.Wallace, J.L., et al., Endothelin has potent ulcerogenic and vasoconstrictor actions in the stomach. Am J Physiol, 1989. 256(4 Pt 1): p. G661-6. 57.Serradeil-Le Gal, C., et al., Endothelin action in rat liver. Receptors, free Ca2+ oscillations, and activation of glycogenolysis. J Clin Invest, 1991. 87(1): p. 133-8. 58.Nelson, J., et al., The endothelin axis: emerging role in cancer. Nat Rev Cancer, 2003. 3(2): p. 110-6. 59.Ha, N.H., et al., Lactoferrin-endothelin-1 axis contributes to the development and invasiveness of triple-negative breast cancer phenotypes. Cancer Res, 2011. 71(23): p. 7259-69. 60.Rosano, L., et al., Endothelin-1 promotes epithelial-to-mesenchymal transition in human ovarian cancer cells. Cancer Res, 2005. 65(24): p. 11649-57. 61.Peng, J., et al., ROCK cooperated with ET-1 to induce epithelial to mesenchymal transition through SLUG in human ovarian cancer cells. Biosci Biotechnol Biochem, 2012. 76(1): p. 42-7. 62.Jamal, S. and R.J. Schneider, UV-induction of keratinocyte endothelin-1 downregulates E-cadherin in melanocytes and melanoma cells. J Clin Invest, 2002. 110(4): p. 443-52. 63.Spinella, F., et al., Endothelin-1 induces vascular endothelial growth factor by increasing hypoxia-inducible factor-1alpha in ovarian carcinoma cells. J Biol Chem, 2002. 277(31): p. 27850-5. 64.Spinella, F., et al., Endothelin-1 and endothelin-3 promote invasive behavior via hypoxia-inducible factor-1alpha in human melanoma cells. Cancer Res, 2007. 67(4): p. 1725-34. 65.Polyak, K. and R.A. Weinberg, Transitions between epithelial and mesenchymal states: acquisition of malignant and stem cell traits. Nat Rev Cancer, 2009. 9(4): p. 265-73. 66.Mani, S.A., et al., The epithelial-mesenchymal transition generates cells with properties of stem cells. Cell, 2008. 133(4): p. 704-15. 67.Rosano, L., et al., Acquisition of chemoresistance and EMT phenotype is linked with activation of the endothelin A receptor pathway in ovarian carcinoma cells. Clin Cancer Res, 2011. 17(8): p. 2350-60. 68.Krol, J., et al., Structural features of microRNA (miRNA) precursors and their relevance to miRNA biogenesis and small interfering RNA/short hairpin RNA design. J Biol Chem, 2004. 279(40): p. 42230-9. 69.Goodall, E.F., et al., Neuronal dark matter: the emerging role of microRNAs in neurodegeneration. Front Cell Neurosci, 2013. 7: p. 178. 70.Lai, E.C., Micro RNAs are complementary to 3'' UTR sequence motifs that mediate negative post-transcriptional regulation. Nat Genet, 2002. 30(4): p. 363-4. 71.Long, J., et al., MiR-503 inhibited cell proliferation of human breast cancer cells by suppressing CCND1 expression. Tumour Biol, 2015. 72.Shishodia, G., et al., Alterations in microRNAs miR-21 and let-7a correlate with aberrant STAT3 signaling and downstream effects during cervical carcinogenesis. Mol Cancer, 2015. 14: p. 116. 73.Gregory, P.A., et al., MicroRNAs as regulators of epithelial-mesenchymal transition. Cell Cycle, 2008. 7(20): p. 3112-8. 74.Zhang, J.P., et al., MicroRNA-148a suppresses the epithelial-mesenchymal transition and metastasis of hepatoma cells by targeting Met/Snail signaling. Oncogene, 2014. 33(31): p. 4069-76. 75.Smith, A.L., et al., The miR-106b-25 cluster targets Smad7, activates TGF-beta signaling, and induces EMT and tumor initiating cell characteristics downstream of Six1 in human breast cancer. Oncogene, 2012. 31(50): p. 5162-71. 76.Horng, C.T., et al., Paeonol suppresses chondrosarcoma metastasis through up-regulation of miR-141 by modulating PKCdelta and c-Src signaling pathway. Int J Mol Sci, 2014. 15(7): p. 11760-72. 77.Bovee, J.V., et al., Cartilage tumours and bone development: molecular pathology and possible therapeutic targets. Nat Rev Cancer, 2010. 10(7): p. 481-8. 78.Scheel, C. and R.A. Weinberg, Cancer stem cells and epithelial-mesenchymal transition: concepts and molecular links. Semin Cancer Biol, 2012. 22(5-6): p. 396-403. 79.van Denderen, B.J. and E.W. Thompson, Cancer: The to and fro of tumour spread. Nature, 2013. 493(7433): p. 487-8. 80.Paranjape, T., F.J. Slack, and J.B. Weidhaas, MicroRNAs: tools for cancer diagnostics. Gut, 2009. 58(11): p. 1546-54. 81.Shichiri, M., Y. Hirata, and F. Marumo, Endothelin-1 as an autocrine/paracrine factor for human tumor cell lines. J Cardiovasc Pharmacol, 1991. 17 Suppl 7: p. S76-8. 82.Wu, M.H., et al., Endothelin-1 enhances cell migration through COX-2 up-regulation in human chondrosarcoma. Biochim Biophys Acta, 2013. 1830(6): p. 3355-64. 83.Wu, M.H., et al., Endothelin-1 promotes vascular endothelial growth factor-dependent angiogenesis in human chondrosarcoma cells. Oncogene, 2014. 33(13): p. 1725-35. 84.Zhou, Y., et al., TWIST interacts with endothelin-1/endothelin A receptor signaling in osteosarcoma cell survival against cisplatin. Oncol Lett, 2013. 5(3): p. 857-861. 85.Ndisang, J.F. and A. Jadhav, Heme arginate therapy enhanced adiponectin and atrial natriuretic peptide, but abated endothelin-1 with attenuation of kidney histopathological lesions in mineralocorticoid-induced hypertension. J Pharmacol Exp Ther, 2010. 334(1): p. 87-98. 86.Tsai, C.H., et al., Resistin promotes tumor metastasis by down-regulation of miR-519d through the AMPK/p38 signaling pathway in human chondrosarcoma cells. Oncotarget, 2015. 6(1): p. 258-70. 87.Ma, L., J. Teruya-Feldstein, and R.A. Weinberg, Tumour invasion and metastasis initiated by microRNA-10b in breast cancer. Nature, 2007. 449(7163): p. 682-8. 88.Korpal, M. and Y. Kang, The emerging role of miR-200 family of microRNAs in epithelial-mesenchymal transition and cancer metastasis. RNA Biol, 2008. 5(3): p. 115-9. 89.Wang, X., X. Pan, and J. Song, AMP-activated protein kinase is required for induction of apoptosis and epithelial-to-mesenchymal transition. Cell Signal, 2010. 22(11): p. 1790-7. 90.Hawley, S.A., et al., Complexes between the LKB1 tumor suppressor, STRAD alpha/beta and MO25 alpha/beta are upstream kinases in the AMP-activated protein kinase cascade. J Biol, 2003. 2(4): p. 28.
|