跳到主要內容

臺灣博碩士論文加值系統

(2600:1f28:365:80b0:2119:b261:d24c:ce10) 您好!臺灣時間:2025/01/21 07:39
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:林于菁
研究生(外文):Yu-Chin Lin
論文名稱:槲皮素對Methotrexate 在癌症治療時藥物動力學影響之分子機轉研究
論文名稱(外文):Molecular Mechanism Study of Methotrexate Pharmacokinetics During the Cancer Treatment under the Influence of Quercetin
指導教授:莊聲宏
指導教授(外文):Shin-Hun Juang
學位類別:博士
校院名稱:中國醫藥大學
系所名稱:藥學系博士班
學門:醫藥衛生學門
學類:藥學學類
論文種類:學術論文
論文出版年:2015
畢業學年度:103
語文別:英文
論文頁數:111
中文關鍵詞:ABC 多重耐藥性蛋白Methotrexate 耐藥性槲皮素二氫葉酸還原酶β-葡糖醛酸酶
外文關鍵詞:ABC transportersMethotrexate drug resistancequercetin rich herbsDHFRGUSB
相關次數:
  • 被引用被引用:0
  • 點閱點閱:267
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
槲皮素(Quercetin)具有多樣藥理活性,主要以配糖體形式廣泛分佈於食用植物中,如 quercetin-O-glucoside 與 quercetin-O-rutinoside (rutin)等。近年來許多研究指出,槲皮素對於治療指數狹窄之藥物具有影響其藥物動力學的特性,例如免疫抑製劑 (cyclosporin),抗癌藥 (methorexate)與強心配糖體(digoxin)等。本研究團隊先前的研究顯示服用富含槲皮素之草藥具有提升 methorexate(MTX)毒性的作用,導致低於 MTX 致死劑量之動物死亡,但其作用機制並不明確。本研究中,探討了富含槲皮素的洋蔥及 rutin 對 MTX 動力學影響之分子機轉。我們研究結果發現,分別併服洋蔥與 rutin,具有顯著增加 MTX 藥物 之 Cmax 與 AUC0-2160 達 1.4 至 2.0倍,而體外研究顯示,含有槲皮素代謝物之血清具有抑制 BCRP 與 MRP 4 等耐藥蛋白功能之作用。此外,發現含有槲皮素代謝物之血清可作為 MTX 耐藥性鼻咽癌細胞株之細胞增敏劑,具有抑制 DHFR 之作用以及逆轉 MTX 抗藥性之活性。本研究發現quercetin-3-O-glucuronide 為血清中之主要代謝產物,且可經由 MTX 耐藥細胞株之細胞膜中過度表現之 GUSB 轉換為槲皮素並通過細胞產生藥裡作用。因此本研究結果提供一種新的治療策略,當併服富含槲皮素之植物可提高 MTX 治療鼻咽癌之療效 。

Quercetin is a pharmacologically active agent, which is widely distributed in edible plants, mainly as glycosides form such as quercetin-O-glucoside and quercetin-O-rutinoside (rutin). Recently, reports indicated that quercetin might interfere the pharmacokinetics of drugs the narrow therapeutic window such as immunosuppressant (cyclosporin), anticancer (mexthorate) and cardiac glycoside (digoxin) and resulting significant adverse effects. Previous our study showed that several quercetin-rich herbs could enhance MTX toxicity and cause animal death under sub-lethal dose, however, the detailed mechanisms remained unknown. In the present study, the effect and molecular mechanisms between MTX and quercetin-rich onion and rutin were investigated. Our results showed that Cmax and AUC0-2160 of MTX were increased by 1.4 fold and 2.0 fold when co-administration with rutin and onion, respectively. Further in vitro studies showed that quercetin-metabolites containing serum could inhibited the functions of BCRP and MRP 4. Furthermore, co-treatment with quercetin-metabolites containing serum could inactivate DHFR activity present in the MTX-resistant cells and might re-sensitize the MTX-resistant NPC cells to MTX treatment. Additional experiments demonstrated that quercetin-3-O-glucuronide a major metabolite of quercetin in the serum could be converted by GUSB over-expressed MTX-resistant cells to quercetin and aid in reversing MTX resistance. In conclusion, our results provide the molecular mechanisms where co-administration of quercetin-containing botanies could enhance MTX efficacy and provide the novel therapeutic strategy to improve the MTX-treatment of NPC.

English Abbreviations................…………….................................................. III
Figure Index..................................................................................................... V
Table Index...................................................................................................... VI
Chinese Abstract.............................................................................................. VII
English Abstract………………………........................................................... IX
Chapter 1. Introduction.................................................................................... 1
1.1 Onion................................................................................................ 8
1.2 Rutin................................................................................................. 11
1.3 Quercetin.......................................................................................... 14
1.4 Methotrexate (MTX) ....................................................................... 17
1.5 Multidrug resistance proteins (MRPs)............................................. 23
1.6 Aldo-keto reductase family 1, member C1 (AKR1C1)…................ 26
1.7 β-glucuronidase (GUSB) ................................................................. 28
Chapter 2. Materials and Methods................................................................... 29
2.1 Cell lines and culture ....................................................................... 29
2.2 Animal experiment………………………………………………... 30
2.3 Antibodies and chemicals................................................................. 30
2.4 Chemicals and reagents.................................................................... 32
2.5 Medium of experiment..................................................................... 36
2.6 Instrument......................................................................................... 37
2.7 Methods…………………………………………………………… 39
2.7.1. Preparation and characterization of OSP................................ 39
2.7.2. Pharmacokinetics studies....................................................... 40
2.7.3. Anti-proliferation effect…………………………………….. 44
2.7.4. Effects of OSP, quercetin and OSPM on BCRP activity…... 45
2.7.5. Effect of OSPM on MRP 4 activity........................................ 46
2.7.6. Dihydrofolate reductase activity assay................................... 46
2.7.7. Preparation of cell membrane………..................................... 47
2.7.8. Western blot analysis ............................................................. 48
2.7.9. Reverse transcription-polymerase chain reaction (RT-PCR) 48
2.7.10. Statistical Analysis............................................................... 49
Chapter 3. Results........................................................................................... 50
3.1 Characterization of OSP.................................................................. 50
3.2 Quantitation of OSP, onion soup and rutin-fed rat serum…….….. 50


3.3 Co-administration of OSP, onion soup or rutin affected the pharmacokinetic parameters of MTX……………………………..
52
3.4 Serum containing quercetin metabolites re-sensitized the MTX-resistant NPC cells to MTX treatment……………………... 53
3.5 Co-treatment weith quercetin metabolites-containing serum blocked biological functions of BCRP and MRP 4……………….. 54
3.6 Effect of OSP extract and quercetin on BCRP activity …………... 55
3.7 Quercetin metabolites-containing serum dose not affect the expression level of ABC-transporters in MTX-resistant cells.......... 56
3.8 Over-expression of DHFR in MTX resistant cell lines...…...…….. 57
3.9 The over-expression of GUSB in the MTX-resistant cell converted Q3G conversion into quercetin…………………..…..... 59
Chapter 4. Discussions..................................................................................... 63
Chapter 5. Reference........................................................................................ 69


1.Chang, H.; Xie, Q.; Zhang, Q. Y.; Peng, X. L.; Zhu, J. D.; Mi, M. T. Flavonoids, Flavonoid Subclasses and Breast Cancer Risk: A Meta-Analysis of Epidemiologic Studies. Plos One 2013, 8.
2.Zeng, L. H.; Zhang, H. D.; Xu, C. J.; Bian, Y. J.; Xu, X. J.; Xie, Q. M.; Zhang, R. H. Neuroprotective effects of flavonoids extracted from licorice on kainate-induced seizure in mice through their antioxidant properties. Journal of Zhejiang University-Science B 2013, 14, 1004-1012.
3.Ye, Y.; Guo, Y.; Luo, Y. T. Anti-Inflammatory and Analgesic Activities of a Novel Biflavonoid from Shells of Camellia oleifera. International Journal of Molecular Sciences 2012, 13, 12401-12411.
4.Kumar, S.; Pandey, A. K. Chemistry and Biological Activities of Flavonoids: An Overview. Scientific World Journal 2013.
5.Biesalski, H. K. Antioxidants in cancer therapy: harm or benefit? Onkologie 2011, 34, 303-303.
6.Ladas, E. J.; Jacobson, J. S.; Kennedy, D. D.; Teel, K.; Fleischauer, A.; Kelly, K. M. Antioxidants and cancer therapy: A systematic review. Journal of Clinical Oncology 2004, 22, 517-528.
7.Chun, O. K.; Chung, S. J.; Song, W. O. Estimated dietary flavonoid intake and major food sources of US adults. Journal of Nutrition 2007, 137, 1244-1252.
8.Rimm, E. B.; Katan, M. B.; Ascherio, A.; Stampfer, M. J.; Willett, W. C. Relation between intake of flavonoids and risk for coronary heart disease in male health professionals. Annals of Internal Medicine 1996, 125, 384-389.
9.Murota, K.; Terao, J. Antioxidative flavonoid quercetin: implication of its intestinal absorption and metabolism. Archives of Biochemistry and Biophysics 2003, 417, 12-17.
10.Gao, S.; Hu, M. Bioavailability Challenges Associated with Development of Anti-Cancer Phenolics. Mini-Reviews in Medicinal Chemistry 2010, 10, 550-567.
11.Bolling, B. W.; Court, M. H.; Blumberg, J. B.; Chen, C. Y. O. Microsomal Quercetin Glucuronidation in Rat Small Intestine Depends on Age and Segment. Drug Metabolism and Disposition 2011, 39, 1406-1414.
12.Bolling, B. W.; Court, M. H.; Blumberg, J. B.; Chen, C. Y. O. Age-related increases in microsomal quercetin glucuronidation in rat small intestine. Faseb Journal 2009, 23.
13.Thilakarathna, S. H.; Rupasinghe, H. P. V. Flavonoid Bioavailability and Attempts for Bioavailability Enhancement. Nutrients 2013, 5, 3367-3387.
14.Williamson, G.; Manach, C. Bioavailability and bioefficacy of polyphenols in humans. II. Review of 93 intervention studies. American Journal of Clinical Nutrition 2005, 81, 243S-255S.
15.Choi, J. S.; Piao, Y. J.; Kang, K. W. Effects of Quercetin on the Bioavailability of Doxorubicin in Rats: Role of CYP3A4 and P-gp Inhibition by Quercetin. Archives of Pharmacal Research 2011, 34, 607-613.
16.Wang, Y. H.; Chao, P. D. L.; Hsiu, S. L.; Wen, K. C.; Hou, Y. C. Lethal quercetin-digoxin interaction in pigs. Life Sciences 2004, 74, 1191-1197.
17.Albishi, T.; John, J. A.; Al-Khalifa, A. S.; Shahidi, F. Antioxidative phenolic constituents of skins of onion varieties and their activities. Journal of Functional Foods 2013, 5, 1191-1203.
18.Amaral, D. R.; Oliveira, F. E. D.; Oliveira, D. F.; Campos, V. P. Purification of two substances from bulbs of onion (Allium cepa L.) with nematicidal activity against Meloidogyne exigua Goeldi. Nematology 2003, 5, 859-864.
19.Song, J. H.; Park, K. S.; Kwon, D. H.; Choi, H. J. Anti-Human Rhinovirus 2 Activity and Mode of Action of Quercetin-7-Glucoside from Lagerstroemia speciosa. Journal of Medicinal Food 2013, 16, 274-279.
20.Khiari, Z.; Makris, D. P. Stability and transformation of major flavonols in onion (Allium cepa) solid wastes. Journal of Food Science and Technology-Mysore 2012, 49, 489-494.
21.Liu, Y. L.; Shieh, M. S.; Chien, H.; Shieh, M. J. Garlic presents better effect than onion on lowering plasma lipids and antioxidative function in hamsters. Atherosclerosis 1998, 136, S80-S80.
22.Li, W.; Tang, C. S.; Jin, H. F.; Du, J. B. Effects of Onion Extract on Endogenous Vascular H2S and Adrenomedulin in Rat Atherosclerosis. Current Pharmaceutical Biotechnology 2011, 12, 1427-1439.
23.Graefe, E. U.; Wittig, J.; Mueller, S.; Riethling, A. K.; Uehleke, B.; Drewelow, B.; Pforte, H.; Jacobasch, G.; Derendorf, H.; Veit, M. Pharmacokinetics and bioavailability of quercetin glycosides in humans. Journal of Clinical Pharmacology 2001, 41, 492-499.
24.Williamson, G.; Plumb, G. W.; Uda, Y.; Price, K. R.; Rhodes, M. J. C. Dietary quercetin glycosides: Antioxidant activity and induction of the anticarcinogenic phase II marker enzyme quinone reductase in Hepalclc7 cells. Carcinogenesis 1996, 17, 2385-2387.
25.Olthof, M. R.; Hollman, P. C. H.; Buijsman, M. N. C. P.; van Amelsvoort, J. M. M.; Katan, M. B. Chlorogenic acid, quercetin-3-rutinoside and black tea phenols are extensively metabolized in humans (vol 133, pg 1806, 2003). Journal of Nutrition 2003, 133, 2692-2692.
26.Olthof, M. R.; Hollman, P. C. H.; Buijsman, M. N. C. P.; van Amelsvoort, J. M. M.; Katan, M. B. Chlorogenic acid, quercetin-3-rutinoside and black tea phenols are extensively metabolized in humans. Journal of Nutrition 2003, 133, 1806-1814.
27.Ji, X. M.; Zhang, W. D.; Xie, C. H.; Wang, B. C.; Zhang, G.; Zhou, F. X. Nasopharyngeal carcinoma risk by histologic type in central China: impact of smoking, alcohol and family history. International Journal of Cancer 2011, 129, 724-732.
28.Pi, G. H.; Zeng, Y.; Dethe, G. Elisa for the Detection of Nasopharyngeal Carcinoma Using Iga Antibodies to Ebv Early Antigen. Annales De L Institut Pasteur-Virology 1985, 136E, 131-140.
29.Zeng, Y.; Zhang, L. G.; Li, H. Y.; Jan, M. G.; Zhang, Q.; Wu, Y. C.; Wang, Y. S.; Su, G. R. Serological Mass Survey for Early Detection of Nasopharyngeal Carcinoma in Wuzhou-City, China. International Journal of Cancer 1982, 29, 139-141.
30.Chan, K. C. A.; Hung, E. C. W.; Woo, J. K. S.; Chan, P. K. S.; Leung, S. F.; Lai, F. P. T.; Cheng, A. S. M.; Yeung, S. W.; Chan, Y. W.; Tsui, T. K. C.; Kwok, J. S. S.; King, A. D.; Chan, A. T. C.; van Hasselt, A. C.; Lo, Y. M. D. Early detection of nasopharyngeal carcinoma by plasma Epstein-Barr virus DNA analysis in a surveillance program. Cancer 2013, 119, 1838-1844.
31.Hildesheim, A. Invited Commentary: Epstein-Barr Virus-Based Screening for the Early Detection of Nasopharyngeal Carcinoma - A New Frontier. American Journal of Epidemiology 2013, 177, 251-253.
32.Baizig, N. M.; Morand, P.; Seigneurin, J. M.; Boussen, H.; Fourati, A.; Gritli, S.; Oueslati, Z.; Touati, S.; Gamoudi, A.; Ben Abdallah, M.; El May, M.; El May, A. Complementary determination of Epstein-Barr virus DNA load and serum markers for nasopharyngeal carcinoma screening and early detection in individuals at risk in Tunisia. European Archives of Oto-Rhino-Laryngology 2012, 269, 1005-1011.
33.Romdhoni, A. C.; Wiqoyah, N.; Kentjono, W. A. Early detection of nasopharyngeal carcinoma using IgA anti-EBNA1+VCA-p18 serology assay. Ent-Ear Nose & Throat Journal 2014, 93, 112-+.
34.Tan, Y. O.; Alfanta, E. M.; Lopa, R. A. B.; Lim, E. H.; Whang, H. Y.; Wong, K.; Jordan, P.; Corfield, E.; Salter, M.; Field, M.; Akoulitchev, A.; Loh, T. K. S.; Goh, B. C.; Hsieh, W. S. A blood-based epigenetic test for early detection of nasopharyngeal carcinoma (NPC). Journal of Clinical Oncology 2013, 31.
35.Hutajulu, S. H.; Indrasari, S. R.; Indrawati, L. P. L.; Harijadi, A.; Duin, S.; Haryana, S. M.; Steenbergen, R. D. M.; Greijer, A. E.; Middeldorp, J. M. Epigenetic markers for early detection of nasopharyngeal carcinoma in a high risk population. Molecular Cancer 2011, 10.
36.Baghi, M.; Hambek, M.; Wagenblast, J.; May, A.; Wolfgang; Gstoettner; Knecht, R. A phase II trial of docetaxel, cisplatin and 5-fluorouracil in patients with recurrent squamous cell carcinoma of the head and neck (SCCHN). Anticancer Research 2006, 26, 585-590.
37.Wu, S. Y.; Wu, Y. H.; Yang, M. W.; Hsueh, W. T.; Hsiao, J. R.; Tsai, S. T.; Chang, K. Y.; Chang, J. S.; Yen, C. J. Comparison of concurrent chemoradiotherapy versus neoadjuvant chemotherapy followed by radiation in patients with advanced nasopharyngeal carcinoma in endemic area: experience of 128 consecutive cases with 5 year follow-up. Bmc Cancer 2014, 14.
38.Djekkoun, R.; Ferdil, N.; Boudaoud, K.; Boudraa, B.; Boughrara, W.; Taleb, S. Neciadjuvant chemotherapy followed by concurrent chemo-radiation therapy in patients with locally advanced nasopharyngeal carcinoma preliminary results of 21 patients. Ejc Supplements 2008, 6, 59-60.
39.Stell, P. M. A Phase-Iii Randomized Trial of Cistplatinum, Methotrextate, Cisplatinum + Methotrexate and Cisplatinum + 5-Fu in End Stage Squamous Carcinoma of the Head and Neck. British Journal of Cancer 1990, 61, 311-315.
40.Gillison, M. L.; Forastiere, A. A. Larynx preservation in head and neck cancers - A discussion of the National Comprehensive Cancer Network practice guidelines. Hematology-Oncology Clinics of North America 1999, 13, 699-+.
41.Au, E.; Tan, E. H.; Ang, P. T. Activity of paclitaxel by three-hour infusion in Asian patients with metastatic undifferentiated nasopharyngeal cancer. Annals of Oncology 1998, 9, 327-329.
42.El-Sheikh, A. A. K.; van den Heuvel, J. J. M. W.; Koenderink, J. B.; Russel, F. G. M. Interaction of nonsteroidal anti-inflammatory drugs with multidrug resistance protein (MRP) 2/ABCC2-and MRP4/ABCC4-mediated methotrexate transport. Journal of Pharmacology and Experimental Therapeutics 2007, 320, 229-235.
43.Tachibana, T.; Kato, M.; Mitsui, T.; Sugiyama, Y. Prediction of Drug-Drug Interactions Mediated by Intestinal Transporter. Drug Metabolism Reviews 2007, 39, 123-124.
44.Marchetti, S.; Mazzanti, R.; Beijnen, J. H.; Schellens, J. H. M. Concise review: Clinical relevance of drug-drug and herb-drug interactions mediated by the ABC transporter ABCB1 (MDR1, P-glycoprotein). Oncologist 2007, 12, 927-941.
45.Feng, B.; Lu, Y. S.; Varma, M.; Rotter, C. J. Prediction of Renal Transporter-Mediated Clinical Drug-Drug Interactions. Drug Metabolism Reviews 2014, 45, 253-254.
46.Galetin, A. Translational Modeling and Safety Assessment of Transporter-Mediated Pharmacokinetics and Drug-Drug Interactions. Drug Metabolism Reviews 2014, 45, 16-17.
47.Feng, B.; Hurst, S.; Lu, Y. S.; Varma, M. V.; Rotter, C. J.; El-Kattan, A.; Lockwood, P.; Corrigan, B. Quantitative Prediction of Renal Transporter-Mediated Clinical Drug-Drug Interactions. Molecular Pharmaceutics 2013, 10, 4207-4215.
48.Weitz, D.; Schmider, W.; Menguy-Vacheron, F.; Clot, P.; Hermabessiere, S.; Jiang, J.; Su, Y.; Thuillier, V.; Turpault, S. Teriflunomide: Potential for Transporter Mediated Drug-Drug Interactions. Clinical Pharmacology & Therapeutics 2013, 93, S112-S113.
49.Shitara, Y. Transporter-mediated drug-drug interactions. Drug Metabolism Reviews 2006, 38, 12-13.
50.Oevermann, L.; Scheitz, J.; Starke, K.; Kock, K.; Kiefer, T.; Dolken, G.; Niessen, J.; Greinacher, A.; Siegmund, W.; Zygmunt, M.; Kroemer, H. K.; Jedlitschky, G.; Ritter, C. A. Hematopoietic stem cell differentiation affects expression and function of MRP4 (ABCC4), a transport protein for signaling molecules and drugs. International Journal of Cancer 2009, 124, 2303-2311.
51.Dermauw, W.; Van Leeuwen, T. The ABC gene family in arthropods: Comparative genomics and role in insecticide transport and resistance. Insect Biochemistry and Molecular Biology 2014, 45, 89-110.
52.Bansal, T.; Jaggi, M.; Khar, R. K.; Talegaonkar, S. Emerging Significance of Flavonoids as P-Glycoprotein Inhibitors in Cancer Chemotherapy. Journal of Pharmacy and Pharmaceutical Sciences 2009, 12, 46-78.
53.Brand, W.; van der Wel, P. A. I.; Rein, M. J.; Barron, D.; Williamson, G.; van Bladeren, P. J.; Rietjens, I. M. C. M. Metabolism and transport of the citrus flavonoid hesperetin in Caco-2 cell monolayers. Drug Metabolism and Disposition 2008, 36, 1794-1802.
54.Zhang, C. Y.; Feng, Y. X.; Yu, Y.; Sun, W. J.; Bai, J.; Chen, F.; Fu, S. B. The molecular mechanism of resistance to methotrexate in mouse methotrexate-resistant cells by cancer drug resistance and metabolism SuperArray. Basic & Clinical Pharmacology & Toxicology 2006, 99, 141-145.
55.Volk, E. L.; Rohde, K.; Rhee, M.; McGuire, J. J.; Doyle, L. A.; Ross, D. D.; Schneider, E. Methotrexate cross-resistance in a mitoxantrone-selected multidrug-resistant MCF7 breast cancer cell line is attributable to enhanced energy-dependent drug efflux. Cancer Research 2000, 60, 3514-3521.
56.Reinhold-Keller, E.; Fink, C. O. E.; Herlyn, K.; Gross, W. L.; De Groot, K. High rate of renal relapse in 71 patients with Wegener''s granulomatosis under maintenance of remission with low-dose methotrexate. Arthritis & Rheumatism-Arthritis Care & Research 2002, 47, 326-332.
57.Benkeblia, N. Antimicrobial activity of essential oil extracts of various onions (Allium cepa) and garlic (Allium sativum). Lebensmittel-Wissenschaft Und-Technologie-Food Science and Technology 2004, 37, 263-268.
58.Benmalek, Y.; Yahia, O. A.; Belkebir, A.; Fardeau, M. L. Anti-microbial and anti-oxidant activities of Illicium verum, Crataegus oxyacantha ssp monogyna and Allium cepa red and white varieties. Bioengineered 2013, 4, 244-248.
59.Shibata, T.; Nakashima, F.; Honda, K.; Lu, Y. J.; Kondo, T.; Ushida, Y.; Aizawa, K.; Suganuma, H.; Oe, S.; Tanaka, H.; Takahashi, T.; Uchida, K. Toll-like Receptors as a Target of Food-derived Anti-inflammatory Compounds. Journal of Biological Chemistry 2014, 289.
60.Haefner, B. Drugs from the deep: marine natural products as drug candidates. Drug Discovery Today 2003, 8, 536-544.
61.Viry, E.; Anwar, A.; Kirsch, G.; Jacob, C.; Diederich, M.; Bagrel, D. Antiproliferative effect of natural tetrasulfides in human breast cancer cells is mediated through the inhibition of the cell division cycle 25 phosphatases. International Journal of Oncology 2011, 38, 1103-1111.
62.Guercio, V.; Galeone, C.; Turati, F.; La Vecchia, C. Gastric Cancer and Allium Vegetable Intake: A Critical Review of the Experimental and Epidemiologic Evidence. Nutrition and Cancer-an International Journal 2014, 66, 757-773.
63.Boyle, S. P.; Dobson, V. L.; Duthie, S. J.; Hinselwood, D. C.; Kyle, J. A. M.; Collins, A. R. Bioavailability and efficiency of rutin as an antioxidant: a human supplementation study. European Journal of Clinical Nutrition 2000, 54, 774-782.
64.Khan, R. A.; Khan, M. R.; Sahreen, S. CCl4-induced hepatotoxicity: protective effect of rutin on p53, CYP2E1 and the antioxidative status in rat. Bmc Complementary and Alternative Medicine 2012, 12.
65.Gonzalez-Covarrubias, V.; Ghosh, D.; Lakhman, S. S.; Pendyala, L.; Blanco, J. G. A functional genetic polymorphism on human carbonyl reductase 1 (CBR1 V88I) impacts on catalytic activity and NADPH binding affinity. Drug Metabolism and Disposition 2007, 35, 973-980.
66.Klafke, J. Z.; da Silva, M. A.; Rossato, M. F.; Trevisan, G.; Walker, C. I. B.; Leal, C. A. M.; Borges, D. O.; Schetinger, M. R. C.; Moresco, R. N.; Duarte, M. M. M. F.; dos Santos, A. R. S.; Viecili, P. R. N.; Ferreira, J. Antiplatelet, Antithrombotic, and Fibrinolytic Activities of Campomanesia xanthocarpa. Evidence-Based Complementary and Alternative Medicine 2012.
67.Nagai, N.; Nakai, A.; Nagata, K. Quercetin Suppresses Heat-Shock Response by down-Regulation of Hsf1. Biochemical and Biophysical Research Communications 1995, 208, 1099-1105.
68.Chirumbolo, S. Quercetin in Cancer Prevention and Therapy. Integrative Cancer Therapies 2013, 12, 97-102.
69.Lanteri, R.; Acquaviva, R.; Di Giacomo, C.; Sorrenti, V.; Li Destri, G.; Santangelo, M.; Vanella, L.; Di Cataldo, A. Rutin in rat liver ischemia/reperfusion injury: Effect on DDAH/NOS pathway. Microsurgery 2007, 27, 245-251.
70.Ostrakhovitch, E. A.; Afanas''ev, I. B. Oxidative stress in rheumatoid arthritis leukocytes: suppression by rutin and other antioxidants and chelators. Biochemical Pharmacology 2001, 62, 743-746.
71.Hou, L. F.; Zhou, B.; Yang, L.; Liu, Z. L. Inhibition of free radical initiated peroxidation of human erythrocyte ghosts by flavonols and their glycosides. Organic & Biomolecular Chemistry 2004, 2, 1419-1423.
72.Kim, G. N.; Jang, H. D. Flavonol Content in the Water Extract of the Mulberry (Morus alba L.) Leaf and Their Antioxidant Capacities. Journal of Food Science 2011, 76, C869-C873.
73.Arima, H.; Ashida, H.; Danno, G. Rutin-enhanced antibacterial activities of flavonoids against Bacillus cereus and Salmonella enteritidis. Bioscience Biotechnology and Biochemistry 2002, 66, 1009-1014.
74.Larson, A. J.; Symons, J. D.; Jalili, T. Therapeutic Potential of Quercetin to Decrease Blood Pressure: Review of Efficacy and Mechanisms. Advances in Nutrition 2012, 3, 39-46.
75.Kale, R.; Saraf, M.; Juvekar, A.; Tayade, P. Decreased B16F10 melanoma growth and impaired tumour vascularization in BDF1 mice with quercetin-cyclodextrin binary system. Journal of Pharmacy and Pharmacology 2006, 58, 1351-1358.
76.Arya, A.; Al-Obaidi, M. M. J.; Shahid, N.; Bin Noordin, M. I.; Looi, C. Y.; Wong, W. F.; Khaing, S. L.; Mustafa, M. R. Synergistic effect of quercetin and quinic acid by alleviating structural degeneration in the liver, kidney and pancreas tissues of STZ-induced diabetic rats: A mechanistic study. Food and Chemical Toxicology 2014, 71, 183-196.
77.Wang, C.; Pan, Y.; Zhang, Q. Y.; Wang, F. M.; Kong, L. D. Quercetin and Allopurinol Ameliorate Kidney Injury in STZ-Treated Rats with Regulation of Renal NLRP3 Inflammasome Activation and Lipid Accumulation. Plos One 2012, 7.
78.Bhullar, K. S.; Lassalle-Claux, G.; Touaibia, M.; Rupasinghe, H. P. V. Antihypertensive effect of caffeic acid and its analogs through dual renin-angiotensin-aldosterone system inhibition. European Journal of Pharmacology 2014, 730, 125-132.
79.Orsolic, N.; Car, N. Quercetin and hyperthermia modulate cisplatin-induced DNA damage in tumor and normal tissues in vivo. Tumor Biology 2014, 35, 6445-6454.
80.Chow, J. M.; Shen, S. C.; Huan, S. K.; Lin, H. Y.; Chen, Y. C. Quercetin, but not rutin and quercitrin, prevention of H2O2-induced apoptosis via anti-oxidant activity and heme oxygenase 1 gene expression in macrophages. Biochemical Pharmacology 2005, 69, 1839-1851.
81.Thilakarathna, S. H.; Rupasinghe, H. P. V.; Needs, P. W. Apple peel bioactive rich extracts effectively inhibit in vitro human LDL cholesterol oxidation. Food Chemistry 2013, 138, 463-470.
82.Baran, I.; Ionescu, D.; Filippi, A.; Mocanu, M. M.; Iftime, A.; Babes, R.; Tofolean, I. T.; Irimia, R.; Goicea, A.; Popescu, V.; Dimancea, A.; Neagu, A.; Ganea, C. Novel insights into the antiproliferative effects and synergism of quercetin and menadione in human leukemia Jurkat T cells. Leukemia Research 2014, 38, 836-849.
83.Chirumbolo, S. Basophil and high diluted bio-active molecules: What lies beneath? Medical Science Monitor 2010, 16, Le22-Le22.
84.Chirumbolo, S.; Conforti, A.; Ortolani, R.; Vella, A.; Marzotto, M.; Bellavite, P. Stimulus-specific regulation of CD63 and CD203c membrane expression in human basophils by the flavonoid quercetin. International Immunopharmacology 2010, 10, 183-192.
85.Bertino, J. R. Cancer research: from folate antagonism to molecular targets. Best Practice & Research Clinical Haematology 2009, 22, 577-582.
86.Gangjee, A.; Kurup, S.; Namjoshi, O. Dihydrofolate reductase as a target for chemotherapy in parasites. Current Pharmaceutical Design 2007, 13, 609-639.
87.Goldman, I. D.; Matherly, L. H. The Cellular Pharmacology of Methotrexate. Pharmacology & Therapeutics 1985, 28, 77-102.
88.Yao, X.; Huang, J. Q.; Zhong, H. H.; Shen, N.; Faggioni, R.; Fung, M.; Yao, Y. H. Targeting interleukin-6 in inflammatory autoimmune diseases and cancers. Pharmacology & Therapeutics 2014, 141, 125-139.
89.Huang, S. C.; Lui, L. T.; Lynn, T. C. Nasopharyngeal Cancer - Study-Iii - a Review of 1206 Patients Treated with Combined Modalities. International Journal of Radiation Oncology Biology Physics 1985, 11, 1789-1793.
90.Cultrera, J. L.; Nunez, R. F.; Romaguera, J. E.; Hagemeister, F. B.; Rodriguez, M. A.; Fayad, L. E.; Pro, B. Early (F-18) fluoro-2-deoxy-D-glucose positron emission tomography/computerized tomography (PET/CT) imaging as a tool for response assessment in T-cell non-Hodgkin''s lymphoma (TCL): An update to a phase II study of HCVIDD alternated with methotrexate (MTX) and cytarabine (Ara-C). Journal of Clinical Oncology 2008, 26.
91.Verschueren, P.; De Cock, D.; Corluy, L.; Joos, R.; Langenaken, C.; Taelman, V.; Raeman, F.; Ravelingien, I.; Vandevyvere, K.; Lenaerts, J.; Geens, E.; Geusens, P.; Vanhoof, J.; Durnez, A.; Remans, J.; Vander Cruyssen, B.; Van Essche, E.; Sileghem, A.; De Brabanter, G.; Joly, J.; Meyfroidt, S.; Van der Elst, K.; Westhovens, R. Methotrexate in combination with other DMARDs is not superior to methotrexate alone for remission induction with moderate-to-high-dose glucocorticoid bridging in early rheumatoid arthritis after 16 weeks of treatment: the CareRA trial. Annals of the Rheumatic Diseases 2015, 74, 27-34.
92.Mariette, X. L.; Bijlsma, J. W. J.; Herold, M.; Eiselstein, J.; Spencer-Green, G. T.; Kupper, H. Adalimumab (HUMIRA (R)) is as effective when used in combination with other DMARDs as with methotrexate in treating rheumatoid arthritis: The ReAct study. Arthritis and Rheumatism 2004, 50, S183-S183.
93.Bannwarth, B.; Pehourcq, F.; Lequen, L. Pharmacokinetics of low-dose methotrexate in rheumatoid arthritis: Therapeutic implications. Therapie 1997, 52, 129-132.
94.Hoekstra, M.; Haagsma, C.; Neef, C.; Proost, J.; Knuif, A.; van de Laar, M. Splitting high-dose oral methotrexate improves bioavailability: A pharmacokinetic study in patients with rheumatoid arthritis. Journal of Rheumatology 2006, 33, 481-485.
95.Soffer, A. Case-Reports in Archives-of-Internal-Medicine. Archives of Internal Medicine 1976, 136, 1090-1090.
96.Anatomical Record. 1974; Vol. 178.
97.Drugs in Japan. Ethical Drugs. Japan Pharmaceutical Information Center: 1982.
98.Morgaceva, O.; Furst, D. E. Use of MTX in the elderly and in patients with compromised renal function. Clinical and Experimental Rheumatology 2010, 28, S85-S94.
99.Salach, R. H.; Cash, J. M. Methotrexate - the Emerging Drug of Choice for Serious Rheumatoid-Arthritis. Clinical Therapeutics 1994, 16, 912-922.
100.Atzeni, F.; Boiardi, L.; Salli, S.; Benucci, M.; Sarzi-Puttini, P. Lung involvement and drug-induced lung disease in patients with rheumatoid arthritis. Expert Review of Clinical Immunology 2013, 9, 649-657.
101.Nakase, Y.; Hagiwara, A.; Kin, S.; Fukuda, K.; Ito, T.; Takagi, T.; Fujiyama, J.; Sakakura, C.; Otsuji, E.; Yamagishi, H. Intratumoral administration of methotrexate bound to activated carbon particles: Antitumor effectiveness against human colon carcinoma xenografts and acute toxicity in mice. Journal of Pharmacology and Experimental Therapeutics 2004, 311, 382-387.
102.Deckert, P. M.; Bornmann, W. G.; Ritter, G.; Williams, C.; Franke, J.; Keilholz, U.; Thiel, E.; Old, L. J.; Bertino, J. R.; Welt, S. Specific tumour localisation of a huA33 antibody - Carboxypeptidase A conjugate and activation of methotrexate-phenylalanine. International Journal of Oncology 2004, 24, 1289-1295.
103.Wolfrom, C.; Hepp, R.; Hartmann, R.; Breithaupt, H.; Henze, G. Pharmacokinetic Study of Methotrexate, Folinic Acid and Their Serum Metabolites in Children Treated with High-Dose Methotrexate and Leucovorin Rescue. European Journal of Clinical Pharmacology 1990, 39, 377-383.
104.Rees, D. C.; Johnson, E.; Lewinson, O. ABC transporters: the power to change. Nature Reviews Molecular Cell Biology 2009, 10, 218-227.
105.Dean, M.; Rzhetsky, A.; Allikmets, R. The human ATP-binding cassette (ABC) transporter superfamily. Genome Research 2001, 11, 1156-1166.
106.Dean, M.; Hamon, Y.; Chimini, G. The human ATP-binding cassette (ABC) transporter superfamily. Journal of Lipid Research 2001, 42, 1007-1017.
107.Nigam, S. K. What do drug transporters really do? Nature Reviews Drug Discovery 2015, 14, 29-44.
108.Ueda, K. ABC Proteins Protect the Human Body and Maintain Optimal Health. Bioscience Biotechnology and Biochemistry 2011, 75, 401-409.
109.Rizner, T. L.; Penning, T. M. Role of aldo-keto reductase family 1 (AKR1) enzymes in human steroid metabolism. Steroids 2014, 79, 49-63.
110.Jin, Y.; Mesaros, A. C.; Blair, I. A.; Penning, T. M. Stereospecific reduction of 5 beta-reduced steroids by human ketosteroid reductases of the AKR (aldo-keto reductase) superfamily: role of AKR1C1-AKR1C4 in the metabolism of testosterone and progesterone via the 5 beta-reductase pathway. Biochemical Journal 2011, 437, 53-61.
111.Rizner, T. L. Enzymes of the AKR1B and AKR1C subfamilies and uterine diseases. Frontiers in Pharmacology 2012, 3.
112.Pareja, H. V.; Cruz-Rus, E.; Aledo, J. C. The Aldo-Keto Reductase (AKR) superfamily as an experimental model for the study of protein oxidation. Febs Journal 2012, 279, 201-201.
113.Jez, J. M.; Penning, T. M. The aldo-keto reductase (AKR) superfamily: an update. Chemico-Biological Interactions 2001, 130, 499-525.
114.Masola, V.; Secchi, M. F.; Gambaro, G.; Onisto, M. Heparanase as a Target in Cancer Therapy. Current Cancer Drug Targets 2014, 14, 286-293.
115.Pisano, C.; Vlodavsky, I.; Ilan, N.; Zunino, F. The potential of heparanase as a therapeutic target in cancer. Biochemical Pharmacology 2014, 89, 12-19.
116.Cubizolle, A.; Serratrice, N.; Skander, N.; Colle, M. A.; Ibanes, S.; Gennetier, A.; Bayo-Puxan, N.; Mazouni, K.; Mennechet, F.; Joussemet, B.; Cherel, Y.; Lajat, Y.; Vite, C.; Bernex, F.; Kalatzis, V.; Haskins, M. E.; Kremer, E. J. Corrective GUSB Transfer to the Canine Mucopolysaccharidosis VII Brain. Molecular Therapy 2014, 22, 762-773.
117.Hansen, M. B.; Nielsen, S. E.; Berg, K. Re-Examination and Further Development of a Precise and Rapid Dye Method for Measuring Cell-Growth Cell Kill. Journal of Immunological Methods 1989, 119, 203-210.
118.Russel, F. G. M.; Koenderink, J. B.; Masereeuw, R. Multidrug resistance protein 4 (MRP4/ABCC4): a versatile efflux transporter for drugs and signalling molecules. Trends in Pharmacological Sciences 2008, 29, 200-207.
119.Fenton, J. I.; Wolff, M. S.; Orth, M. W.; Hord, N. G. Membrane-type matrix metalloproteinases mediate curcumin-induced cell migration in non-tumorigenic colon epithelial cells differing in Apc genotype. Carcinogenesis 2002, 23, 1065-1070.
120.Lin, Y. C.; Yu, C. P.; Lin, S. P.; Hsu, P. W.; Chao, P. D. L.; Hou, Y. C.; Juang, S. H. Potential modulation on BCRP and MRP 4 by onion: in vivo and ex-vivo studies. Journal of Functional Foods 2014, 8, 243-251.
121.Cupp, M. J. Herbal remedies: Adverse effects and drug interactions. American Family Physician 1999, 59, 1239-1244.
122.Sesink, A. L.; Arts, I. C.; de Boer, V. C.; Breedveld, P.; Schellens, J. H.; Hollman, P. C.; Russel, F. G. Breast cancer resistance protein (Bcrp1/Abcg2) limits net intestinal uptake of quercetin in rats by facilitating apical efflux of glucuronides. Mol Pharmacol 2005, 67, 1999-2006.
123.Hsu, P. W.; Shia, C. S.; Wu, C. T.; Chang, N. W.; Chao, P. D. L.; Hou, Y. C. Noni increased the systemic exposure of methotrexate in rats through inhibition on multi-drug resistance protein 2 (MRP 2) and breast cancer resistance protein (BCRP). Journal of Functional Foods 2013, 5, 1414-1420.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top