|
1.Kawamoto, A., et al., Therapeutic potential of ex vivo expanded endothelial progenitor cells for myocardial ischemia. Circulation, 2001. 103(5): p. 634-7. 2.Assmus, B., et al., Transplantation of Progenitor Cells and Regeneration Enhancement in Acute Myocardial Infarction (TOPCARE-AMI). Circulation, 2002. 106(24): p. 3009-17. 3.Kalka, C., et al., Transplantation of ex vivo expanded endothelial progenitor cells for therapeutic neovascularization. Proc Natl Acad Sci U S A, 2000. 97(7): p. 3422-7. 4.衛生福利部。糖尿病之流行病學及病因、診斷、分類. 5.Tepper, O.M., et al., Human endothelial progenitor cells from type II diabetics exhibit impaired proliferation, adhesion, and incorporation into vascular structures. Circulation, 2002. 106(22): p. 2781-6. 6.Lavie, C.J., et al., Omega-3 polyunsaturated fatty acids and cardiovascular diseases. J Am Coll Cardiol, 2009. 54(7): p. 585-94. 7.Asahara, T., et al., Isolation of putative progenitor endothelial cells for angiogenesis. Science, 1997. 275(5302): p. 964-7. 8.Bauer, S.M., et al., The bone marrow-derived endothelial progenitor cell response is impaired in delayed wound healing from ischemia. J Vasc Surg, 2006. 43(1): p. 134-41. 9.Murohara, T., et al., Transplanted cord blood-derived endothelial precursor cells augment postnatal neovascularization. J Clin Invest, 2000. 105(11): p. 1527-36. 10.Schmidt, A., K. Brixius, and W. Bloch, Endothelial precursor cell migration during vasculogenesis. Circ Res, 2007. 101(2): p. 125-36. 11.Tateishi-Yuyama, E., et al., Therapeutic angiogenesis for patients with limb ischaemia by autologous transplantation of bone-marrow cells: a pilot study and a randomised controlled trial. Lancet, 2002. 360(9331): p. 427-35. 12.Classification and diagnosis of diabetes mellitus and other categories of glucose intolerance. National Diabetes Data Group. Diabetes, 1979. 28(12): p. 1039-57. 13.Sandbaek, A., et al., Effect of Early Multifactorial Therapy Compared With Routine Care on Microvascular Outcomes at 5 Years in People With Screen-Detected Diabetes: A Randomised Controlled Trial: The ADDITION-Europe Study. Diabetes Care, 2014. 14.Creager, M.A., et al., Diabetes and vascular disease: pathophysiology, clinical consequences, and medical therapy: Part I. Circulation, 2003. 108(12): p. 1527-32. 15.Gupta, A.K., et al., Endothelial Dysfunction: An Early Cardiovascular Risk Marker in Asymptomatic Obese Individuals with Prediabetes. Br J Med Med Res, 2012. 2(3): p. 413-423. 16.Ruiter, M.S., et al., Diabetes impairs arteriogenesis in the peripheral circulation: review of molecular mechanisms. Clin Sci (Lond), 2010. 119(6): p. 225-38. 17.Chen, Y.H., et al., High glucose impairs early and late endothelial progenitor cells by modifying nitric oxide-related but not oxidative stress-mediated mechanisms. Diabetes, 2007. 56(6): p. 1559-68. 18.Kang, L., et al., Decreased mobilization of endothelial progenitor cells contributes to impaired neovascularization in diabetes. Clin Exp Pharmacol Physiol, 2009. 36(10): p. e47-56. 19.Bang, H.O., J. Dyerberg, and A.B. Nielsen, Plasma lipid and lipoprotein pattern in Greenlandic West-coast Eskimos. Lancet, 1971. 1(7710): p. 1143-5. 20.Calder, P.C., n-3 polyunsaturated fatty acids, inflammation, and inflammatory diseases. Am J Clin Nutr, 2006. 83(6 Suppl): p. 1505S-1519S. 21.Massaro, M., et al., Basic mechanisms behind the effects of n-3 fatty acids on cardiovascular disease. Prostaglandins Leukot Essent Fatty Acids, 2008. 79(3-5): p. 109-15. 22.Goodnight, S.H., Jr., et al., Polyunsaturated fatty acids, hyperlipidemia, and thrombosis. Arteriosclerosis, 1982. 2(2): p. 87-113. 23.Higgs, G.A., et al., The source of thromboxane and prostaglandins in experimental inflammation. Br J Pharmacol, 1983. 79(4): p. 863-8. 24.Harper, C.R., et al., Flaxseed oil increases the plasma concentrations of cardioprotective (n-3) fatty acids in humans. J Nutr, 2006. 136(1): p. 83-7. 25.Welch, A.A., et al., Dietary fish intake and plasma phospholipid n-3 polyunsaturated fatty acid concentrations in men and women in the European Prospective Investigation into Cancer-Norfolk United Kingdom cohort. Am J Clin Nutr, 2006. 84(6): p. 1330-9. 26.Rosell, M.S., et al., Long-chain n-3 polyunsaturated fatty acids in plasma in British meat-eating, vegetarian, and vegan men. Am J Clin Nutr, 2005. 82(2): p. 327-34. 27.Kris-Etherton, P.M., W.S. Harris, and L.J. Appel, Fish consumption, fish oil, omega-3 fatty acids, and cardiovascular disease. Circulation, 2002. 106(21): p. 2747-57. 28.He, K., et al., Fish consumption and incidence of stroke: a meta-analysis of cohort studies. Stroke, 2004. 35(7): p. 1538-42. 29.Losordo, D.W. and S. Dimmeler, Therapeutic angiogenesis and vasculogenesis for ischemic disease: part II: cell-based therapies. Circulation, 2004. 109(22): p. 2692-7. 30.Burger, D. and R.M. Touyz, Cellular biomarkers of endothelial health: microparticles, endothelial progenitor cells, and circulating endothelial cells. J Am Soc Hypertens, 2012. 6(2): p. 85-99. 31.Devaraj, S., et al., Modulation of endothelial progenitor cell number and function with n-3 polyunsaturated fatty acids. Atherosclerosis, 2013. 228(1): p. 94-7. 32.Turgeon, J., et al., Fish oil-enriched diet protects against ischemia by improving angiogenesis, endothelial progenitor cell function and postnatal neovascularization. Atherosclerosis, 2013. 229(2): p. 295-303. 33.Tikhonenko, M., et al., N-3 polyunsaturated Fatty acids prevent diabetic retinopathy by inhibition of retinal vascular damage and enhanced endothelial progenitor cell reparative function. PLoS One, 2013. 8(1): p. e55177. 34.Martin, F.H., et al., Primary structure and functional expression of rat and human stem cell factor DNAs. Cell, 1990. 63(1): p. 203-11. 35.Gommerman, J.L., R. Rottapel, and S.A. Berger, Phosphatidylinositol 3-kinase and Ca2+ influx dependence for ligand-stimulated internalization of the c-Kit receptor. J Biol Chem, 1997. 272(48): p. 30519-25. 36.Dentelli, P., et al., C-KIT, by interacting with the membrane-bound ligand, recruits endothelial progenitor cells to inflamed endothelium. Blood, 2007. 109(10): p. 4264-71. 37.Matsui, J., et al., Stem cell factor/c-kit signaling promotes the survival, migration, and capillary tube formation of human umbilical vein endothelial cells. J Biol Chem, 2004. 279(18): p. 18600-7. 38.Kapur, R., et al., Role of p38 and ERK MAP kinase in proliferation of erythroid progenitors in response to stimulation by soluble and membrane isoforms of stem cell factor. Blood, 2002. 100(4): p. 1287-93. 39.Gumbiner, B.M., Cell adhesion: the molecular basis of tissue architecture and morphogenesis. Cell, 1996. 84(3): p. 345-57. 40.Lim, W.H., et al., Stent coated with antibody against vascular endothelial-cadherin captures endothelial progenitor cells, accelerates re-endothelialization, and reduces neointimal formation. Arterioscler Thromb Vasc Biol, 2011. 31(12): p. 2798-805. 41.Yamamoto, K., et al., Proliferation, differentiation, and tube formation by endothelial progenitor cells in response to shear stress. J Appl Physiol (1985), 2003. 95(5): p. 2081-8. 42.Fulton, D., J.P. Gratton, and W.C. Sessa, Post-translational control of endothelial nitric oxide synthase: why isn''t calcium/calmodulin enough? J Pharmacol Exp Ther, 2001. 299(3): p. 818-24. 43.Shaul, P.W., Regulation of endothelial nitric oxide synthase: location, location, location. Annu Rev Physiol, 2002. 64: p. 749-74. 44.Aicher, A., et al., Essential role of endothelial nitric oxide synthase for mobilization of stem and progenitor cells. Nat Med, 2003. 9(11): p. 1370-6. 45.Thum, T., et al., Endothelial nitric oxide synthase uncoupling impairs endothelial progenitor cell mobilization and function in diabetes. Diabetes, 2007. 56(3): p. 666-74. 46.Nurse, P., Y. Masui, and L. Hartwell, Understanding the cell cycle. Nat Med, 1998. 4(10): p. 1103-6. 47.Nurse, P.M., Nobel Lecture. Cyclin dependent kinases and cell cycle control. Biosci Rep, 2002. 22(5-6): p. 487-99. 48.Sherr, C.J. and J.M. Roberts, Living with or without cyclins and cyclin-dependent kinases. Genes Dev, 2004. 18(22): p. 2699-711. 49.Blackwood, E.M. and R.N. Eisenman, Max: a helix-loop-helix zipper protein that forms a sequence-specific DNA-binding complex with Myc. Science, 1991. 251(4998): p. 1211-7. 50.Baudino, T.A. and J.L. Cleveland, The Max network gone mad. Mol Cell Biol, 2001. 21(3): p. 691-702. 51.Pearson, G., et al., Mitogen-activated protein (MAP) kinase pathways: regulation and physiological functions. Endocr Rev, 2001. 22(2): p. 153-83. 52.Carling, D., et al., AMP-activated protein kinase: nature''s energy sensor. Nat Chem Biol, 2011. 7(8): p. 512-8. 53.Hardie, D.G., AMP-activated protein kinase: an energy sensor that regulates all aspects of cell function. Genes Dev, 2011. 25(18): p. 1895-908. 54.Zhang, B.B., G. Zhou, and C. Li, AMPK: an emerging drug target for diabetes and the metabolic syndrome. Cell Metab, 2009. 9(5): p. 407-16. 55.Xiang, L., et al., Chronic hyperglycemia impairs functional vasodilation via increasing thromboxane-receptor-mediated vasoconstriction. Am J Physiol Heart Circ Physiol, 2007. 292(1): p. H231-6. 56.Gaenzer, H., et al., Effect of insulin therapy on endothelium-dependent dilation in type 2 diabetes mellitus. Am J Cardiol, 2002. 89(4): p. 431-4. 57.Chiu, S.C., et al., Eicosapentaenoic acid induces neovasculogenesis in human endothelial progenitor cells by modulating c-kit protein and PI3-K/Akt/eNOS signaling pathways. J Nutr Biochem, 2014. 25(9): p. 934-45. 58.Jiraritthamrong, C., et al., In vitro vessel-forming capacity of endothelial progenitor cells in high glucose conditions. Ann Hematol, 2012. 91(3): p. 311-20. 59.Musi, N., et al., Metformin increases AMP-activated protein kinase activity in skeletal muscle of subjects with type 2 diabetes. Diabetes, 2002. 51(7): p. 2074-81. 60.Li, X., et al., AMP-activated protein kinase promotes the differentiation of endothelial progenitor cells. Arterioscler Thromb Vasc Biol, 2008. 28(10): p. 1789-95.
|