跳到主要內容

臺灣博碩士論文加值系統

(44.200.168.16) 您好!臺灣時間:2023/03/21 15:38
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:黃培涵
研究生(外文):Pei-Han Huang
論文名稱:研究內皮素在軟骨肉瘤轉移及上皮-間質轉化之作用
論文名稱(外文):Study the role of endothelin-1 in metastasis and epithelial-mesenchymal transition in human chondrosarcoma cells
指導教授:湯智昕
指導教授(外文):Chih-Hsin Tang
學位類別:碩士
校院名稱:中國醫藥大學
系所名稱:基礎醫學研究所碩士班
學門:醫藥衛生學門
學類:醫學學類
論文種類:學術論文
論文出版年:2015
畢業學年度:103
語文別:中文
論文頁數:67
中文關鍵詞:內皮素-1TWIST上皮-間質轉化miRNA-300
外文關鍵詞:Endothelin-1TWIST1epithelial-mesenchymal transitionmiR-300
相關次數:
  • 被引用被引用:0
  • 點閱點閱:76
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
人類軟骨肉瘤是一種惡性初級的骨頭腫瘤,多好發於成年與老年,化學療法和放射性治療對其治療成效不大,特點為高度惡性和轉移潛能。此外有文獻證實許多癌細胞皆會有高表現量的內皮素-1 (Endothelin-1; ET-1)
。ET-1為具有多種調節功能的細胞激素,屬於一種分泌型的細胞激素,會和ETAR和ETBR (endothelin A and B receptor)結合進而調控人類癌症細胞的增生、血管新生、轉移及侵襲等。然而ET-1對於人類軟骨肉瘤轉移的機制目前還有很多的不清楚。我們發現ET-1會促進人類軟骨肉瘤細胞移行的能力、增加上皮-間質轉化(Epithelial-Mesenchymal Transition;EMT)和EMT轉錄因子(TWIST)的表現。前處理ETAR和ETBR抑制劑(BQ123和BQ788)、AMPK抑制劑(AraA和compound C)以及AMPK siRNA α1和α2會抑制ET-1增加人類軟骨肉瘤移行能力和TWIST的表現。在ET-1的刺激下會增加AMPK磷酸化。除此之外,microRNA(miRNA) 300 mimic也會降低ET-1增加細胞移行能力和TWIST的表現。另外,ET-1會抑制miRNA-300結合到TWIST mRNA上進而調節TWIST的表現。綜合以上結果,ET-1促進TWIST表現經由與ETAR和ETBR的結合並透過AMPK的訊息傳導進而下調miRNA-300,最後造成人類軟骨瘤細胞株EMT的發生和移行能力。


Chondrosarcoma is a malignant primary bone tumor associated with adult and the aged that responds poorly to both chemotherapy and radiation therapy. It is characterized by high malignant and metastatic potential. Recently, some studies found that endothelin-1(ET-1) is highly expressed in many cancer cells. However, the effects of ET-1 on cell motility and epithelial-mesenchymal transition (EMT) and TWIST expression in human chondrosarcoma cells are largely unknown. Here we found that ET-1 induced the cell motility, EMT and expression of TWIST in human chondrosarcoma cells. Endothelin A and B receptor (BQ123 and BQ788), AMPK inhibitor (AraA and compounpC), AMPK siRNA α1 and α2 inhibited ET-1-induced cell motility and TWIST expression. ET-1 stimulation increased the phosphorylation of AMPK. In addition, microRNA(miRNA)-300-mimic also antagonized ET increased cell motility and TWIST expression. Moreover, ET-1 induced the binding of miR-300 to the TWIST mRNA to down-regulated TWIST expression. Taken together, our results suggested that ET-1 enhances motility and EMT of chondrosarcoma cells by increasing TWIST expression through the ETAR, ETBR and AMPK signal transduction pathway and down-regulating miR-300.

目錄 I
英文縮寫 V
中文摘要 VI
英文摘要 VII
壹、緒論 1
一、軟骨肉瘤: 1
(一)、何謂軟骨肉瘤: 1
(二)、軟骨肉瘤的診斷: 1
(三)、軟骨肉瘤的分級: 2
(四)、軟骨肉瘤的治療: 2
(五)、軟骨肉瘤與轉移: 3
二、轉移(Metastasis): 4
三、上皮-間質轉化(Epithelial-Mesenchymal Transition;EMT): 5
(一)、EMT簡介: 5
(二)、EMT的功能: 5
(三)、EMT與癌症: 6
四、AMP活化蛋白??(AMP-activated protein kinase;AMPK): 7
(一)、AMPK的作用: 7
(二)、AMPK對於癌症: 7
五、TWIST相關蛋白1(TWIST-related protein1;TWIST1): 8
(一)、何謂TWIST: 8
(二)、TWIST與癌症: 8
六、內皮素-1(Endothelin-1;ET-1): 9
(一)、ET-1簡介: 9
(二)、ET-1的作用: 9
(三)、ET-1與癌症: 10
七、MicroRNAs(miRNAs): 12
(一)、何謂MicroRNA: 12
(二)、MiRNA以及癌症: 12
貳、研究架構與動機 26
一、研究背景: 26
二、研究目的: 26
?礡B材料與方法 27
一、實驗材料: 27
(一)、試劑: 27
(二)、儀器設備: 28
二、實驗方法: 29
(一)、細胞培養(Cell Culture): 29
(二)、細胞傷口癒合分析(Wound-healing assay): 29
(三)、細胞移行分析(Migration assay): 30
(四)、細胞侵襲分析(Invasion assay): 30
(五)、即時聚合?○s鎖反應(Quantitative Real-Time PCR): 30
(六)、細胞轉染(Transfection): 32
(七)、西方點墨法(Western Blot): 32
(八)、免疫組織染色(Immunohistochemistry;IHC): 33
(九)、冷光 (Luciferase) 活性測試: 33
(十)、統計方法: 34
肆、結果 35
一、ET-1增加人類軟骨肉瘤移行能力和EMT表現量: 35
二、ET-1透過內皮素受體(ETAR或者ETBR)導致人類軟骨肉瘤細胞移行的能力和EMT表現量: 35
三、ET-1透過轉錄因子TWIST調節調節人類軟骨肉瘤細胞移行的能力和EMT表現: 36
四、AMPK參與人類軟骨肉瘤細胞的移行能力和EMT表現: 36
五、ET-1透過下調miR-300來調節人類軟骨肉瘤細胞的移行能力和EMT表現: 37
六、在人類軟骨肉瘤病患中癌症期別、ET-1和TWIST表現的相關性: 37
七、高度轉移以及一般的軟骨肉瘤細胞之間移行能力和EMT表現的差異: 38
伍、討論 39
陸、結論 41
柒、參考文獻 42


圖目錄
Figure 1 Enchondromas, arising from deregulated growth plate differentiation caused by constitutively active hedgehog signaling, can progress to low-grade central chondrosarcoma when additional genetic changes occur 13
Figure 2 Chondrosarcoma is the second most frequent primary malignant tumor of bone 14
Figure 3 The metastatic cascade 15
Figure 4 Dissemination of cells from a primary solid tumor is facilitated by the epithelial–mesenchymal transition (EMT) 16
Figure 5 Different types of EMT 17
Figure 6 Schematic overview of EMT pathways. 18
Figure 7 Components of the endothelin system 19
Figure 8 Disease processes in which endothelin-1 / endothelin ETA-receptor signaling has been demonstrated to play a role 20
Figure 9 The ET1 regulated tumor–microenvironment interactions in tumor maintenance and progression 21
Figure 10 The ET1 signaling network 22
Figure 11 Canonical miRNA biogenesis pathway 24
Figure 12 MicroRNAs (miRNAs) as tumor suppressors and oncogenes 25
Figure 13 ET-1 promotes cell migration and EMT of chondrosarcoma cells. 50
Figure 14 ET-1-directed migration activity of human chondrosarcoma. 52
Figure 15 ET-1 mediated cell migration of chondrosarcoma cells through increasing TWIST expression. 54
Figure 16 AMP-activated protein kinase (AMPK) is involved in cell migration and ET-1-induced EMT expression, examine by treating with inhibitor. 56
Figure 17 AMP-activated protein kinase (AMPK) is involved in cell migration and ET-1-induced EMT expression. , examine by treating with siRNA. 58
Figure 18 ET-1 promotes cell migration and EMT expression by down regulating microRNA (miRNA)-300 expression. 60
Figure 19 The miR-300 directly represses the TWIST expression through binding to the 3’UTR of the human TWIST. 62
Figure 20 The correlation among ET-1, TWIST, tumor stages in human chondrosarcoma tissues. 64
Figure 21 Highly metastatic cell (JJ-S10 cell) induce metastasis, EMT, ET-1 expression and suppress miR-300 expression. 66
Figure 22 Schema of signaling pathways involved in ET-1 induced EMT expression and metastasis in chondrosarcoma cells. 67


1.Leddy, L.R. and R.E. Holmes, Chondrosarcoma of bone. Cancer Treat Res, 2014. 162: p. 117-30.
2.Bone sarcomas: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann Oncol, 2014. 25 Suppl 3: p. iii113-23.
3.Gelderblom, H., et al., The clinical approach towards chondrosarcoma. Oncologist, 2008. 13(3): p. 320-9.
4.Andreou, D., et al., Survival and prognostic factors in chondrosarcoma: results in 115 patients with long-term follow-up. Acta Orthop, 2011. 82(6): p. 749-55.
5.Terek, R.M., et al., Chemotherapy and P-glycoprotein expression in chondrosarcoma. J Orthop Res, 1998. 16(5): p. 585-90.
6.Woodhouse, E.C., R.F. Chuaqui, and L.A. Liotta, General mechanisms of metastasis. Cancer, 1997. 80(8 Suppl): p. 1529-37.
7.Scully, S.P., et al., Collagenase specificity in chondrosarcoma metastasis. Braz J Med Biol Res, 1999. 32(7): p. 885-9.
8.Fong, Y.C., et al., BMP-2 increases migration of human chondrosarcoma cells via PI3K/Akt pathway. J Cell Physiol, 2008. 217(3): p. 846-55.
9.Darash-Yahana, M., et al., Role of high expression levels of CXCR4 in tumor growth, vascularization, and metastasis. Faseb j, 2004. 18(11): p. 1240-2.
10.Sun, X., et al., miR-181a Targets RGS16 to Promote Chondrosarcoma Growth, Angiogenesis, and Metastasis. Mol Cancer Res, 2015.
11.Rosano, L., F. Spinella, and A. Bagnato, Endothelin 1 in cancer: biological implications and therapeutic opportunities. Nat Rev Cancer, 2013. 13(9): p. 637-51.
12.Ruiz, P. and U. Gunthert, The cellular basis of metastasis. World J Urol, 1996. 14(3): p. 141-50.
13.Puisieux, A., [Role of epithelial-mesenchymal transition in tumor progression]. Bull Acad Natl Med, 2009. 193(9): p. 2017-32; discussion 2032-4.
14.Thiery, J.P., et al., Epithelial-mesenchymal transitions in development and disease. Cell, 2009. 139(5): p. 871-90.
15.Costa, L.C., et al., Expression of epithelial-mesenchymal transition markers at the invasive front of oral squamous cell carcinoma. J Appl Oral Sci, 2015. 23(2): p. 169-78.
16.Kalluri, R. and R.A. Weinberg, The basics of epithelial-mesenchymal transition. J Clin Invest, 2009. 119(6): p. 1420-8.
17.Lamouille, S., J. Xu, and R. Derynck, Molecular mechanisms of epithelial-mesenchymal transition. Nat Rev Mol Cell Biol, 2014. 15(3): p. 178-96.
18.Samatov, T.R., A.G. Tonevitsky, and U. Schumacher, Epithelial-mesenchymal transition: focus on metastatic cascade, alternative splicing, non-coding RNAs and modulating compounds. Mol Cancer, 2013. 12(1): p. 107.
19.Sanguinetti, A., et al., Interleukin-6 and pro inflammatory status in the breast tumor microenvironment. World J Surg Oncol, 2015. 13: p. 129.
20.Zhang, W., et al., HIF-1alpha Promotes Epithelial-Mesenchymal Transition and Metastasis through Direct Regulation of ZEB1 in Colorectal Cancer. PLoS One, 2015. 10(6): p. e0129603.
21.Puisieux, A., T. Brabletz, and J. Caramel, Oncogenic roles of EMT-inducing transcription factors. Nat Cell Biol, 2014. 16(6): p. 488-94.
22.Winder, W.W. and D.G. Hardie, AMP-activated protein kinase, a metabolic master switch: possible roles in type 2 diabetes. Am J Physiol, 1999. 277(1 Pt 1): p. E1-10.
23.Zhang, B.B., G. Zhou, and C. Li, AMPK: an emerging drug target for diabetes and the metabolic syndrome. Cell Metab, 2009. 9(5): p. 407-16.
24.Kato, K., et al., Critical roles of AMP-activated protein kinase in constitutive tolerance of cancer cells to nutrient deprivation and tumor formation. Oncogene, 2002. 21(39): p. 6082-90.
25.Qu, C., et al., Metformin reverses multidrug resistance and epithelial-mesenchymal transition (EMT) via activating AMP-activated protein kinase (AMPK) in human breast cancer cells. Mol Cell Biochem, 2014. 386(1-2): p. 63-71.
26.Gorgisen, G., et al., Differential expression and activation of epidermal growth factor receptor 1 (EGFR1), ERK, AKT, STAT3, and TWIST1 in nonsmall cell lung cancer (NSCLC). Exp Lung Res, 2013. 39(9): p. 387-98.
27.Hu, P., et al., LncRNA expression signatures of twist-induced epithelial-to-mesenchymal transition in MCF10A cells. Cell Signal, 2014. 26(1): p. 83-93.
28.Jin, H.O., et al., Silencing of Twist1 sensitizes NSCLC cells to cisplatin via AMPK-activated mTOR inhibition. Cell Death Dis, 2012. 3: p. e319.
29.Eckert, M.A., et al., Twist1-induced invadopodia formation promotes tumor metastasis. Cancer Cell, 2011. 19(3): p. 372-86.
30.Niu, R.F., et al., Up-regulation of Twist induces angiogenesis and correlates with metastasis in hepatocellular carcinoma. J Exp Clin Cancer Res, 2007. 26(3): p. 385-94.
31.Mironchik, Y., et al., Twist overexpression induces in vivo angiogenesis and correlates with chromosomal instability in breast cancer. Cancer Res, 2005. 65(23): p. 10801-9.
32.Karreth, F. and D.A. Tuveson, Twist induces an epithelial-mesenchymal transition to facilitate tumor metastasis. Cancer Biol Ther, 2004. 3(11): p. 1058-9.
33.Warbrick, E., A new twist to the tale? Apoptosis. Curr Biol, 1996. 6(9): p. 1057-9.
34.Zhang, X., et al., Anti-apoptotic role of TWIST and its association with Akt pathway in mediating taxol resistance in nasopharyngeal carcinoma cells. Int J Cancer, 2007. 120(9): p. 1891-8.
35.Aouida, M. and D. Ramotar, A new twist in cellular resistance to the anticancer drug bleomycin-A5. Curr Drug Metab, 2010. 11(7): p. 595-602.
36.Wang, X., et al., Identification of a novel function of TWIST, a bHLH protein, in the development of acquired taxol resistance in human cancer cells. Oncogene, 2004. 23(2): p. 474-82.
37.Khan, M.A., et al., Twist: a molecular target in cancer therapeutics. Tumour Biol, 2013. 34(5): p. 2497-506.
38.Inoue, A., et al., The human endothelin family: three structurally and pharmacologically distinct isopeptides predicted by three separate genes. Proc Natl Acad Sci U S A, 1989. 86(8): p. 2863-7.
39.Schneider, M.P., E.I. Boesen, and D.M. Pollock, Contrasting actions of endothelin ET(A) and ET(B) receptors in cardiovascular disease. Annu Rev Pharmacol Toxicol, 2007. 47: p. 731-59.
40.Barton, M. and M. Yanagisawa, Endothelin: 20 years from discovery to therapy. Can J Physiol Pharmacol, 2008. 86(8): p. 485-98.
41.Kedzierski, R.M. and M. Yanagisawa, Endothelin system: the double-edged sword in health and disease. Annu Rev Pharmacol Toxicol, 2001. 41: p. 851-76.
42.Hirata, Y., et al., Cellular mechanism of action by a novel vasoconstrictor endothelin in cultured rat vascular smooth muscle cells. Biochem Biophys Res Commun, 1988. 154(3): p. 868-75.
43.Luscher, T.F., et al., Endothelium-derived vasoactive substances: potential role in hypertension, atherosclerosis, and vascular occlusion. J Cardiovasc Pharmacol, 1989. 14 Suppl 6: p. S63-9.
44.Curtis, M.J., M.K. Pugsley, and M.J. Walker, Endogenous chemical mediators of ventricular arrhythmias in ischaemic heart disease. Cardiovasc Res, 1993. 27(5): p. 703-19.
45.Loffler, B.M., et al., Influence of congestive heart failure on endothelin levels and receptors in rabbits. J Mol Cell Cardiol, 1993. 25(4): p. 407-16.
46.Kohan, D.E., Endothelin-1 and hypertension: from bench to bedside. Curr Hypertens Rep, 2008. 10(1): p. 65-9.
47.Maguire, J.J., J.C. Yu, and A.P. Davenport, ETA receptor antagonists inhibit intimal smooth muscle cell proliferation in human vessels. Clin Sci (Lond), 2002. 103 Suppl 48: p. 184s-188s.
48.Bertelli, A., et al., Role of endothelin-1 in carrageenin-induced inflammation. Int J Tissue React, 1992. 14(5): p. 225-30.
49.Schiffrin, E.L., et al., Effects of ANP, angiotensin, vasopressin, and endothelin on ANP receptors in cultured rat vascular smooth muscle cells. Am J Physiol, 1991. 260(1 Pt 2): p. H58-65.
50.Jaffer, F.E., et al., Endothelin stimulates PDGF secretion in cultured human mesangial cells. Kidney Int, 1990. 38(6): p. 1193-8.
51.Zeng, Z.P., et al., Endothelin stimulates aldosterone secretion in vitro from normal adrenocortical tissue, but not adenoma tissue, in primary aldosteronism. J Clin Endocrinol Metab, 1992. 74(4): p. 874-8.
52.Calvo, J.J., et al., Release of substance P from rat hypothalamus and pituitary by endothelin. Endocrinology, 1990. 126(5): p. 2288-95.
53.Warner, T.D., et al., Endothelin-1 and endothelin-3 release EDRF from isolated perfused arterial vessels of the rat and rabbit. J Cardiovasc Pharmacol, 1989. 13 Suppl 5: p. S85-8; discussion S102.
54.Whittle, B.J., J. Lopez-Belmonte, and D.D. Rees, Modulation of the vasodepressor actions of acetylcholine, bradykinin, substance P and endothelin in the rat by a specific inhibitor of nitric oxide formation. Br J Pharmacol, 1989. 98(2): p. 646-52.
55.Usuki, S., et al., Endothelin-1 and endothelin-3 stimulate ovarian steroidogenesis. J Cardiovasc Pharmacol, 1991. 17 Suppl 7: p. S256-9.
56.Wallace, J.L., et al., Endothelin has potent ulcerogenic and vasoconstrictor actions in the stomach. Am J Physiol, 1989. 256(4 Pt 1): p. G661-6.
57.Serradeil-Le Gal, C., et al., Endothelin action in rat liver. Receptors, free Ca2+ oscillations, and activation of glycogenolysis. J Clin Invest, 1991. 87(1): p. 133-8.
58.Nelson, J., et al., The endothelin axis: emerging role in cancer. Nat Rev Cancer, 2003. 3(2): p. 110-6.
59.Ha, N.H., et al., Lactoferrin-endothelin-1 axis contributes to the development and invasiveness of triple-negative breast cancer phenotypes. Cancer Res, 2011. 71(23): p. 7259-69.
60.Rosano, L., et al., Endothelin-1 promotes epithelial-to-mesenchymal transition in human ovarian cancer cells. Cancer Res, 2005. 65(24): p. 11649-57.
61.Peng, J., et al., ROCK cooperated with ET-1 to induce epithelial to mesenchymal transition through SLUG in human ovarian cancer cells. Biosci Biotechnol Biochem, 2012. 76(1): p. 42-7.
62.Jamal, S. and R.J. Schneider, UV-induction of keratinocyte endothelin-1 downregulates E-cadherin in melanocytes and melanoma cells. J Clin Invest, 2002. 110(4): p. 443-52.
63.Spinella, F., et al., Endothelin-1 induces vascular endothelial growth factor by increasing hypoxia-inducible factor-1alpha in ovarian carcinoma cells. J Biol Chem, 2002. 277(31): p. 27850-5.
64.Spinella, F., et al., Endothelin-1 and endothelin-3 promote invasive behavior via hypoxia-inducible factor-1alpha in human melanoma cells. Cancer Res, 2007. 67(4): p. 1725-34.
65.Polyak, K. and R.A. Weinberg, Transitions between epithelial and mesenchymal states: acquisition of malignant and stem cell traits. Nat Rev Cancer, 2009. 9(4): p. 265-73.
66.Mani, S.A., et al., The epithelial-mesenchymal transition generates cells with properties of stem cells. Cell, 2008. 133(4): p. 704-15.
67.Rosano, L., et al., Acquisition of chemoresistance and EMT phenotype is linked with activation of the endothelin A receptor pathway in ovarian carcinoma cells. Clin Cancer Res, 2011. 17(8): p. 2350-60.
68.Krol, J., et al., Structural features of microRNA (miRNA) precursors and their relevance to miRNA biogenesis and small interfering RNA/short hairpin RNA design. J Biol Chem, 2004. 279(40): p. 42230-9.
69.Goodall, E.F., et al., Neuronal dark matter: the emerging role of microRNAs in neurodegeneration. Front Cell Neurosci, 2013. 7: p. 178.
70.Lai, E.C., Micro RNAs are complementary to 3'' UTR sequence motifs that mediate negative post-transcriptional regulation. Nat Genet, 2002. 30(4): p. 363-4.
71.Long, J., et al., MiR-503 inhibited cell proliferation of human breast cancer cells by suppressing CCND1 expression. Tumour Biol, 2015.
72.Shishodia, G., et al., Alterations in microRNAs miR-21 and let-7a correlate with aberrant STAT3 signaling and downstream effects during cervical carcinogenesis. Mol Cancer, 2015. 14: p. 116.
73.Gregory, P.A., et al., MicroRNAs as regulators of epithelial-mesenchymal transition. Cell Cycle, 2008. 7(20): p. 3112-8.
74.Zhang, J.P., et al., MicroRNA-148a suppresses the epithelial-mesenchymal transition and metastasis of hepatoma cells by targeting Met/Snail signaling. Oncogene, 2014. 33(31): p. 4069-76.
75.Smith, A.L., et al., The miR-106b-25 cluster targets Smad7, activates TGF-beta signaling, and induces EMT and tumor initiating cell characteristics downstream of Six1 in human breast cancer. Oncogene, 2012. 31(50): p. 5162-71.
76.Horng, C.T., et al., Paeonol suppresses chondrosarcoma metastasis through up-regulation of miR-141 by modulating PKCdelta and c-Src signaling pathway. Int J Mol Sci, 2014. 15(7): p. 11760-72.
77.Bovee, J.V., et al., Cartilage tumours and bone development: molecular pathology and possible therapeutic targets. Nat Rev Cancer, 2010. 10(7): p. 481-8.
78.Scheel, C. and R.A. Weinberg, Cancer stem cells and epithelial-mesenchymal transition: concepts and molecular links. Semin Cancer Biol, 2012. 22(5-6): p. 396-403.
79.van Denderen, B.J. and E.W. Thompson, Cancer: The to and fro of tumour spread. Nature, 2013. 493(7433): p. 487-8.
80.Paranjape, T., F.J. Slack, and J.B. Weidhaas, MicroRNAs: tools for cancer diagnostics. Gut, 2009. 58(11): p. 1546-54.
81.Shichiri, M., Y. Hirata, and F. Marumo, Endothelin-1 as an autocrine/paracrine factor for human tumor cell lines. J Cardiovasc Pharmacol, 1991. 17 Suppl 7: p. S76-8.
82.Wu, M.H., et al., Endothelin-1 enhances cell migration through COX-2 up-regulation in human chondrosarcoma. Biochim Biophys Acta, 2013. 1830(6): p. 3355-64.
83.Wu, M.H., et al., Endothelin-1 promotes vascular endothelial growth factor-dependent angiogenesis in human chondrosarcoma cells. Oncogene, 2014. 33(13): p. 1725-35.
84.Zhou, Y., et al., TWIST interacts with endothelin-1/endothelin A receptor signaling in osteosarcoma cell survival against cisplatin. Oncol Lett, 2013. 5(3): p. 857-861.
85.Ndisang, J.F. and A. Jadhav, Heme arginate therapy enhanced adiponectin and atrial natriuretic peptide, but abated endothelin-1 with attenuation of kidney histopathological lesions in mineralocorticoid-induced hypertension. J Pharmacol Exp Ther, 2010. 334(1): p. 87-98.
86.Tsai, C.H., et al., Resistin promotes tumor metastasis by down-regulation of miR-519d through the AMPK/p38 signaling pathway in human chondrosarcoma cells. Oncotarget, 2015. 6(1): p. 258-70.
87.Ma, L., J. Teruya-Feldstein, and R.A. Weinberg, Tumour invasion and metastasis initiated by microRNA-10b in breast cancer. Nature, 2007. 449(7163): p. 682-8.
88.Korpal, M. and Y. Kang, The emerging role of miR-200 family of microRNAs in epithelial-mesenchymal transition and cancer metastasis. RNA Biol, 2008. 5(3): p. 115-9.
89.Wang, X., X. Pan, and J. Song, AMP-activated protein kinase is required for induction of apoptosis and epithelial-to-mesenchymal transition. Cell Signal, 2010. 22(11): p. 1790-7.
90.Hawley, S.A., et al., Complexes between the LKB1 tumor suppressor, STRAD alpha/beta and MO25 alpha/beta are upstream kinases in the AMP-activated protein kinase cascade. J Biol, 2003. 2(4): p. 28.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top